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Abstract

This paper proposes an approach to compute view-normalized body part trajecto-
ries of pedestrians walking on potentially non-linear paths. The proposed approach
finds applications in gait modeling, gait biometrics, and in medical gait analysis.
Our approach uses the 2D trajectories of both feet and of the head extracted from
the tracked silhouettes. On that basis, it computes the apparent walking (sagittal)
planes for each detected gait half-cycle. A homography transformation is then com-
puted for each walking plane to make it appear as if walking was observed from
a fronto-parallel view. Finally, each homography is applied to head and feet tra-
jectories over each corresponding gait half-cycle. View normalization makes head
and feet trajectories appear as if seen from a fronto-parallel viewpoint, which is
assumed to be optimal for gait modeling purposes. The proposed approach is fully
automatic as it requires neither manual initialization nor camera calibration. An
extensive experimental evaluation of the proposed approach confirms the validity of
the normalization process.
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1 Introduction

Vision-based technologies for gait analysis offer a promising alternative to their
conventional marker-based counterparts. Markerless gait analysis is key for
emerging application fields, such as for instance biometrics. Since humans can
visually recognize the gender and identity of walkers using only motion cues [1],
computer vision technologies for gait-based person identification are aiming
to replicate and enhance this human capability. Other applications of vision-
based gait analysis can provide information about physical and psychological
conditions of monitored patients. The need for such tools is confirmed by
medical studies which identify specific visually observable gait changes as early
signs of depression [2], dementia [3] or as fall predictors in elderly subjects [4].
Abnormal gait detection techniques for medical applications using computer
vision technologies have been proposed in [5,6].

The dynamics of gait have been extensively studied in the medical community;
a seminal medical study [7] has modeled human gait as a complex articulated
motion composed of twenty significant components. One may note that such
a detailed model is not retrievable from visual information only. However,
gait modeling techniques play a central role in computer vision-based gait
analysis, regardless of the area of application. Most of the recently proposed
models were developed for the purpose of gait-based person identification. A
brief overview of gait modeling techniques follows below.

Gait models can be classified into two main categories: shape-based and kine-
matic. According to [8], these two modeling approaches are complementary.
Shape-based models belong to the category of state-space methods [9] which
view the gait motion as completely defined by a sequence of static body poses.
Shape-based models exploit therefore silhouette information. A comparative
analysis of gait-relevant information captured by average silhouttes versus dif-
ferential silhouettes is provided in [10]. Average silhouettes are also used in
[11]. The work in [12] uses a population Hidden Markov Model (pHMM) where
states represent gait stances over one gait cycle and the observations are the
silhouettes of the corresponding gait stances. The second class of gait mod-
els encode information about gait dynamics. Their origins can be found in
early work on cues that humans use for gait recognition [13], which suggests
that motion cannot be reduced to a collection of static forms, but represents
a dynamic invariant that influences event perception. Kinematic gait models
are used for representing the human body as an articulated kinematic chain,
which can be either fit onto the walker’s silhouette [14] or used implicitly in
order to recover gait parameters such as stride and height [15], stride width
and elevation at both knee and ankle levels [16] or spatiotemporal trajectories
[17,18].
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The proposed work is based on the implicit use of a kinematic gait model that
is similar to [17] and [18]. Specifically, we extract spatiotemporal trajectories of
body parts (head and feet) for modeling gait. Our method for trajectory gener-
ation improves upon previous work by solving the manual initialization issue in
[17] and by extracting the spatiotemporal trajectories in real-time from video
data instead of obtaining them directly from a marker-based motion tracker
[18]. More importantly, our focus is not on gait recognition, but on view-
invariant gait modeling using a non-calibrated camera. The view-invariant
gait model can be further used for gait recognition, gait-based biometrics, or
medical gait analysis purposes. Our main contribution consists therefore in a
novel technique for view normalization, which makes obtained head and feet
trajectories always appear as if seen from a fronto-parallel viewpoint. Related
work on view-invariant gait modeling is reviewed below.

Many gait modeling approaches are either applicable only to the fronto-parallel
viewpoint [16,19], or at least view-dependent [20]. Height and stride length
are estimated in a view-invariant way in [21], but the method necessitates the
camera to be calibrated with respect to the ground. The method proposed in
[22] uses the structure of articulated body part motion to recover the param-
eters of the projective transformation under which a subject is observed. The
projective transformation is then used to generate a canonical fronto-parallel
view. That method uses markers to obtain precise positions of the ankles,
knees and hip, which are difficult to retrieve automatically from computer
vision algorithms. Synthesis of a canonical side view from an arbitrary view
is performed in [23] via two methods, namely perspective projection and op-
tical flow-based structure-from-motion. However, the synthesis of a side view
is only feasible from a limited number of initial views. The method in [24]
involves a scaling process, for each known view, on silhouette parameters such
as height and distance between head and pelvis. In [25], a method for tilt
correction of silhouettes is proposed, but it requires camera calibration. Es-
timation of a person’s 3D trajectory from a monocular calibrated camera is
discussed in [26]. The 3D trajectories are used in order to recover the walking
speed. Walking directions of people are computed in [27] using a camera with
known focal length and the weak-perspective projection model. The walking
direction is then used to recover view-invariant lengths at different parts of
the silhouettes.

Other methods integrate the information from multiple views in order to re-
cover a canonical view or to extract features that are view-invariant. This is the
case of the method presented in [28] where the desired view of a moving object
is reconstructed using multiple simultaneous views. The method proposed in
[29] achieves view-invariance by learning gait parameters from multiple views,
and people identification is performed by providing only a single view. In [30],
a bilinear model is fitted on multiple views. View-invariant identification is
achieved by decoupling the identity of the person and the viewpoint from
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which he is observed. A view transformation model is used in [25] in order
to transform already observed gait features into the same walking direction
as newly observed features. The view transformation model is learned from
multiple views of walking subjects.

Some studies were performed to analyze the effect of viewpoint variation on
gait identification performance. In [31], a geometrical and an analytical model
is developed for that purpose. It has been found that identification is robust
between two views that are close to the fronto-parallel view, which seems not
to be the case for other reference views. The problem of determining the best
reference view has been addressed in [32]. Using a view transformation model,
it has been found that the 45◦ view leads to better results for a single reference
view. A combination of orthogonal views, such as 90◦ and 0◦, leads to better
results for two reference views.

The approach proposed in this paper generates body part trajectories that are
invariant to the walking trajectory and viewpoint. We relax the assumption
generally adopted in gait analysis about linear walking trajectories. This as-
sumption does not hold when walkers are tracked in extended premises, where
they need to change their walking direction in order to follow paths, or to
avoid obstacles/other walkers.

Body part trajectories are assumed to contain sufficient information about the
gait of a person for view-invariant modeling. The trajectory of a body part
(foot, head, hand) is defined as a sequence of the successive 2D positions it
takes in the frames of a video sequence. On a frame-by-frame basis, each body
part is represented by one point respectively. View normalization consists in
making body part trajectories appear as if seen from the same fronto-parallel
viewpoint. The proposed approach to view normalization features automatic
initialization, no camera calibration, as well as a low computational complex-
ity. Since the proposed method is calibration-free, the images from the cameras
are not corrected for radial distortion. The latter is assumed to be negligible
compared to the distortion resulting from perspective projection. This would
not be the case for a camera with a wide field of view. Few gait analysis
methods currently consider wide fields of views.

This paper represents an extension of the work presented in [33]. A new
method to determine foot labels (left or right) is presented. A new evalua-
tion method is also proposed to assess the performance of the normalization
algorithm for straight line walks as well as walks with changes in direction.
An extensive evaluation is performed on more than 120 walk sequences.

The remainder of the paper is organized as follows. The proposed approach is
detailed in Section 2. Experimental results are presented in Section 3. Finally,
Section 4 draws conclusions and outlines the main directions of future work.
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Fig. 1. Overview of the proposed method.

2 Proposed Approach

An overview of the proposed method is illustrated in Figure 1. The three raw
body part trajectories in Figure 1(a) are obtained from silhouettes extracted
at each frame of a monocular video sequence. In this paper, only the head
and the feet trajectories are considered. Other body part trajectories could
be view-normalized in the same way. The temporal variation of the inter-feet
distance is analyzed in order to determine moments at which the feet are
furthest apart (maximum stance), as shown in Figure 1(b). Here, there are
six such moments. Time intervals between two consecutive moments define
a gait half-cycle. A view normalization is to be performed in each of these
half-cycles. Figure 1(c) shows the estimated walking planes in each half-cycle,
with the extracted silhouettes overimposed at maximum stance moments. If a
person were observed from a fronto-parallel view, those planes would appear as
rectangles; thus, the “normalized” version of a walking plane from an arbitrary
view has right angles, as shown in Figure 1(d). A homography between an
observed plane and its normalized version can then be computed and used in
order to “normalize” the body part trajectories within the corresponding gait
half-cycle.

The following sections present a detailed description of each step of the pro-
posed method.

5



no

yes

no
yes

yes

no

no

no o

lusion
yes

Legs

separated?

Pixels 
ounting,

Corresponden
e
initialized?

Pixels 
ounting

using
opti
al �ow

No Correspond.
initialization

Correspond.
using proximal
uniformity

Corresponden
e
initialized?

2 legs in

frame?
previous

Corresponden
e

Legs separation

Find feet positions

o

lusion

Corresponden
e

Fig. 2. Overview of the feet tracking algorithm applied at each frame.

2.1 Generation of “Raw” Body Part Trajectories

The proposed viewpoint normalization approach receives as input “raw” (i.e.
view-dependent) body part trajectories. One should note that the normaliza-
tion approach stays the same regardless on which (or how many) body parts
are collected from the human walk. We present results for feet and head only,
as we consider that the motion of these body parts encodes core, irreducible
information about walking. The “raw” feet and head trajectories are generated
via an algorithm customized for human walking. This algorithm is summarized
below; its detailed presentation can be found in [34].

The head trajectory consists of the sequence of locations of the center of mass
of the head extracted on a frame by frame basis from a walking sequence.
The generation of this trajectory is straightforward, as the head is always the
highest part of the human silhouette and does not suffer any occlusions during
walk. This is however not the case with feet in monocular sequences. Feet oc-
clude themselves periodically in every viewpoint except one, where the subject
walks along the optical axis of the camera (frontal axis). This self-occlusion
needs to be addressed in order to obtain a correct feet correspondence (i.e. left-
to-left and right-to-right) across every pair of adjacent frames in the sequence.
The feet correspondence problem is solved by the tracking algorithm shown in
Figure 2. This algorithm handles all possible correspondence cases, as follows.
Feet are first detected as regions in the image, and then each represented by
one point on a frame by frame basis. In cases where legs are separable, these
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Fig. 3. Body part tracking from different views

representative points are estimates of the centers of mass of the foot regions.

First, correspondence is initialized using an adjacency criterion. This criterion
states that the “right” foot in Frame i must be spatially closer to the “right”
foot than to the “left” foot in Frame (i+1); a similar reasoning is applied for
the “left” foot correspondence. In ambiguous cases where distances are quasi-
equal or where feet are in self-occlusion, the initialization is simply delayed to
the next pair of adjacent frames where the ambiguity disappears. This way, the
feet tracking algorithm can start at any phase of the walking cycle. One should
note that “right” and “left” have arbitrary meanings here, since the algorithm
does not provide a method to distinguish right from left. An algorithm for
that purpose is presented in Section 2.5.

Once correspondence is initialized,the tracking algorithm propagates feet cor-
respondence for every subsequent pair of adjacent frames. In doing so, it needs
to evaluate whether self-occlusion is present or not. In the absence of self-
occlusion, the motion correspondence algorithm of Rangarajan and Shah [35]
is applied. The choice of this algorithm is based on the fact that it is suitable
for smooth and relatively small frame-to-frame feature displacements, as it is
the case with the motion of the legs’ representative points during walking.

In case self-occlusion is present, the legs’ region is not separable into two
regions (one per leg). In this case, the legs’ representative points are not re-
trievable as centers of mass and thus need to be estimated using motion infor-
mation. One may note that, in human gait, feet self-occlusions have the inter-
esting particularity that there is only one visible foot moving, while the other
is grounded as support foot. Therefore, we retrieve the representative point of
the moving foot using optical flow, while the point representing the stationary
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foot is the same as in the previous frame. It is important to note that the foot
correspondence is implicit in the occlusion case, since the stationary and the
moving foot are tracked differently. Temporary no correspondence cases are
present when self-occlusion lasts more than a certain number of frames; linear
extrapolation might be used during occlusion if there is not enough motion
detected from optical flow.

Figure 3 shows snapshots of head and feet positions obtained for four pedes-
trians observed from different viewpoints. Squares and triangles represent feet
positions while disks represent head positions. One can notice that correspon-
dence is properly achieved by looking at symbols on the feet.

2.2 Segmentation of gait half-cycles

The normal gait is a periodic and symmetric motion. Symmetry arises from
the fact that feet play interchanging roles during one cycle of gait: the swing of
the left foot is supported by a stationary right foot and vice versa. Symmetry is
important because it enables us to decompose the gait cycle into half-cycles.
A gait half-cycle is defined as the interval between two consecutive stance
postures (double support, where both feet are on the floor, and the inter-
feet distance is maximum). The frame numbers associated with maximum
inter-feet distance are detected from a maxima search on the function d(t)
representing the distance between the feet mass centers over time (see blue
curve in Figure 1(b)). d(t) is defined as follows:

d(t) = G(t) ∗ ‖pf1(t)− pf2(t)‖, (1)

where: t is the frame number; ‖·‖ is the Euclidean norm; the operator ∗ denotes
the convolution; G(t) is a gaussian kernel used for smoothing, with σ = 1 and
a kernel width of 5; pf1(t), pf2(t) are the positions occupied by the mass centers
of feet 1 and 2 at frame t.

The maxima search is performed iteratively within a sliding window of pre-
defined length W . This length represents the minimum duration (in frames)
of a gait half-cycle, given the frame rate of the video acquisition process fs
(in frames per second), and the maximum gait cadence fg (in Hz). Thus, the
length W is mathematically defined as W = bfs/2fgc+ 1 if bfs/2fgc is even,
or W = bfs/2fgc otherwise. In this paper, fs = 30 fps and fg is set to 2 Hz,
which allows for detecting the maximum distance moments for typical walking
velocities.

The window W slides one frame forward per iteration. A maximum is detected
at time t∗ if the window W is centered on the maximum. This condition is
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expressed by the following equation:

t∗ = arg max
t
{d(t)} ; t ∈

[
t∗ − bW

2
c, t∗ + bW

2
c
]
, (2)

where W denotes the size of a window centered at t∗.

The output of the maxima search is a series of temporal moments (expressed
in frame numbers) t∗i , i = 1 . . . N who all correspond to maximum inter-feet
distance.

This series is further refined to moments with sub-frame accuracy. Sub-frame
accuracy is needed for reducing the variance in the half-cycles duration, which
is more significant for low acquisition frame rates. The refinement process uses
parabolic interpolation as follows:

γi = t∗i +
d(t∗i − 1)− d(t∗i + 1)

2 {d(t∗i + 1)− 2d(t∗i ) + d(t∗i − 1)}
. (3)

The refined moments γi are used to delineate the gait half-cycles as time
intervals Ci = [γi, γi+1], for i = 1 . . . N − 1. Figure 1(b) shows the detected
moments as vertical dotted lines.

2.3 Estimation of Walking Planes

The work described in this paper addresses viewpoint variability in gait mod-
eling. A fixed camera can observe subjects walking along a range of linear
paths, as well as subjects changing direction during their walk. We represent
information about the gait direction by using the concept of walking planes. To
define such planes, we relax the assumption of walking along linear directions.
Instead, we simply assume that the walking direction is invariant during each
half-cycle of walk. This assumption is consistent with the fact that humans
typically change direction by pivoting on their feet of support during stance
phase, rather than by incorporating a rotation during swing phase.

A walking plane can be most accurately estimated for each half-cycle using the
raw body part trajectories extracted with the algorithm in 2.1. One may note
that feet and head are not exactly located in the same plane during walk,
but on parallel planes separated by distances that are considered negligible
with respect to the distance from the camera. Hence, determining the walking
plane using all locations of body parts during the considered half-cycle needs a
least-squares approximation which would significantly raise the computational
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complexity of the technique. Therefore, we propose a simplified approach for
estimating the walking plane.

Assuming a horizontal floor plane, the walking plane is orthogonal to the floor
plane. We can therefore define the walking plane by using two orthogonal pro-
jections of the center of mass of the head to the floor plane. These projections
are calculated at the beginning and end of the walking cycle respectively. Since
this work uses a non-calibrated camera, the floor-plane location is not a priori
known. Therefore, the projections of the head onto the plane floor are ap-
proximated by the middle points between the feet positions at the beginning
and end frames of the half-cycle, which both contain feet in stance position.
The middle points are defined by pm(t) = {pc1(t) + pc2(t)} /2 and are shown
in Figure 1(c). A walking plane Πi is then defined as the set of four points
corresponding to the head and feet projection locations at the beginning γi
and the end γi+1 times of the considered half-cycle:

Πi : {ph(γi),pm(γi),ph(γi+1),pm(γi+1)} . (4)

Since γi and γi+1 are non-integer values, the locations of head and head pro-
jections at these times are computed by linear interpolation as follows:

p(γ) = p(bγc) + (γ − bγc) {p(dγe)− p(bγc)} . (5)

One may note that the proposed estimation of walking planes ensures the
independence of results obtained for each half-cycle and does not allow errors
to propagate from one half-cycle to the next.

2.4 View Normalization of Body Part Trajectories

The view normalization process aims to generate body part trajectories similar
to those that would be acquired from a fronto-parallel viewpoint (side view).
This process is to project all view-dependent trajectory information onto one
reference plane, which is orthogonal to the camera’s optical axis.

To obtain the normalized body part trajectories, a correspondence between
walking planes and the reference plane needs to be established first. This
correspondence can be expressed in terms of a homography.

Normalized walking planes are rectangles having the same height and the
width proportional to the length of the walking cycle that they represent as
shown in Figure 1(d). The height of the rectangles corresponds to the height of
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the tracked subject and is set to an arbitrary value, since the video acquisition
is performed with an uncalibrated camera.

The normalized walking plane corresponding to the half-cycle occurring in the
time interval Ci = [γi, γi+1] is defined by the following set of points:

Π̃i :

{[
αi−1

β

]
,

[
αi−1

0

]
,

[
αi
β

]
,

[
αi
0

]}
, (6)

where β is an arbitrary height (here β = 100 pixels). The horizontal positions
at the beginning and the end of the corresponding half-cycle are defined as

αi = τ
i∑

j=1

(γj+1 − γj), (7)

with initial value α0 = 0. This initialization results in spatially connected con-
secutive normalized planes, which in turn ensures the continuity of normalized
trajectories across half-cycles.

The width of the normalized walking planes is a temporal quantity; thus,
it is set to be proportional to the duration of their corresponding gait half-
cycle. We assume in this paper that the velocity of the performed walk is
constant, therefore, all normalized planes will have a quasi-equal width which
is determined by the parameter τ , expressed in units per frame and set to an
arbitrary value (here τ = 5).

The homography Hi that maps a walking plane Πi to its normalized version
Π̃i is then computed by constructing an 8-equation linear system using the
correspondences between the corners of the original and normalized walking
planes. Homography matrices are computed using the normalized DLT (Direct
Linear Transform) algorithm for 2D homographies described in [36].

This homography is used on the obtained body part trajectories pb(t), with
b ∈ {h, f1, f2}. A normalized version p̃b(t) within half-cycle Ci is then obtained
as follows:

λ

[
p̃b(t)

1

]
= Hi

[
pb(t)

1

]
; t ∈ [dγie , bγi+1c] , (8)

where λ is a scale factor, and i = 1 . . . N −1. One can see that each body part
trajectory is view-normalized independently within each gait half-cycle using
the corresponding homography.
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Fig. 4. Illustration of points used for foot labeling. Here, points for two gait half–
cycles are shown. The points pm (squares) represent the planes Π1 and Π2 bottom
corners which are defined at maximum stance moments γ1, γ2, and γ3. The points
pc1 (circles) and pc2 (triangles) represent the feet contact points at integer moments
defined as γ− = bγc and γ+ = dγe.

2.5 Automatic Foot Labeling

Foot labeling is required in the experimental evaluation of the proposed nor-
malization algorithm. Automatic foot labeling makes it possible to perform
validating experiments on a large number of trajectories. In Sections 3.1 and
3.2, feet trajectories obtained from different views are compared. The compari-
son process should then compare a person’s right foot trajectory obtained from
one view with the person’s right foot trajectory obtained from another view,
and the same for the left foot. The tracking algorithm presented in Section 2.1
provides feet trajectories labeled as “foot1” and “foot2”; however, “foot1” in
one sequence might not correspond to the “foot1” in another sequence. The
labeling algorithm described in this section ensures that the “foot1” trajectory
in each sequence corresponds always to the right foot.

The foot labeling algorithm relies on the observation that surveillance cameras
are usually positioned near the ceiling and have a non-zero tilt, that is, are
looking down to the floor. In a fronto-parallel view, this would make one of
the foot contact points at the maximum stance moments (double support)
appear a little bit higher in the image that the other one, because that foot
is further than the other from the camera. Considering the direction of the
walk in the image, one could deduce that the right foot is the one with the
higher position if the walk is from left to right, or the lower one if the walk is
from right to left. Computing feet positions at each maximum stance moment
would lead to votes for “foot1” or “foot2” being the “right” foot. This whole
process can also be applied for non fronto-parallel views. This is shown in
Figure 1(c), where all contact points belonging to the right foot are always
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Fig. 5. Illustration of the vectors computed from point shown in Figure 4. Vectors
v represents the planes bottom lines, with the arrows showing the direction of
the walk. Vectors v⊥ are the corresponding perpendicular vector obtained from a
clockwise rotation. Vectors w are defined with respect to the feet contact points
and the planes corner points. If the dot product w · v⊥ is greater that 0, then the
foot represented by w is the right foot, with respect to v.

on the same side of the bottom line of the walking plane (above this line). A
similar reasoning holds for the left foot. It is to be noted that no adverse effect
on the normalization results have been observed due to the tilt of the camera.

Figure 4 illustrates the feet labeling problem for two gait half-cycles. The
notation pt is used to represent a position at time t. The planes’ bottom corners
pm will be used to compute the apparent walking direction in the image. Three
such points are shown in the image, namely one for each maximum stance
moment γi, i = 1 . . . N (here N = 3). For the first maximum stance moment
(i = 1), the considered feet contact positions pc1 and pc2 are the ones at
integer moment γ+

1 = dγ1e. For i = 2 . . . N , feet contact positions at moments
γ−i = bγic are considered. These integer moments were chosen in order to use
positions that are within the intervals defined between γi values.

Using these points, it is possible to compute a vector representing the direction
of the walk, and the position of the feet contact with respect to the walk
direction. Those vectors are illustrated in Figure 5. The vector vi, representing
the direction of the walk for the gait half-cycle Ci, is computed as

vi = pγi+1
m − pγi

m, (9)

for i = 1 . . . N−1. The perpendicular vectors vi⊥ are computed in the image by
performing a 90 degrees clockwise rotation on the vector vi. One should note
that the vector vi⊥ always indicates the side of the vector vi where the “right”
foot position on the floor should be. The vector representing the position of
the foot with respect to the walk direction, pc1 and pc2, is computed as follows:

wi =

p
γ+

i
c − pγi

m if i = 1

p
γ−i
c − pγi

m otherwise
(10)
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Algorithm 1 Voting process
1: V ← 0
2: A1 ← 0, A2 ← 0
3: for i = 1 . . . N do
4: if i = 1 then {special case}
5: if w1

f · v1
⊥ > 0 and w1

f̄
· v1
⊥ < 0 then

6: Af ← Af + 1, V ← V + 1
7: end if
8: else if i = N then {special case}
9: if wN

f · v
N−1
⊥ > 0 and wN

f̄
· vN−1
⊥ < 0 then

10: Af ← Af + 1, V ← V + 1
11: end if
12: else {general case}
13: if wi

f · v
i−1
⊥ > 0 and wi

f̄
· vi−1
⊥ < 0 then

14: Af ← Af + 1, V ← V + 1
15: end if
16: if wi

f · vi⊥ > 0 and wi
f̄
· vi⊥ < 0 then

17: Af ← Af + 1, V ← V + 1
18: end if
19: end if
20: end for

for i = 1 . . . N . A foot contact position pc can be associated with the “right”
foot if the corresponding vector w shows that the point is at the right of
a vector v, which is indicated by the vector v⊥. That is, the foot contact
position is associated with the right foot if the dot product between w and
v⊥ is greater than 0.

Foot contact positions at a given time provide one vote to determine which one
of the foot trajectories is the “right” foot trajectory. The votes are accumulated
in accumulators Af , f ∈ {1, 2} , for the “foot1” and the “foot2” trajectories
respectively. The voting process is performed as stated in Algorithm 1. The
notation f̄ is used to denote the “other” foot, that is, if f = 1, then f̄ = 2,
and vice versa. This voting process consists in three parts, where the first two
deal with the special cases, that is, the foot contact position at the beginning
of the first gait half-cycle and at the end of the last gait half-cycle. For those
two cases, the dot product can only be computed with one walk direction.
In the general case, the dot product is computed with two walk directions.
One may notice that the algorithm takes care of the contradictions that may
arise during the voting process. Indeed, foot contact positions at a given time
must lead to a foot being the “right” foot and the other one as the “left” foot.
Otherwise, the vote is not considered. The number of votes that are considered
is denoted by V .

The number of votes accumulated in A1 and A2 are used to compute a prob-
ability of being the “right” foot for each foot trajectory “foot1” and “foot2”.
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Those probabilities are computed as P1 = A1/V and P2 = A2/V , with
P1 + P2 = 1. If P2 > P1, then the foot trajectories are swapped such as
the “right” foot trajectory is the “foot1” trajectory: pf1 ↔ pf2. Otherwise, the
“right” foot trajectory is already the “foot1” trajectory, or P1 = P2, in which
case no decision can be made.

The foot labeling process can be performed right after the walking planes have
been determined. It does not require the foot trajectories to be normalized.
As it was said previously, this algorithm is used during the feet trajectories
comparison. However, it could also be used by a gait modelization algorithm
that would need the knowledge of a “right” and a “left” foot.

3 Experimental Evaluation

Two experiments have been performed in order to test the proposed algo-
rithms. The first experiment implies subjects walking on a straight line path,
while the second experiment implies subjects walking on paths with changes
in the walk direction. The methodology and the obtained experimental results
are detailed for both experiments in the following sections.

3.1 Experiment 1: Evaluating the similarity of normalized and fronto-parallel
trajectories for single direction walks

The purpose of the normalization process is to obtain body part trajectories
that appear to have been obtained from a fronto-parallel viewpoint. Thus, the
effectiveness of the normalization algorithm can be assessed by comparing the
body part trajectories obtained from different views of the same single direc-
tion walk to the reference view (fronto-parallel view). By performing the com-
parison on both non-normalized (raw) and normalized body part trajectories,
one could appreciate the improvements that can be achieved by normalizing
the trajectories with the proposed method. In the ideal case, normalized tra-
jectories obtained from a non-fronto-parallel view would be identical to the
ones obtained from the fronto-parallel view. However, this will not be the case
in a real system because of noise induced by the tracking process.

3.1.1 Evaluation Methodology

One convenient way of comparing two 2D trajectories is to align (or fit) one
trajectory on the other one, in a least squares sense, in order to compute a
deviation measure. This distance measure would indicate how similar these
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Fig. 6. Example for the trajectory alignment process. In a) The original head tra-
jectories from a 90◦ view (squares) and a 45◦ view, as observed in the camera. In
b), optimal rotation and translation of the two trajectories. In c), the trajectories
are scaled in a 1× 1 box. In d), an average trajectory is computed (triangles), and
distance to this average trajectory is computed for all points of the two trajectories.

trajectories are. For instance, a distance of zero would mean that the trajec-
tories are identical.

An example of the trajectory alignment process is detailed in Figure 6. This
example shows the alignment process for the head trajectory obtained simul-
taneously from a 90◦ view (circles) and a 45◦ view (squares). Both trajectories
have the same number of points T . In order to perform the alignment, the
cameras must be synchronized, so each corresponding point between the tra-
jectories represents the head position observed at the same moment. The origi-
nal trajectories, h90(t) and h45(t), are shown in Figure 6(a). Figure 6(b) shows
the first step of the alignment process, which consists in optimally aligning
the trajectories using the method in [37] (optimal 2D rigid transformation).
Because of the perspective projection and the noise in the tracking process,
the corresponding points do not fit perfectly. In order to compute a “devia-
tion” measure, the aligned trajectories are first scaled down to fit in a unit
box, as shown in Figure 6(c). These new trajectories are denoted h̃90(t) and
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Fig. 7. Acquisition setup for the first experiment.

h̃45(t). Next, an average trajectory havg(t) is computed by taking the mid-
dle point between each pair of corresponding points of the two trajectories:
havg(t) = (h̃90(t) + h̃45(t))/2. The average trajectory is shown as the triangles
curve in Figure 6(d). Considering the average trajectory as a polyline curve,
it is possible to find for each point of h̃90(t) and h̃45(t) its closest point on
the polyline curve. This is presented as small segments in Figure 6(d), whose
lengths are denoted e90(t) and e45(t). The length of these segments can be
thought of as a deviation between the trajectories in a given point. It is then
possible to compute the Root Mean Squares Deviation (RMSD) R, which
provides a global deviation measure between the trajectories:

R =

√√√√ 1

2T

T∑
t=1

[e2
90(t) + e2

45(t)] (11)

This measure is appropriate for the trajectory comparison process since it
measures a deviation in the shape of the trajectory, which is mainly caused
by the perspective projection.

3.1.2 Results

In the first experiment, ten volunteers are asked to walk back and forth on
a straight line in front of four roughly time-synchronized color cameras (30
frames per second, resolution of 640 × 480, synchronization of ±3 frames,
6mm lenses, indoor environment). Cameras are positioned such that their
optical axis intercepts the walking direction at different angles : 90◦, 75◦,
60◦, and 45◦. The minimum distance between the subjects and the cameras
is about 2.5m, and the maximal distance is about 8.5m. Figure 7 shows the
setup used for the acquisition process. This setup is appropriate to test the
performances of the normalization algorithm since it provides four views of
the same walk, including the fronto-parallel view (90◦) to which other views
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are to be compared. A subject first appears in right side of the image and
then disappears at left side (interval 1). He reappears one or two seconds later
in left side of the image and then disappears at right side (interval 2). This
provides four video sequences (four views) for each subject. Preprocessing of
the video sequences yields 80 head and feet trajectories (10 subjects × 4 views
× 2 intervals). Depending on the view and the subject, each sequence interval
contains from one to three visible gait cycles.

In order to properly evaluate the normalization process, time-synchronized
cameras are needed in this experiment. Imperfect time-synchronization be-
tween cameras was refined interactively by selecting key frames in each view.
One should note that time synchronization is necessary for evaluation purposes
only. Such time-synchronization is not needed when gait models are built and
compared from trajectories extracted from different cameras at different times.
In this experiment, the trajectories alignment between two synchronized views
is performed for the time interval they share. That is, only the parts of the
trajectories that represent body part positions that occurred at the same time
in both views is considered.

Table 1 presents results of the body part trajectory alignments for three combi-
nations of views : 90◦−75◦, 90◦−60◦, and 90◦−45◦. Alignment was performed
for non-normalized (raw) and normalized (norm) body part trajectories for
each view. RMSD values of the resulting alignment are presented for each
subject, interval and body part. Table 2 presents alignment statistics for all
subjects and intervals mixed. It is possible to see from these results that tra-
jectories obtained from 75◦, 60◦, and 45◦ views are closer to the trajectories
obtained from the fronto-parallel view (90◦) after normalization. The impor-
tance of the trajectory normalization process becomes clearer as the difference
in angle between the compared views is greater. In Figures 8 and 9, aligned
trajectories of two subjects are shown. Trajectory alignment is more difficult
when there is noise in the body part trajectories, as one may see in Figure
9 for the raw and normalized feet trajectories. This noise comes from the
tracking algorithm whose performance may vary according to the viewpoint.
The person’s silhouette may indeed be noisier in some views. Moreover, feet
occlusions become more difficult to handle as the view is departing from the
fronto-parallel view. These factors explain why the observed RMSD values
increase as the angle between compared views is getting higher. The increase
of RMSD values for the normalized trajectories is however much smaller than
the increase observed for raw trajectories.

Table 3 shows the results of a paired T-Test between RMSD values of the
raw and normalized trajectory alignment from Table 1. The null hypothesis
states that the distance value of the raw trajectories alignment and the nor-
malized trajectory alignment do not differ. This hypothesis is verified against
a statistical significance level of 0.01. One may notice that for the closest view
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Subject Interval Type
90deg - 75deg 90deg - 60deg 90deg - 45deg

Head Foot1 Foot2 Head Foot1 Foot2 Head Foot1 Foot2

1
1

raw 0.96 1.10 2.76 2.09 3.11 3.30 3.20 5.81 6.62
norm 0.95 1.14 2.52 1.03 1.94 2.91 1.06 4.26 6.00

2
raw 0.98 2.60 1.49 2.01 3.36 2.33 4.34 6.48 4.28

norm 0.77 2.19 1.36 0.78 2.97 2.71 1.23 5.07 1.78

2
1

raw 1.00 1.03 1.32 2.23 2.61 3.81 3.31 4.12 5.06
norm 0.80 0.71 1.49 0.98 2.01 2.59 1.67 3.28 2.77

2
raw 1.35 1.49 2.31 2.83 2.57 3.58 3.76 4.23 4.50

norm 0.63 1.43 1.96 1.23 1.91 2.62 1.17 2.63 2.73

3
1

raw 1.36 1.95 2.28 2.32 2.13 3.28 4.54 5.12 4.81
norm 1.23 2.12 2.14 0.77 1.60 1.70 1.67 1.76 3.25

2
raw 1.77 2.03 1.86 2.28 2.03 2.95 3.34 3.57 4.06

norm 1.38 2.22 1.72 1.03 1.85 2.14 1.35 2.66 2.34

4
1

raw 0.90 1.34 1.78 1.81 3.02 3.33 3.69 8.25 7.50
norm 0.58 1.27 1.53 1.02 2.83 2.17 1.51 7.93 6.02

2
raw 1.29 1.92 3.61 2.25 2.85 2.88 3.39 3.41 3.86

norm 0.82 1.62 3.56 0.63 2.85 1.74 0.95 3.29 1.82

5
1

raw 1.07 2.18 1.76 2.10 3.09 2.79 4.16 6.05 5.95
norm 0.83 2.25 1.89 0.86 2.88 2.02 1.74 4.08 5.10

2
raw 1.37 2.72 3.93 2.18 5.38 5.05 2.91 4.28 4.13

norm 1.14 2.89 3.95 1.35 5.02 4.94 1.19 2.73 2.97

6
1

raw 1.36 2.86 2.84 2.67 2.89 4.78 4.00 4.32 6.94
norm 1.12 3.00 2.91 0.85 2.64 4.21 1.27 3.68 5.57

2
raw 1.11 2.18 2.44 2.13 3.24 3.21 3.90 4.56 5.84

norm 0.68 2.67 2.42 0.95 2.96 3.41 1.28 3.84 3.89

7
1

raw 1.38 3.31 1.71 2.57 3.30 3.36 3.55 3.96 5.21
norm 0.95 3.01 1.19 0.95 2.74 1.83 1.14 2.89 1.93

2
raw 1.07 1.61 2.85 2.58 2.59 3.78 3.65 3.76 5.09

norm 0.83 1.79 2.97 1.38 1.73 2.61 1.55 2.73 2.57

8
1

raw 1.19 1.65 2.28 2.50 2.48 3.72 3.64 4.13 5.80
norm 0.73 1.60 2.22 1.18 2.21 2.86 1.13 3.58 4.84

2
raw 0.70 2.05 1.13 2.38 3.67 3.01 3.40 4.54 4.05

norm 0.61 2.46 1.12 0.99 3.72 1.71 1.32 4.07 1.89

9
1

raw 0.93 1.40 1.72 2.16 2.44 3.15 3.09 3.37 4.71
norm 0.67 1.68 1.60 1.14 2.47 1.68 1.28 3.05 2.25

2
raw 1.02 1.77 1.78 2.00 2.82 2.60 3.12 3.35 4.10

norm 0.75 1.78 1.51 0.63 2.78 1.89 1.01 3.01 2.71

10
1

raw 1.06 1.86 1.70 2.08 3.21 3.01 3.24 4.88 3.57
norm 0.96 1.97 1.75 1.42 2.23 2.40 1.33 3.10 3.13

2
raw 1.52 1.72 1.47 2.85 3.31 2.73 3.73 4.21 3.95

norm 0.98 1.78 1.17 1.31 2.49 1.60 1.07 2.81 2.18

Table 1
RMSD values (×102) obtained for the three combination of views.

alignment (90◦−75◦), the RMSD values are not statistically significant for the
feet trajectories. However, the RMSD values for “foot 2” trajectory are sta-
tistically significant at the 0.05 significance level. This is due to the fact that
the views are indeed similar, and that the feet trajectories are noisier than
the head trajectory because of the occlusion. The RMSD values for the other
view alignments are statistically significant since the normalization makes the
trajectories appear as a fronto-parallel view whereas the raw trajectories are
distorted by perspective projection.

For this experiment, foot labeling was needed in the alignment process in order
to compare a foot trajectory in one view with the corresponding foot trajectory
from another view. The algorithm described in Section 2.5 was used for that
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Fig. 9. Raw and normalized trajectory alignments of Subjects 5, 90◦ − 60◦

purpose. This algorithm always labels the right foot as “foot1”, and the left
foot as “foot2”. The labeling results of the algorithm were compared with
labeling obtained manually by looking at each color video sequence (ground-
truth). The feet were correctly labeled for all 80 continuous sequences (10
subjects, 4 views, 2 intervals). Statistics on the labeling process are shown in
Table 4. One may see that according to those statistics, the foot trajectory
being chosen as the “right” foot was very likely correct most of the time.
Moreover, most of the potential votes are used in determining the “right” foot
trajectory (very few are discarded). Those results show that the foot labeling
algorithm works properly and could be useful for a gait modeling algorithm
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Statistic Type
90deg - 75deg 90deg - 60deg 90deg - 45deg

Head Foot1 Foot2 Head Foot1 Foot2 Head Foot1 Foot2

mean
raw 1.17 1.94 2.15 2.30 3.00 3.33 3.60 4.62 5.00

norm 0.87 1.98 2.05 1.02 2.59 2.49 1.30 3.52 3.29

median
raw 1.09 1.89 1.82 2.24 2.96 3.25 3.59 4.26 4.76

norm 0.82 1.88 1.82 1.00 2.57 2.28 1.27 3.19 2.75

std
raw 0.25 0.59 0.74 0.28 0.70 0.67 0.43 1.22 1.12

norm 0.22 0.63 0.80 0.23 0.78 0.88 0.23 1.27 1.43

min
raw 0.70 1.03 1.13 1.81 2.03 2.33 2.91 3.35 3.57

norm 0.58 0.71 1.12 0.63 1.60 1.60 0.95 1.76 1.78

max
raw 1.77 3.31 3.93 2.85 5.38 5.05 4.54 8.25 7.50

norm 1.38 3.01 3.95 1.42 5.02 4.94 1.74 7.93 6.02

Table 2
Statistics on RRMSD (×102) from Table 1. Statistics are computed over all subjects
and intervals.

T-Test
90◦- 75◦ 90◦- 60◦ 90◦- 45◦

Head Foot1 Foot2 Head Foot1 Foot2 Head Foot1 Foot2

P -Value 3.0e-7 4.7e-1 2.2e-2 9.1e-14 4.1e-5 1.3e-6 2.8e-16 3.7e-6 1.6e-9
Reject H (0.01)? yes no no yes yes yes yes yes yes

Table 3
Statistical significance for the comparison of normalized body part trajectories. A
paired T-Test is performed on the values obtained in Table 1. Each raw value is
paired with its corresponding normalized value, and the p-value is obtained for each
body part and each view comparison. The null hypothesis H states that the raw and
normalized trajectories comparison does not differ. Rejection of the null hypothesis
is performed at the statistical significance level of 0.01.

Mean STD Median Min Max

Probability (%) 98.63 4.97 100.00 75.00 100.00
# Considered votes 7.34 2.11 8.00 4.00 12.00
# Discarded votes 0.11 0.50 0.00 0.00 4.00

Table 4
Statistics from the results of foot labeling algorithm over Experiment 1 sequences.
Statistics were computed over the 80 sequences. First row shows statistics on the
certainty for the chosen foot of being the “right” foot. The two other rows show the
statistics for the number of considered and discarded votes respectively.

that would require information about foot labels.

3.2 Experiment 2: Evaluating the stability of normalized trajectories under
walk direction changes

An important issue addressed by the proposed method is the viewpoint vari-
ation that occurs when a person changes direction during walk. In this case,
the quality of the simulated fronto-parallel views obtained with normalization
algorithms can be assessed by observing the stability of the spatial properties
of the trajectories between each gait half-cycle. In the ideal case, the stability
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Fig. 10. Example of stability of the width and height of the head trajectory for a
walk with a change in direction halfway in the walk. In a), the raw trajectory, with
ch = 0.180 and cw = 0.113. In b), the normalized trajectory, with ch = 0.145 and
cw = 0.084. In both cases, the bounding boxes for each gait half-cycle is shown.

of the normalized trajectories should be perfect, that is, no variation should
be observed in the spatial properties of the trajectories. A comparison of the
stability for both non-normalized (raw) and normalized body part trajectories
should show less variation in the spatial properties in the normalized case.

3.2.1 Evaluation Methodology

The analysis of the height and the length of the body part trajectories across
all gait half-cycles is a simple but efficient way to evaluate the stability of the
normalized trajectories. Indeed, those two measures directly represent static
gait characteristics, that is, stride length (trajectory length) and foot-floor
clearance (trajectory height) in the case of the foot trajectories.

In order to evaluate the stability, the coefficients of variation of the height and
the width of the body part trajectories across gait half-cycles are computed.
They are computed as ch = σh/µh for the height, and cw = σw/µw for the
width. σ and µ are respectively the standard deviation and the mean of the size
of bounding boxes defined around the trajectory at each gait half-cycles. An
example of the stability of the width and the height of the raw and normalized
head trajectories is shown in Figure 10(a) and 10(b). In this example, the
person walked on two straight line segments, with a change in direction halfway
in the walk. One may notice that the amplitude (height) of the trajectory and
the width have less variation across the gait half-cycle in the normalized case.
The normalized trajectory has a lower coefficient of variation than the raw
trajectory.
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Fig. 11. Example of a subject walking on path 1, which is a walk with a smooth and
continuous change in direction. Left figure shows the original body part trajectories
along with computed walking planes. The silhouettes that have been observed at
the maximum stance moments are shown. The figure at right shows the obtained
normalized body part trajectories.
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Subject 9, Path 2 − Normalized head and feet trajectories

Fig. 12. Example of a subject walking on path 2, which is a walk with a sudden and
strong change in the walk direction. The figure at left shows the original body part
trajectories along with computed walking planes. The silhouettes that have been
observed at the maximum stance moments are shown. The figure at right shows
the obtained normalized body part trajectories. In this case, the body part tracking
has been lost during the change in direction because of the long feet occlusion.
Therefore, the sequence has been automatically split in two intervals.

3.2.2 Results

In the second experiment, 20 subjects were asked to walk on two different
paths, which comprise changes in the walk direction. Forty video sequences
were acquired using one camera, with frame resolution of 1024×768, and frame
rate of 30 fps. A variable focal length lens was used (3.5mm - 8mm) and it
was set approximately to 4mm. The minimum distance between the subjects
and the camera is about 2.5m, and the maximum distance is about 8.5m. The
first path consists in a walk with a smooth and continuous change in direction.
The second path consists in a walk with a sudden and strong change in the
walking direction, which leads to two quasi-linear walk segments. Examples of
the two paths are shown in the left image of Figures 11 and 12.

Unlike the evaluation method for the first experiment, trajectory alignment
cannot be used to assess the effectiveness of the normalization algorithm since

23



Subject
Head Feet

Height Width Height Width
raw norm raw norm raw norm raw norm

1 0.422 0.340 0.058 0.061 0.518 0.222 0.057 0.032
2 0.384 0.173 0.051 0.032 0.501 0.171 0.036 0.024
3 0.351 0.371 0.035 0.059 0.504 0.243 0.046 0.041
4 0.439 0.403 0.078 0.036 0.377 0.076 0.030 0.029
5 0.432 0.094 0.046 0.033 0.605 0.320 0.013 0.019
6 0.430 0.214 0.046 0.042 0.363 0.322 0.030 0.033
7 0.482 0.219 0.065 0.052 0.628 0.310 0.019 0.028
8 0.464 0.242 0.111 0.046 0.463 0.303 0.038 0.022
9 0.458 0.379 0.041 0.052 0.442 0.308 0.036 0.054
10 0.611 0.215 0.112 0.056 0.633 0.167 0.041 0.044
11 0.525 0.188 0.075 0.032 0.621 0.166 0.032 0.012
12 0.370 0.224 0.039 0.044 0.386 0.220 0.056 0.038
13 0.366 0.239 0.063 0.028 0.314 0.392 0.026 0.033
14 0.463 0.373 0.051 0.050 0.458 0.357 0.050 0.053
15 0.410 0.423 0.071 0.070 0.478 0.159 0.063 0.060
16 0.501 0.336 0.075 0.044 0.452 0.146 0.045 0.026
17 0.616 0.306 0.032 0.076 0.647 0.303 0.028 0.077
18 0.489 0.273 0.024 0.029 0.474 0.166 0.032 0.029
19 0.464 0.188 0.084 0.049 0.401 0.289 0.107 0.062
20 0.408 0.232 0.028 0.055 0.440 0.247 0.033 0.039

P-Value 1.34e-06 7.83e-02 1.83e-07 0.470

Table 5
Coefficients of variation of the height and the width of the body part trajectories for
all subjects in path 1. Values are shown for non-normalized (raw) and normalized
trajectories (norm). The last line shows P-Values of a paired T-Test on correspond-
ing coefficients of variation for raw and normalized body part trajectories.

there is no fronto-parallel view available for each walk direction in the second
experiment. Assumptions made for the second experiment are that the sub-
jects have walked at a constant speed, and that a subject’s strides length are
equal for both feet and for all gait half-cycles. The purpose of our evaluation
is to show that in the case of the normalized trajectory, there is less variation
across gait half-cycle for the width and the height of the body part trajecto-
ries. In the case of non-normalized trajectories, there will be more variation
for those measures since the bounding boxes size changes under perspective
projection. This is true unless the walk is entirely seen from a fronto-parallel
view. Examples of raw and normalized trajectories from both paths are shown
in Figures 11 and 12.

Table 5 and Table 6 shows the width and the height coefficient of variation
of the bounding box of the body part trajectories for both paths. For the feet
trajectories, only the gait half-cycles where the feet were moving have been
considered. Moreover, coefficients of variation have been computed for both
feet together. A paired T-Test has also been performed between coefficients
of variation from raw and normalized trajectories to see if the difference is
statistically significant.

One may see in those results that there is less variation for the normalized
trajectories than for the non-normalized one in most case. Results from the
first path (Table 5) shows that the variation is statistically significant at the
0.01 significance level for the height, but not for the width. This may be
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Subject
Head Feet

Height Width Height Width
raw norm raw norm raw norm raw norm

1 0.533 0.214 0.492 0.096 0.338 0.219 0.410 0.057
2 0.434 0.152 0.373 0.029 0.246 0.344 0.321 0.037
3 0.433 0.222 0.404 0.061 0.306 0.310 0.343 0.055
4 0.408 0.364 0.476 0.065 0.290 0.196 0.399 0.054
5 0.424 0.170 0.381 0.065 0.293 0.267 0.328 0.061
6 0.510 0.174 0.417 0.064 0.321 0.312 0.343 0.053
7 0.325 0.259 0.446 0.050 0.225 0.227 0.371 0.041
8 0.461 0.151 0.392 0.072 0.295 0.277 0.327 0.063
9 0.510 0.344 0.399 0.085 0.284 0.240 0.348 0.079
10 0.408 0.241 0.421 0.040 0.287 0.271 0.365 0.051
11 0.386 0.196 0.431 0.075 0.306 0.252 0.371 0.056
12 0.479 0.154 0.434 0.075 0.286 0.253 0.359 0.056
13 0.484 0.181 0.381 0.020 0.324 0.323 0.304 0.029
14 0.556 0.244 0.426 0.033 0.320 0.295 0.374 0.043
15 0.512 0.272 0.477 0.068 0.303 0.260 0.408 0.066
16 0.447 0.225 0.420 0.049 0.318 0.281 0.377 0.058
17 0.436 0.173 0.412 0.038 0.260 0.228 0.361 0.037
18 0.455 0.226 0.415 0.080 0.283 0.264 0.360 0.062
19 0.495 0.110 0.454 0.046 0.336 0.264 0.395 0.046
20 0.442 0.194 0.505 0.042 0.383 0.374 0.445 0.043

P-Value 1.22e-10 1.53e-20 1.06e-02 9.72e-20

Table 6
Coefficients of variation of the height and the width of the body part trajectories for
all subjects in path 2. Values are shown for non-normalized (raw) and normalized
trajectories (norm). The last line shows P-Values of a paired T-Test on correspond-
ing coefficients of variation for raw and normalized body part trajectories.

explained by the fact that all parts of this path are performed at almost the
same distance from the camera, which makes the width of the body part
trajectories similar in the raw and normalized case. The results of the second
path (Table 6) are statistically significant at the 0.01 significance level, except
for the feet height, which is border line. The feet tracking algorithm sometimes
returns noisy points during feet occlusion when the observed subject is far
away, as in the case of the second path. This noise is mostly in the y component
of the feet positions, which accounts for the variation in the height of the
obtained feet trajectories. However, the results from this path are statistically
significant at the 0.05 significance level.

The second experiment has shown that the proposed normalization algorithm
can be used to make body part trajectories appear as if they were obtained
from a fronto-parallel view, even if there are changes in the walk direction.

4 Conclusion

An approach for view-normalizing body part trajectories was presented. The
normalization process consists in the computation of walking planes from head
and feet positions for each gait half-cycle. A homography transformation is
then computed for each walking plane in order to make it appear as if it
was observed from a fronto-parallel view, that is, a rectangle. Each computed
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homography transforms the body part trajectories within the corresponding
gait half-cycle, which makes them appear as obtained from a fronto-parallel
view.

The proposed approach is promising since it has direct applications to gait
modeling. Indeed, most gait characteristics are known to be easier to extract
from a fronto-parallel view. As validated experimentally, the normalized tra-
jectories of head and feet from different views are well aligned with real fronto-
parallel view trajectories. Moreover, the proposed method can even be applied
on trajectories for which changes in direction occurred during the walk.

Ongoing work focuses on testing the proposed approach on trajectories of ad-
ditional body parts (hands, knees etc.) involved in human walk. More tests are
to be performed on trajectories with changes in walking direction. Gait mod-
elization will be performed by extracting gait characteristics from normalized
body part trajectories, which will eventually lead to view-invariant gait-based
identification.
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