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ABSTRACT 

The approach proposed in this paper retrieves contours from 
transrectal ultrasound (TRUS) prostate images. The input images 
are sparsely annotated by radiologists for the purpose of 
brachytherapy planning and post-interventional monitoring. The 
theoretical contribution of the paper consists in the design of a 
task-oriented, bottom-up method which mimics perceptual 
grouping mechanisms for contour retrieval. The proposed 
approach is task-oriented because it embeds prior anatomical and 
procedural knowledge. From a practical standpoint, the proposed 
approach is of clinical relevance, since it allows for retrieving 
contours from images where the annotation is ‘blended’ with the 
image content. While new image annotation systems are able to 
store image content and annotations in a separate manner, many 
TRUS prostate databases still contain ‘blended’ annotations only. 
Our approach allows for contour retrieval and further 3D prostate 
modeling from such databases. 
 
Index Terms: ultrasound imaging, image segmentation 
 

1. INTRODUCTION 
 
Recent advances in medical imaging technologies have 
introduced significant changes in medical practice; digital 
images play now a central role in diagnosis and therapy 
planning. In many applications, radiologists annotate 
images for conveying information. For instance, contours 
of organs can be specified on ultrasound images. While 
some recent annotation techniques allow for a direct 
separation of the annotation data from the image content, 
older but still clinically in use techniques ‘blend’ the 
annotation with the image content. Our paper deals with 
this latter case. It is believed that information retrieval from 
annotated ‘blended’ images has high applicability in 
creating reference image datasets and 3D prostate models 
from archived image databases. The importance of such 
reference datasets is outlined in [1].  
Although humans perceive well sparsely annotated 
contours, it is still a challenge for a computer to achieve the 
same task. We propose an automatic method for extracting 
the contours added by radiologists on transrectal ultrasound 
images (TRUS) for prostate cancer therapy planning. 
The medical imaging literature contains examples of 
algorithms proposed for the direct extraction of prostate 
contours from TRUS images without annotations. A major 
challenge is the presence of speckle noise which is 
characteristic to ultrasound imaging. Therefore, such 
algorithms usually require manual specification of seed 
points, such as in [2], or use manual segmentations in a 

training phase [3]. Other automatic methods use 
deformable models based on super ellipses [4] and on 
statistical texture matching [5]. However, automatic and 
semi-automatic segmentation of raw TRUS images has yet 
to gain clinical acceptance, mainly because radiologists 
require control over the segmentation results [6].  
The proposed approach extracts contours annotated by 
radiologists for therapy planning and 3D prostate 
modelling. The remainder of the paper is structured as 
follows. Section 2 describes the proposed approach, while 
section 3 discusses experimental results. The last section 
draws conclusions and describes future work. 
 

2. PROPOSED APPROACH 
 
The proposed technique is applied to TRUS images 
acquired with Nucletron’s FIRSTTM. As shown in Fig. 1, 
this system allows the radiologist to annotate prostate 
contours by specifying sparse points on each slice.  

 
Fig. 1. a) a typical annotated TRUS image; b) zoom-in on 3 
contour points (encircled) and 1 grid point; c) 5x4 convolution 
mask for point detection. 
 
Perceptual grouping mechanisms in human vision perform 
an accurate detection of prostate contours from annotated 
images. However, such mechanisms are not easily 
reproducible by computer vision. Some reasons are the 
poor signal-to-noise ratio in TRUS imaging, the similar 
texture inside and outside the contour, as well as the 
presence of grid markers and various other alphanumeric 
symbols.  
Our approach integrates anatomical information (i.e. 
prostate shape), as well as procedural knowledge from 
image acquisition and annotation into a set of basic 
assumptions and parameter settings. For instance, since the 
prostate always lies in the central part of the TRUS image, 
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a rectangular region of interest (ROI) is defined by 
detecting vertical side lines and the semi-circular probe. 
The ROI center roughly approximates the prostate’s centre 
of mass. 
The proposed approach for automatic contour retrieval 
involves several steps. The first one detects points and 
groups them into chains on a slice-by-slice basis. The 
second step uses inter-slice similarity for recovering missed 
detections in step 1 and for creating new chains. The final 
contour is generated via a custom chain linking algorithm 
and Bezier interpolation. All steps are detailed below. 
A. Detection and filtering of prostate contour points. The 
annotated prostate contour consists of a series of quasi-
equally spaced points typically separated by 15 pixels (see 
Fig. 1b); all contour points look like bright rectangular 
regions of 2x3 pixels. A natural solution for point detection 
using topological- and shape-based knowledge is template 
matching with a convolution mask (see Fig. 1c). The inner 
pattern in this mask is identical in shape and brightness to 
an ideal contour point, while its boundary mimics the 
transition to background (i.e. the TRUS image). The 
convolution result is binarized with non-maxima 
suppression. As shown in Fig. 2a, most of the detected 
points belong to the prostate contour. However, false 
detections are generated by grid points or by texture/noise; 
such false detections are to be removed by further filtering. 
The design of a 3-step filtering sequence for removing false 
detections is based on a priori knowledge as follows:  
a) Multiple detections are false, since they are generated by 
grid points and other symbols. Thus, they are filtered by 
eliminating candidates having their nearest neighbors 
located within a 3 pixel radius. 
b) Correct detections tend to form an ellipse. Thus, step 2 
computes the distance between each candidate and the ROI 
center, builds a distance histogram, detects the histogram 
bin with the largest count and retains only the candidates 
populating this bin. Unfortunately, this step also eliminates 
some correct detections and fails to remove some erroneous 
candidates. Such errors occur because the ROI center (see 
Fig. 2b) is a raw approximation of the prostate center.    
c) Adjacent points in the prostate contour are roughly at 15 
pixels distance; thus, candidates with no neighbors within a 
20 pixels radius are removed. 
A typical result of the filtering approach is shown in Fig. 
2b. One may notice that some false/failed detections are 
still present. The candidates retained after filtering are 
ordered using a polar representation with respect to the ROI 
center.  

 
Fig. 2. a) point detections (in red) with template matching; b) 

filtering result (in red) and center of ROI (in yellow) 

B. Chain generation. A chain is defined as a polygonal line 
composed of ordered candidates. Chains belonging to the 
prostate contour are expected to feature smooth curvature. 
The local curvature is estimated at each chain point (except 
extremities) by the angle defined by the current point, its 
successor and its predecessor (see Fig. 3a).  
The iterative chain generation is described in Algorithm 1. 
While generating a chain, each iteration adds one point to 
it. This is achieved by inspecting points that are close 
(within 30=2x15 pixels) to the last chain point, and by 
selecting the point which maximizes the contour 
smoothness in terms of curvature (see Fig. 3b). If a minimal 
curvature threshold is not satisfied, then no point is added 
to the current chain which is considered complete. Chains 
with less than 3 points are eliminated, since their curvature 
cannot be computed. Removal of discarded candidates can 
be interpreted as filtering detections with a curvature 
criterion. 

 
Fig. 3. a) measuring local chain curvature ; b) selection of the 
next chain point (red); blue points are removed 

Algorithm 1. Chain generation 
while buffer not void  
 set 1st chain element as 1st point from buffer 
 while end of chain not reached 
  search for new points to be added to chain 
 remove discarded candidates from buffer 
  end 
  perform chain labeling        
  remove all chain points from buffer 
end

C. Chain linking. Algorithm 1 produces a series of chains 
that mostly belong to the prostate contour although 
spurious chains still persist. Thus, removal of spurious 
chains is integrated with chain linking in Algorithm 2. The 
initial reference chain must have a high probability of 
belonging to the prostate contour and it is chosen as the 
chain with maximal arc length/chain length ratio (see Fig. 
4b). This choice insures an optimal orientation of the 
reference chain. Chain candidates for linking are chosen 
according to their proximity to the current reference; the 
closest chain from reference is the chain with the closest 
start point from the reference end point. Thresholding 
removes chains that break the curvature smoothness. Fig. 
4c shows a synthetic example of linking chains. 

The removal of spurious chains results sometimes in 
eliminating some valid chains; this is caused by the use of a 
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fixed angular threshold (1.1 radians). The result of point 
detection, chain generation and chain linking on a slice-by-
slice basis is represented by an ordered set of chains (see 
Fig. 4c) which all belong to the prostate. Such chains do 
not form a closed contour, due to elimination of valid 
points during point filtering, and of valid chains during 
chain filtering. The retrieval of missed detections, and thus 
the closing of the prostate contour are achieved in step D.   

  
                        a)                           b)                       c) 
Fig. 4. a) computing the angle between two chains; b) projecting 
4 prostate chains onto circle of unit length at the centre of ROI; 
c)Ordering chains counterclockwise 
 
Algorithm 2. Chain linking and filtering 
 Define reference chain from ordered set of chains 
 Remove reference chain from set 
 While ordered set of chains not void 
     Find closest chain from reference 
       Compute angle between the two chains 
       If angle > threshold eliminate chain from set 
       Else  
 Remove current reference from set 
 Link chain with reference 
 Most recently linked chain becomes reference 
       End 
 
D. Additional chain retrieval using inter-slice similarity. 
TRUS acquisition results in a series of parallel and 
equidistant slices for each patient. Thus, inter-slice contour 
similarity can be used as a cue for retrieving chains in slice 
i using information from slices i+1 and i-1. Extreme slices 
will use one neighboring slice only.  
First, algorithm 3 selects chains in adjacent slices which are 
useful for processing the current slice. Such chains must 
‘cover’ arcs of the unit circle which are not ‘covered’ by 
the actual set (see Fig. 6a). Selected chains in slices i-1 and 
i+1 are projected onto slice i (see Fig. 6). Projected and 
actual chains may ‘overlap’ partially. The ‘overlapping’ 
parts of the projected chains contain redundant information 
and thus are removed. The remaining points in the 
projected chains are used as seeds for a neighborhood 
search of missing contour points (see Fig. 6c). New points 
are grouped into new chains or appended to existing chains. 
The final set of ordered chains (Fig. 6e) is transformed into 
a closed contour with Bezier interpolation (see Fig. 6f).  
 
Algorithm 3. Chain generation with inter-slice similarity 
     Select relevant chains from slices i-1, i+1 
     Project these chains in i and remove partial overlaps 
     Search missed prostate contour points in i  using seeds  

             Link newly detected points into chains using algo 1 
     Merge all chains in i using algo 2 
     Close prostate contour using Bezier interpolation 

3. EXPERIMENTAL RESULTS 

The proposed approach was tested on 10 annotated TRUS 
patient-specific volumes. These volumes consist in parallel 
series of 6 to 10 slices separated by a 5 mm gap. The 
proposed approach was run without user intervention while 
maintaining the set of parameters constant on all data. 
Validation compared results on a slice-by-slice basis with 
reference contours obtained by manual point linking.  
A validation technique able to quantify local differences 
between two contours was used. First, the centers of mass 
of each pair of corresponding 2D contours are aligned. 
Next, the contours are scanned simultaneously and the 
distance between every two points located on each contour 
and on the same radius is stored into a distance map (see 
Fig. 6a). Local differences (or defects) in the compared 2D 
contours correspond to local maxima in the generated 
distance map and are described by two parameters, namely 
length and depth (see Fig. 6b). The length of a defect is the 
length of the curved contour segment forming the defect, 
whereas the depth is the maximum point distance in this 
segment with respect to the reference contour. Significant 
defects are detected by thresholding in both length and 
depth. 

 
Fig. 5. a) partially overlapping contours; b) superposition of 
selected chains from slices i-1 (green) and i+1 (blue) on current 
slice i (red); c) elimination of chain overlap; d) seed-based 
detection of new points (light blue); e) final set of chains; f) 
closed prostate contour via Bezier interpolation  

Table 1 summarizes the performances of our approach 
computed over the experimental database. The length and 
depth thresholds for the selection of significant defects 
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were set both to 2 mm. Fig. 7 shows local defects on 
patient-specific 3D surface models built from series of 
reference and automatically retrieved contours. A graphical 
user interface allows for visualizing the correspondence 
between local maxima in the distance matrix and surface 
defects. Our experimental results and the defect 
visualization were considered very promising from a 
clinical standpoint.  

 
a                                                     b 

Fig. 6. a) Computing distances between pairs of points in 
reference (red) and automatically retrieved (blue) contours; b) 
Length and depth of a local defect (green) 

4. CONCLUSIONS  
 
The proposed approach automatically extracts prostate 
contours sparsely annotated by radiologists on TRUS 
images. Our main theoretical contribution consists in the 
design of a task-oriented, bottom-up method which mimics 
perceptual grouping mechanisms for extracting virtual 
contours. The proposed contour retrieval approach embeds 
anatomic and procedural knowledge.  
From a practical standpoint, the proposed approach is of 
high clinical relevance, since it is applicable to archived 
databases containing annotations that are blended with the 
image content. From these databases, contour information 
can be retrieved with our approach and used for the 
generation of 3D prostate models for therapy planning and 
monitoring. Ongoing work focuses on using the 3D 
prostate models for tracking postinterventional oedema 
evolution.       

Table 1. Statistics on local defects in automatically retrieved 
contours computed over database with respect to manually 
segmented contours chosen as reference.  

Average no. of 
significant 
contour defects 
per patient 

Mean and std. 
deviation of 
surface overlap 

Mean and std. 
deviation of 
defect length  

Mean and std. 
deviation of 
defect depth 
(mm) 

3±2 98.61±3% 7.76±7.64 mm 3.00±1.47 mm 
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Fig. 7. Interactive visualization of a significant defect (red dot) on 
patient-specific 3D prostate models and on the distance map 
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