
  

 

Abstract - This paper proposes a novel approach for the 
real-time detection of sleep onset in fatigued drivers. Sleep 
onset is the most critical consequence of fatigued driving, as 
shown by statistics of fatigue-related crashes. Therefore, unlike 
previous related work, we separate the issue of sleep onset from 
the global analysis of the physiological state of fatigue. This 
allows us for formulating our approach as an event-detection 
problem. Real-time performance is achieved by focusing on a 
single visual cue (i.e. eye-state), and by a custom-designed 
template-matching algorithm for on-line eye-state detection. 

I. INTRODUCTION 
According to recent road safety surveys, fatigued driving is 
a common problem amongst Canadian drivers. Beirness et al 
[1] reported that 20% of drivers in Canada (approximately 
4.1 million drivers) admitted to falling asleep or nodding off 
at least once while driving in the past 12 months preceding 
this survey. The main concern related to fatigued drivers 
falling asleep is their high crash rate, as well as the type of 
crashes that they are most likely to get involved in. As 
shown in Horne [2], up to 20% of serious crashes in US are 
sleep-related; such crashes occur during both night-time and 
day-time.  
 
Fatigue and sleepiness are typically reflected in a person’s 
facial expression and affect eye-lid movement, gaze 
orientation, and head movement. Such visual cues can be 
exploited by computer vision techniques for the detection of 
the fatigue and vigilance levels in drivers. This class of 
techniques offers a promising, non-invasive and low-cost 
alternative to physiological, electrode-based measures of 
fatigue such as those described by Heitmann et al in [3].    
 
The majority of computer vision approaches for monitoring 
fatigued driving rely on special hardware. For instance, Ji 
and Yang [4] monitor driver vigilance with a custom-
designed hardware system for real-time image acquisition 
and illumination control; the system is coupled with various 
computer vision algorithms for eye tracking and facial pose 
estimation. Zhu and Ji [5] use remotely located CCD 
cameras equipped with active infrared illuminators; they 
propose a probabilistic model for predicting fatigue by 
combining the observed visual cues (eye and head motion) 
with contextual information (sleep history, time of the day, 
temperature etc.). Active infrared vision is also used by 
Bergasa et al [6], who monitor driver vigilance by detecting 
and tracking eye-pupils (represented by small bright circular 
spots) on a frame-by-frame basis.   

The approach proposed by Smith et al [7] [8] tracks eye and 
head motion from video data acquired with one camera 
placed on the dashboard of the car. In terms of simplicity of 
the hardware architecture, it is similar to the approach 
described in this paper. However, their scope lies in 
monitoring visual attention, which is different from driver 
fatigue; decreasing visual attention might happen when the 
driver is fully awake, yet not fully concentrated on the 
driving task. Furthermore, the framework in [9] is not 
designed for event-detection purposes; instead, it collects 
driver information relevant for visual attention in order to 
enable future inferences made by human experts about the 
driver’s alertness.     
 
The work proposed in this paper is related to driver fatigue 
monitoring. The novelty in our approach with respect to 
related work lies in its design as a real-time event detection 
(i.e. sleep onset) technique. Therefore, our approach does 
not need a complex modeling of the driver’s mental state as 
in [5][8]. Furthermore, we show that tracking in real-time of 
a single visual cue (closed versus open eye state) yields 
good event detection performances.    
 
The remainder of this paper is organized as follows. Section 
2 describes the proposed approach. Section 3 shows 
experimental results, while section 4 draws conclusions and 
describes future work.     

II. PROPOSED APPROACH 
The flowchart in Figure 1 shows an overview of the 

proposed approach. The proposed algorithm is designed for 
on-line data processing; thus, it reaches the decision whether 
or not to activate a warning audio alarm with a latency 
which is lower than the inverse of the frame rate of the video 
acquisition process (typically ranging from 24 to 30 fps). 
The main steps of the algorithm are detailed below. 

A. Initialization of video capture 
The web-cam is connected with a video processing unit 

(i.e. a laptop for this pilot study) and positioned so that it 
acquires facial images of the driver. Therefore, it is assumed 
that the eye plane is orthogonal to the optical axis of the 
webcam (see Figure 10 for examples) and that the eyes’ 
image is located in the central part of the frame. Our 
approach tolerates some variability in the distance from the 
eye plane to the webcam, since it can detect eye-states from 
very close as well as more distant views. 
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Figure 1. Flowchart of the proposed approach; modules about calibration 

and eye-state detection are detailed in sections B and C. 

B. Calibration 
Calibration is subject-dependent and is performed off-

line, prior to eye-state monitoring. Calibration serves two 
purposes, namely acquisition of templates for eye-states and 
parametric set-up (see section C for the parameters used by 
the proposed approach).  

 
For a given subject facing the webcam, the calibration 

process acquires two user-specified visual templates (one for 
eyes-closed and one for eyes-open) via a graphical user 
interface. This interface displays the input video-stream and 
a superimposed transparent, black-lined calibration box (see 
Figure 2). The user positions his/her eyes inside the 
calibration box and ‘freezes’ each template via a simple key-
press. The flowchart of the calibration process is shown in 
Figure 3. The templates generated by calibration are to be 
used for the on-line eye-state detection described in C. 

 

 
Figure 2. Driver positions her eyes in the calibration box, in preparation for 

‘freezing’ the open and closed eye-state templates. 
 
The proposed calibration approach provides a simple 

solution to the issue of variable lighting conditions in real-
time feature recognition. Indeed, since the templates are 
acquired in quasi-identical lighting as for the immediately 
following eye-state monitoring process, the eye-state 
detection does not need to compensate for variable lighting. 
If ambient lighting conditions change significantly during 
eye-state monitoring with respect to calibration (for instance 
rapidly decreasing daylight at sunset), then calibration needs 
to be redone. Moreover, as shown in Figure 2, the user does 
not need to precisely center his/her eyes within the 
calibration box; template matching functions well with non-
centered images, as long as the head is not tilted sideways 
(which is not a typically encountered head motion in 
driving).  

   
   Figure 3. Flowchart of calibration process 

 

C. Eye-state detection 
The detection of the two eye-states is performed using a 

customized template matching technique on a frame-by-
frame basis. As shown by Jain et al [9], template matching 
works well only when templates are not distorted during the 
imaging process; this condition is verified by the task at 
hand. The rationale for using this type of pattern recognition 
is based on the fact that, while the driver faces the road 
ahead, the eye pattern is not distorted; while driving, 
humans maintain most of the time a quasi-constant distance 
from the windshield. Temporary, short duration eyes-off-
the-road side or bottom glances are performed only when 
the driver is awake; thus, they are all classified by our 
approach as ‘eyes not present’ cases which does not trigger 
false alarms (see Figure 1). 

 
Template matching is typically computationally intensive 

[9]. In order to accurately detect matches for eyes open and 
closed in real time, the proposed approach offers a new 
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customized version of template matching. The main 
elements that differentiate our approach from standard 
template matching are discussed below.    

1) Defining a search region for template matching 
The search region for the match detection is limited to a 

central zone of the currently analyzed frame (see Figure 4), 
which occupies a user-defined percentage of the total frame 
area. The value of this parameter is set up during the off-line 
calibration; the default value is 60%. 

 
2) Match detection 

At a given frame location, the shifted template and the 
rectangular frame region overlapped by it are first compared 
on a pixel-by-pixel basis. For each pixel location (i,j) i=1..m, 
j=1..n the similarity ratio τ(i,j) is computed as follows : 
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where: 
- m, n are the dimensions of the template;  
- R, G, and B are intensities of red, green, and blue color 

components; 
- W and T indexes stand for the overlapped frame window 

and the template respectively; 
-  Rτ , Gτ , and Bτ are colour-specific similarity ratios. 
At a pixel level, it is considered that two pixels located at 

(i,j) in the frame window and in the shifted template 
respectively are matched if their similarity ratio exceeds a 
certain threshold: 

( ) 0, ττ ≥ji                 (2) 
where τ0 is the tolerance at the pixel level and can be 

user-specified during the off-line calibration step. The 
default value is τ0=80%. 

The global similarity between the overlapped frame 
window and the shifted template is computed as the 
percentage of matched pixels versus the template size: 
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It is considered that the current window matches the 
template when the global similarity exceeds a threshold: 

  ( ) Rg W ττ ≥                     (4) 

where τR is the tolerance at the region level and can be 
user-specified during the off-line calibration step. The 
default value is τR=80%. 

3) Scanning strategy 
Scanning for template matching is performed by iterative 

shifts of the template inside the search region. The iteration 
scheme (see Figure 4) is designed to that it decreases the 
number of vertical shifts necessary to detect the match. 
Specifically, the search starts on the median row of the 
search region; this starting point is consistent with the 

initialization of the video capture in A. If no match is found 
on this row, the next two iterations search for matches on 
rows located at the same distance y above and below the 
median row respectively. The distance y (in pixels) increases 
with the index n of the iteration according to: 

 n  )(-y(n))y(n- n ⋅+= 11                        (5) 
On each row, horizontal scanning is performed from left to 
right; the template is shifted 1 pixel right at each iteration. 
Figure 4 shows three non-successive iterations from 
horizontal scanning performed on a given row. 
 

   
Figure 4. Iterations of horizontal scanning for pixel matching 

 
The choice of different scanning techniques along 

horizontal and vertical directions is motivated by the 
difference in vertical and horizontal head movements while 
driving. A driver often uses horizontal head movements 
(left-to-right or vice versa) in order to adjust his/her field of 
view to events of interest on the road. On the other side, 
vertical head motion is rarely used, since it does not 
contribute to a useful adjustment of the field of view.    
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Figure 5. Flowchart of scanning algorithm 
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Figure 6. Flowchart of horizontal scanning  

 
4) Non-exhaustive search  
In a given frame, template matching is not performed 

with an exhaustive search. In order to increase the speed of 
computation, the first location of the match where the 
similarity ratio τ exceeds the tolerance τR is retained.   

 
5) Sequencing two template matching processes  
Since open-eye states are much more frequent than 

closed-eye ones, template matching for open-eyes is 
performed first. In case no open-eyes match is detected, a 
matching process against closed-eyes is performed 
afterwards. The decision of no match is reached if both 
matching processes do not detect matches.   

III. EXPERIMENTAL RESULTS 
The hardware used in the current implementation of the 

proposed approach consists in a webcam connected to a 
laptop. Inexpensive hardware was deliberately chosen in 
order to demonstrate that the prototype system can function 
with low cost components and therefore could be affordable 
to a large segment of the driving population.  

 
Experimental results were acquired using as webcam the 

Logitech QuickCam® Communicate STX™, and as laptop 
the Dell Inspiron 6400 1.6GHz Centrino Duo with 1GB 
RAM. The video sequences were acquired at 24 frames per 
second. The proposed approach was implemented in 
Microsoft Visual C++. Figure 7 shows both the lab 
simulator and the in-vehicle configuration. While 
preliminary tests have shown that the proposed approach 
works well in the in-vehicle environment, all results 
reported here have been obtained using the lab simulator. 

   
a) 

 
b) 

Figure 7. System set-up: a) lab simulator; b) in-vehicle configuration. 
 

Figure 8 shows a snapshot of the graphical interface used 
for off-line calibration, as well as for on-line video 
processing and eye-state detection. As a result of real-time 
processing, the result of eye-state detection (open-eyes in 
Figure 8) is computed and displayed synchronously with the 
corresponding input frame from the webcam. 

 

 
 

Figure 8. Snapshot of graphical interface used for the implementation and 
testing of the proposed approach 
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Our proposed approach models eye blinks as a two-state 
process, without an explicit consideration of transitory states 
from eyes-open to eyes-closed or vice versa. Thus, a first 
experiment measured the impact of transitory states on the 
overall performance of the eye-state detection approach. In 
order to isolate the transitory state phenomenon from other 
sources of error (head motion, variable distance between the 
ey-plane and the image plane etc.) the video sequences used 
in this experiment were acquired at a close distance from the 
webcam and without any perceivable head motion. A typical 
result is shown in Figure 9.   

 
Figure 9. Eye-states and detection results in video sequence with stationary 

head 

The results in Figure 9 show that transitory eye-states 
lying in-between eyes-open and eyes-closed induce a certain 
amount of error in the eye-state detection process. The 
correct detection result for all transitory states would be ‘no 
match’; however, one may expect some transitory states to 
be more similar to eyes-closed, and others to be more similar 
to eyes-open. One may also notice from Figure 9 that the 
number of transitory states in-between eyes-open and eyes-
closed is low, ranging from 0 to 5 frames. Therefore, given 
the fact that closed eyes need to be consistently detected for 
3 seconds (i.e. in n=72 frames at 24 fps) in order to trigger 
the warning alarm, the errors introduced by transitory states 
in the sleep onset detection are negligible.  

 
In video sequences containing a certain amount of head 

motion and allowing a variable distance from the subject to 
the image plane during calibration, the results of eye-state 
detection are less than 100%. Our experimental results were 
computed over a database of 30 sequences acquired with 15 
different subjects and using the lab simulator shown in Fig. 
5a. The subjects were asked to maintain eye-closed states for 
short periods of time (regular eye-blinks), as well as for 
longer periods of time (more than 3 seconds), in order to 
simulate sleep onset. The average length of video sequences 
was 600 frames, acquired at 24 frames per second. All 
sequences were processed using the default set of values for 
all parameters used by the proposed approach (i.e. the size 
of the search region for template matching, size of eye-state 
templates, thresholds τ0 and τR, and n=72 frames of 
successive eyes-closed detections for alarm triggering).  

 
 The global performance of our algorithm for the video 

database is summarized in Table 1. The performance 
statistics in Table 1 were computed against a ground-truth 
labeling of eye-states, which was performed on a frame-by-
frame basis by a human operator. One may notice from 
Table 1 that the rate of correct alarm triggers is higher than 
the rate of correct eyes-closed detections. This result is due 
to the fact that most of the missed detections for the eyes-
closed state happen during regular eye-blinks. Eyes-closed 
states that were maintained over longer periods of time 
resulted in higher detection rates, as shown by the correct 
alarm rate. 

Table 1. Performance statistics for proposed approach 

No. of video sequences 30 sequences 
Open Eye Detection 85% 
Closed Eye Detection 70% 
Successful Alarm Triggering 86% 
Failed or False Alarm 
Triggering 

14% 

   
Figure 10 shows examples of eye-state detections 

obtained for three subjects in variable lighting conditions.  
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                       a)                                                           b) 

  
                           c)                                                            d) 

  
e) f) 

Figure 10. Results of eye-state detection for three different users in variable 
environmental conditions; Left column shows eyes-open states, while right 
column shows eyes-closed states. Red signals open-eyes detection, while 

blue signals closed-eyes detection. 
 

The examples in Figure 10 show that our proposed 
approach works well with variable ambient illumination, 
skin color and eye shape. One source of error is the distance 
from the user’s eyes to the image plane (see Fig. 8c); if this 
distance is too large, then the calibration box contains less 
pixels located in the eye regions. This increases the 
similarity between eyes-open and eyes-closed templates, and 
consequently the probability of confusing the states during 
template matching. Preliminary tests showed that, in case of 
an in-vehicle simulator, the distance from the webcam to the 
eyes plane is more constrained than for the current lab 
simulator. Specifically, this distance takes values within a 
range that allows for a good discrimination between eyes-
open and eyes-closed templates.    

IV. CONCLUSIONS 
This paper proposes a novel approach for the real-time 

detection of sleep onset in fatigued drivers. Sleep onset is 
the most critical consequence of fatigued driving, as shown 
by statistics of sleep-related crashes. Therefore, unlike 
previous related work, we separate the issue of sleep onset 
from the global analysis of the physiological state of fatigue. 
This separation allows us for formulating our approach as a 
real-time event-detection problem.  

Real-time performance was achieved by focusing on one 
single visual cue (i.e. eye-state), and by a custom-designed 
template-matching algorithm for on-line eye-state detection. 
The proposed approach also features an off-line calibration 
step, which provides subject-specific templates for the two 
eye-states of interest, and enables the user to adjust the 
parameters of the proposed approach. 

 
Experimental results show that our approach works well 

in the current laboratory implementation. Ongoing work 
focuses on testing the proposed approach using the in-
vehicle simulator. Future work will concentrate on both 
algorithmic and technological improvements to the current 
sleep surveillance system. From an algorithmic point of 
view, we are interested in increasing the robustness of the 
proposed approach to head motion; techniques for 
parametric and deformable template matching will be 
investigated for this purpose. From a technological 
standpoint, future work will focus on monitoring both day 
and night driving by using recent infrared webcam 
technology, whose performance and price are constantly 
improving. Once the proposed sleep surveillance system is 
successfully tested, the graphical interface that is currently 
implemented on a laptop device will be transferred on a 
dedicated dashboard display. Moreover, the proposed 
technique for computer vision-based sleep surveillance will 
be implemented via custom-designed DSPs or FPGAs 
embedded in the vehicle.  
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