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Abstract. This paper proposes a survey of vision-based human computer inter-
faces for several key-fields in health care: data visualization for image-guided 
diagnosis, image-guided therapy planning and surgery, the operating room, as-
sistance to motor-impaired patients, and monitoring and support of elderly. The 
emphasis is on the contribution of the underlying computer vision techniques to 
the usability and usefullness of interfaces for each specific domain. It is also 
shown that end-user requirements have a significant impact on the algorithmic 
design of the computer vision techniques embedded in the interfaces. 

1   Introduction 

The field of computer vision focuses on the development and implementation of 
algorithms which allow computers to “understand” image and video data at various 
levels depending on the task at hand. Task-oriented image “understanding” may offer 
assistance to human perception, cognition and decision-making, such as in computer-
aided diagnosis systems, or may enable more natural ways for human-computer 
interaction (HCI) in perceptual interfaces and in pervasive computing systems. Such 
vision-based technologies find promising applications in several areas of health care, 
including but not limited to image-based diagnosis and therapy planning, minimally 
invasive surgery, assistance and support for people with disabilities and elderly.    

However, HCI design for medical applications is a difficult problem. Gosbee and 
Ritchie [1] built a hierarchical model of clinician acceptance of technology in an 
attempt to identify why physicians and other care providers are reluctant to introduce 
new HCI technology in their daily work routine. Considering this model, it is 
expected that a successful integration of computer vision algorithms in health-related 
HCI should consider both user-centered and task-based design paradigms. In return, 
these paradigms influence the basic assumptions as well as the algorithmic 
development of computer vision techniques.  

This paper presents a survey of vision-based HCIs for several key-fields in health 
care: data visualization for image-guided diagnosis, therapy planning and surgery 
(section 2), the operating room (section 3), assistance to motor-impaired patients 
(section 4), and monitoring and support of elderly (section 5). The emphasis is on the 
contribution of the embedded computer vision techniques to the usability and 
usefullness of interfaces for each specific domain.  Section 6 presents a summary of 
our survey and draws conclusions.  
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2   Vision-Based Interfaces for Enhanced Data Visualization  

Computer vision algorithms for medical image analysis form four main groups with 
different scopes, as follows: a) filtering for image enhancement; b) segmentation for 
object delineation; c) analysis for feature extraction; d) image registration for multi-
modal data fusion. Recently, applications for advanced medical data visualization 
such as virtual or augmented reality systems integrate computer vision with computer 
graphics. While computer vision deals with extracting relevant information from 
images (e.g. object boundaries, interstructural distances), computer graphics focuses 
on image synthesis for creating realistic and manipulable 3D objects representing 
anatomical structures of interest. Computer vision and computer graphics techniques 
are strongly interconnected in user interfaces (UI) for data visualization. 

HCI for computer-aided diagnosis and therapy planning in clinical environments. 
In this context, a particular attention is to be directed towards the algorithmic design 
of segmentation techniques in order to meet end-user requirements collected from 
radiologists. Yet, relatively recent surveys on interactive and fully automated methods 
for medical image segmentation [2, 3] do not discuss the relevance of end-user re-
quirements for segmentation design. One may reach the surprising conclusion that the 
development of most segmentation methods is not driven by end-user requirements; 
most developers focus on improving accuracy, precision and computational speed, as 
well as on reducing the amount of manual interaction. Widely recognized validation 
protocols for medical image segmentation [4, 5] perform a strict scientific comparison 
of the performance of automatic/semi-automatic methods against manual expert seg-
mentations. Few methods search clinical feedback and conduct a usability study. Such 
a method is proposed by O’Donnell et al [6], and consists in a user-steered segmenta-
tion algorithm based on the interactive livewire paradigm [7]. Usability and usefull-
ness are investigated using feedback from radiologists on the quality of segmentation 
and on the learnability of the UI. 

Elliott et al [8] conducted one of the first systematic clinical studies for comparing 
the usefulness of two interactive segmentation methods [9] embedded in a graphical 
user interface for radiation therapy planning. Segmentation was task-oriented and 
aimed at outlining fast the target volume and organs at risk for 3D radiation treatment 
planning. The strategy in [8] for integrating segmentation algorithms into a HCI for 
radiologists’ use was to make sure that the user’s clinical knowledge is efficiently 
complemented by the segmentation algorithm. According to [8], “…automated image 
segmentation is in any case not wanted by the users. What they do want is a fast system 
(i.e. one that is faster than manual segmentation) in which the user has complete con-
trol over the results.”  Moreover, since radiologists tend to ‘think in slices’, 2D user 
interaction on a slice-by-slice basis was preferred over 3D interactive segmentation.  

Shifting from slice-based 2D to full 3D user interaction is still an open question for 
diagnosis-oriented interfaces [10], which impacts not only on computer graphics, but 
also on computer vision techniques. Possible solutions for speeding up this shift focus 
on establishing new visualization standards for 3D image interpretation by radiolo-
gists [11], and on integrating 3D in the medical training curriculum [12].  

Both 2D and 3D visualization paradigms were considered in the design of the 3D 
Slicer software and visualization platform [13], which offers a variety of tools for 
slice editing and interactive segmentation. The 3D Slicer interface is not intended for 
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clinical use, but its design considers a large diversity of user profiles including re-
search-oriented physicians.  

Research-oriented graphical interfaces. To date, there is a rich literature on algo-
rithms for 2D and 3D medical image filtering, registration, segmentation and analysis 
[14] standing proof for the significant advances in image interpretation made in the 
last decade. To increase the visibility of such new methods, an extensive open-source 
library called the Insight Toolkit (ITK) has been built [15]. The algorithms available 
within ITK are programmed into C++ classes and may be considered as building 
blocks for a variety of task-oriented applications in medical imaging. While ITK is a 
valuable resource to the Computer Vision research community, it is of limited use to 
end-users such as radiologists and surgeons, since it does not provide a graphical 
interface for image visualization. The ANALYZE software system [16] is comple-
mentary to ITK, since it provides tools for interactive visualization. Augustine et al 
[17] proposed an integration of ITK and ANALYZE, which results in a user-friendly 
graphical interface for research-oriented end-users with little programming skills. The 
main modules of this tabbed interface offer various tools for filtering, registration and 
segmentation including control windows for parametric adjustment. A fast display 
updating mechanism provides visual information about the evolution of image proc-
essing algorithms.  User error is minimized by constraining the sequential order of 
typical operations (i.e. noise reduction, edge detection, segmentation, analysis). Other 
integration efforts focused on adding dynamic visualization functionalities to ITK 
were reported by Rexilius et al [18] and Hansen et al [19]. 

Towards HCI design for collaborative and remote image analysis. Computer sup-
ported collaborative work is helpful in medical applications requiring the expertise of 
more than one physician or dedicated to clinical training. A task-oriented, collabora-
tive interface for the visualization and analysis of fetal 3D ultrasound is proposed by 
Alberola-Lopez et al [20]. Their interface allows for session-based work, therefore 
minimizing errors caused by user fatigue. In [20], segmentation and/or 3D data ma-
nipulation are performed by one user who has acquired control through a token-
grabbing paradigm; the other users are ‘listeners’ until the token is released. Text-
based information exchange is asynchronuous, therefore feedback or discussions on a 
specific graphical model can take place at any time.  The token-grabbing paradigm 
was also implemented in the Group-Slicer [21], the collaborative extension of 3D 
Slicer.  

HCI for enhanced visualization during image-guided surgery. During open surgery, 
the surgeon has direct visual access only to exposed surfaces; the limitations are even 
more severe for minimally invasive surgery. The main consequence of limited surgi-
cal visualization is the non-accuracy of the pre-operative and intraoperative geometric 
localization of the targeted lesion. Three basic user requirements for the design of 
intraoperative image guidance interfaces are defined by McInerney and Roberts [22] 
as follows: a) give visual access to the structural lesion, b) enable the surgeon to de-
fine and verify the extent of resection, and c) facilitate the protection of normal 
healthy tissue.  

While early image guidance systems used frame-based stereotaxy, frameless 
stereotactic systems provide tools for accurate navigation by relating the location of 
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instruments to preoperative, and more recently intraoperative image data. In the con-
text of frameless stereotactic image guidance systems, computer vision techniques for 
image registration and segmentation are basic steps required for precise and interac-
tive 3D rendering of the patient anatomy/physiology. An accurate stereotactic local-
ization and digitization technique based on computer vision algorithms was reported 
in Heilbrun et al [23]. Their technique used a pair of 2D images acquired from differ-
ent viewing angles with video cameras mounted on the ceiling of the operating room 
for determining the 3D location of markers seen in both images.  

All stereotactic systems require co-registration, defined as a geometric mapping 
between at least two coordinate systems corresponding to the pre-operative and intra-
operative spaces. A simple co-registration method requires known locations in both 
spaces of non-collinear points, defined either by fiducial markers or by natural land-
marks. Computer vision algorithms for medical image registration also allow for rigid 
and non-rigid surface and contour matching. Pelizzari et al proposed in [24] a non-
fiducial technique for registering MR, CT and PET brain images by matching the 
surface contour of the head. Anatomic surface curvatures may also be used for match-
ing and registration purposes, as shown by Wang et al [25].  

An interactive system for neurosurgery guidance and planning is presented in Ger-
ing et al [26]. Their system performs data fusion between various pre-operative and 
intraoperative scans by using 3D Slicer tools for image registration and segmentation. 
The system received positive clinical feedback for the graphical display of functional 
information, anatomical information, and information from contrast agents into a 
single view, as well as for the temporal data fusion. The main limitations were related 
to the surgeons’ learning curve and to the use of the same interface for planning and 
for intra-operative guidance. The vast quantity of information extracted from data 
fusion and off-line analysis was found beneficial for planning, but overwhelming and 
distracting for on-line guidance.     

In surgery guidance, image registration techniques play a central role; however, in-
traoperative image segmentation is likely to become a powerful tool in the process of 
image-guided interventions. Warfield et al [27] proposed a new intraoperative seg-
mentation framework applied to the cryotherapy of liver cancer and to neurosurgery. 
Such a framework is designed to enable the monitoring of changes in anatomical 
structures (i.e. due to tumour resection) during surgery, and to quantitatively compare 
the progress of the interventional process with the preoperative plan. 

3   Vision-Based Interfaces for the Operating Room 

Computer Vision techniques such as markerless tracking of human motion and ges-
ture recognition have been successfully integrated into perceptual user interfaces for 
applications such as video games, teleconferencing and surveillance. In particular, 
hand gesture recognition is useful for controlling the UI via command selection and 
virtual object manipulation. Surveys on hand gesture interpretation and on hand pose 
estimation are available in [28] and [29] respectively. 

Operating rooms for minimally invasive surgery (MIS) are environments which 
could significantly benefit from using non-contact, gesture-controlled human-
computer interfaces. Indeed, MIS procedures typically require computer support, and 
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standard computer peripherals are difficult to sterilize. Therefore, standard clinical 
protocols involve a human assistant who manipulates the computer display according 
to the surgeon’s commands and needs for visualization. However, the assistant-in-the-
loop approach is suboptimal and sometimes leads to frustration and prolonged time 
for performing the intervention.  

The non-contact mouse proposed by Graetzel et al [30] enables the surgeon to di-
rectly control the user interface with simple hand gestures. The non-contact mouse 
supports the “wait-and-click” and “push-to-click” paradigms by hand tracking and 
gesture classification. The gestures of interest are simple and based only on the 3D 
position of the right hand; the hand motion is mapped to pointer movement using non-
linear gains, thus allowing for quick navigation and precise control. The non-contact 
mouse was successfully tested with a mock-up medical interface in the laboratory and 
in the operating room.  

Face movement can also be used to control the user interface in MIS, as demon-
strated by Nishikawa et al [31]. They proposed a face-tracking system that controls 
the laparoscopic camera positioning according to a face movement grammar. The 
tracker works with a 3DOF face pose by assuming that during the intervention, the 
surgeon’s face remains almost parallel to and at a constant distance from the monitor 
screen. A user survey on a virtual testbed proved the usefulness of the system and its 
superiority over a voice-controlled interface; however, some tests suggested that face 
motion may distract the surgeon when performing very precise surgical actions.  

While explicit user control over the graphical interface is absolutely necessary for 
the execution of critical tasks in laparoscopy, a certain degree of automation would 
speed up the intervention by allowing the surgeon to focus more on the surgery and 
less on the interface manipulation. As reported by Grange et al [32], process automa-
tion in a medical environment has to obey strict safety rules; thus, any automated user 
interface must be overridable by the surgeon’s decision. The system proposed by 
Grange et al [32] combines gesture interpretation for explicit interaction with real-
time monitoring of the surgeon’s activity for automatically addressing some predict-
able surgeon’s needs. They identify typical modes in a user interface for endoscopy, 
and prove that the transition from one mode to another can be automated using infor-
mation from the visual tracking of the head, torso, and hands of the surgeon. The 
systems proposed in McKenna et al [33] and in Nishikawa et al [34] take a different 
automation approach by tracking instruments in the laparoscopic video instead of 
tracking the surgeon.  

Video understanding techniques have also been developed for the quantitative as-
sessment of basic surgical skills [35]. Such techniques may be good candidates for 
building multimodal HCIs which combine haptic [36] and visual information for 
evaluating laparoscopic and other surgical skills.  

4   Perceptual Interfaces for Motor-Impaired Users 

According to the Model Human Processor [37], a simple human computer interaction 
process comprises three cycles, namely perceptual, cognitive, and motor. Keates et al 
[38] proved that in standard UIs, motor impairment affects not only the motor cycle, 
but also introduces extra perception and cognitive cycles. To avoid extra cognitive 
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loads, the design of HCI for motor-impaired users must consider two alternatives: 
adapting the content of the graphical display and/or customizing input systems for 
allowing a more natural interaction. Computer Vision techniques such as real-time 
tracking of body features are suitable for implementing the second alternative.  

In Morrison and Mckenna [39], the hand motion trajectory represents a basis for 
learning and recognizing hand gestures. Their system uses HMM models to learn and 
recognize a user-defined set of simple hand gestures which replace basic commands 
in a standard web browser (back, forward, start, open, OK, refresh, cancel, and close).  

The system proposed by Betke et al [40] is able to track the motion of diverse body 
parts (nouse, eyes, chin, foot) with an algorithm based on spatiotemporal template 
matching. The body feature to be tracked can be specified by the user in the initializa-
tion phase.  The motion of the tracked feature is then mapped onto the motion of the 
mouse pointer on the screen. The system in [40] proved to be useful for interaction 
based on dynamic or static item selection by pointing without clicking.  

A binary selection paradigm in a visual UI can be controlled with eye-blinks or 
eye-brow motion, as shown in Grauman et al [41]. Applications based on eye-
blink/eyebrow-raises input do not require mouse movement, since they are entirely 
controlled by clicks. Therefore, such applications implement a scanning mechanism 
which displays one option at a time until the user selects the desired option with a 
long eye-blink or with an eyebrow-raise. The eye-blinks and eyebrow-raises are de-
tected by algorithms based on template matching and on the properties of eye motion 
during blinking.   

While web browsers and educational games are useful tools for communication 
and learning, another basic need of motor-impaired users is related to moving in their 
physical environment. Yanco and Gips [42] proved that electrode-based gaze-tracking 
can be successfully integrated in the design of intelligent wheelchairs. In Kuno et al 
[43], the user can control the motion of an autonomous wheelchair via a perceptual 
interface which detects changes in his face direction using computer vision algo-
rithms. This interaction paradigm is more natural than using the conventional joystick, 
since humans usually look in the direction they want to take. Visual information is 
collected with two video cameras, one observing the user and the other observing the 
environment. This visual information is seamlessly integrated with information from 
other types of sensors specific to autonomous vehicles in order to achieve the right 
balance between autonomous and user-defined motion. The robotic wheelchair is also 
able to observe the user at a distance, and to respond to the user’s commands by rec-
ognizing hand gestures. This option is more suitable for elderly persons with limited 
capability of walking. More information on the design of vision-based systems for the 
assistance of elderly persons is to be found in the next section. 

5   Vision-Based Intelligent Systems for Elderly Assistance 

Pervasive computing is a promising technology for supporting aging-in-place. Indeed, 
intelligent environments can assist elderly persons in a supportive and non-intrusive 
way during their daily activities. Moreover, automatic visual monitoring may detect 
abnormal harmful events such as falls, loss of balance, or suspect periods of inactivity 
possibly caused by a stroke. Sensing agents based on computer vision are unobtrusive, 
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since they can be embedded in the environment without altering it. Vision algorithms 
are able not only to extract low-level data such as the subject’s location and posture, 
but also to analyze human activities and interactions with the environment.  Fig. 1 
shows a generic vision-based monitoring system with its main modules, namely sens-
ing, decision-making, and prompting.     

However, the acceptance of vision-based monitoring in elderly health care is con-
troversial, since it raises privacy and ethical concerns. User requirements for a fall 
detector in the context of a visual monitoring system were investigated by Mckenna et 
al [44]. They found that potential elderly users received well the idea of a vision-
based monitoring system provided that images/videos are not stored or broadcast, and 
the visual input is analyzed only by a computer. Other findings in [44] were related to 
the design of the communication between the system and the faller (i.e. the prompting 
module in Fig. 1). Thus, the potential users wanted to be able to clear false alarms 
generated by the system, and also to press a button to call for help in case the fall has 
not been detected.  

A significant segment of the community-dwelling elderly population suffers from 
various degrees of decline in cognitive functions and in memory. Such persons are 
unable to complete activities of daily living (ADL) [45] such as bathing and dressing 
on their own, since they do not remember the entire sequence of steps involved in the 
activity. A technique for visual ADL monitoring and assistance was proposed in Mi-
hailidis et al [46]. This technique is applied to hand washing and integrates informa-
tion from colour-based hand tracking and tracking of step-specific objects (i.e. soap 
bar). To date, computer vision techniques face limitations in fine motion tracking and 
ADL monitoring since they are very sensitive to contextual change. Pervasive com-
puting systems such as the Aware Home project at Georgia Tech [47], the MIT’s 
House_n project (http://architecture.mit.edu/house_n) and the Intel’s Proact system 
[48] process information from various types of sensors for modelling ADLs. How-
ever, visual information plays an important role in activity recognition; indeed, [48] 
reported that hand washing is not well recognized by their system using radio-
frequency identification tags, since water and metal absorb radio waves produced by 
these tags. 

 

Fig. 1. Generic diagram of an intelligent system using a computer vision-based sensing agent 
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Visual monitoring of whole body motion finds relevant applications in systems de-
signed to detect falls and unusual inactivity caused by stroke. The methods proposed 
by Nait-Charif and Mckenna [49] and by Sixsmith and Johnson [50] are based on a 
spatial model of the home environment composed of inactivity zones and entry (high 
traffic) zones. This model is learned in [49] from the spatio-temporal trajectories of 
the tracked subject and it can be used for fall and unusual activity detection. The ap-
proach in [50] is based on a user-defined spatial map, called risk map, and monitors 
subject with infrared cameras. Depending upon the zone type, their system adjusts the 
extent of acceptable zone inactivity. A subtle motion detector is correlated in [50] to 
the inactivity monitor in order to correctly detect some motion in static activities such 
as watching TV. Cuchiarra et al [51] proposed a video-based fall detector based on 
posture estimation and remotely connected with a PDA in order to enable an audio-
video connection in case of emergency.     

Whether focused on tracking fine motion for ADL assistance or on whole-body 
motion for fall or unusual inactivity detection, vision-based monitoring systems have 
to process data and prompt the users in real-time. A significant delay between the 
occurrence and the detection of an event is critical, since it propagates to the prompt-
ing module. Mihailidis et al [46] outlined that in ADL assistance, a delayed prompting 
for the completion of a particular step will result in user confusion. A late fall detec-
tion could have even more severe implications on the health and safety of the elderly.  

6   Conclusions 

In the context of user interface design, computer vision techniques play a dual role. 
First, computer vision algorithms for medical image understanding extract informa-
tion from image data in order to provide assistance in processes such as diagnosis, 
therapy planning, and surgical navigation. Such algorithms are designed to observe 
medical images. As shown in Section 1, they may be successfully integrated in user 
interfaces for enhanced data visualization. Most important, differences in user re-
quirements result in different algorithmic designs of computer vision techniques em-
bedded in graphical interfaces, as well as in different interface design strategies. As an 
example, interactive and intuitive segmentation techniques in computer-aided diagno-
sis are preferred over automated techniques. Conversely, image-guided surgery uses 
3D models of anatomical structures built from the off-line segmentation and multi-
modal registration of the raw image data; thus, segmentation and registration are not 
controlled by the user, and may be automated. The emphasis in image-guided surgery 
is on the accuracy and reliability of the patient-specific models built from preopera-
tive data.  

A second category of HCI-related computer vision techniques are designed to ob-
serve the user and/or understand his actions. Most often, action recognition is based 
on tracking the user’s body parts. Techniques belonging to this second category are 
useful for controlling perceptual interfaces such as discussed in Sections 2 and 3. 
Moreover, human motion analysis can play an important role as input data in intelli-
gent systems for monitoring the well-being of seniors. In the design of perceptual inter-
faces, the ease-of-use and the real-time response are essential user requirements. The 
real-time response also plays a critical role in monitoring human activities for elderly 
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assistance and support. As one may expect, other user requirements are task-oriented, 
such as addressing privacy and safety concerns in visual monitoring systems.  

Computer vision techniques have already proven their usefulness for the design of 
medical research-oriented graphical user interfaces. It is expected that clinical accep-
tance will improve with advances of ‘going filmless’ in screening, diagnosis and ther-
apy planning. The use of computers for inspecting images will probably trigger the 
use of interactive tools that augment visualization and improve the speed of diagnosis 
and planning.  

Vision-based perceptual interfaces are currently among the latest trends in video 
games. As in the case of virtual reality applications, it is predictable that mature tech-
nologies and vision algorithms used in games will become transferable and/or adapt-
able to health applications such as described in Section 2 and 3. Multimodal interfaces 
integrating voice and visual recognition are also a promising alternative.    

Vision-based monitoring for elderly assistance and support faces significant techno-
logical and ethical challenges. However, integrating video information with data gath-
ered by other types of sensors, such as proposed in the design of intelligent environ-
ments can significantly improve the robustness of these systems. Respecting user re-
quirements related to the privacy of video content, and promoting social connectedness 
via audio/video communications are viable strategies in coping with ethical concerns. 
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