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Abstract—This paper describes a new three-dimensional 

spatiotemporal template, namely the Volumetric Motion 

History Image (VMHI), for the purpose of human motion 

analysis. Irregularities in human actions typically occur 

either in speed or orientation; they carry information about 

the balance and the confidence level of the human subject 

performing the activity. The proposed VMHI template 

handles successfully shortcomings of existing spatiotemporal 

templates related to motion self-occlusion and speed. 

Therefore, VMHI allows for interactive visualization, as 

well as quantification of motion performance. This study 

focuses on the analysis of sway and speed-related 

abnormalities, which are among the most common motion 

irregularities in the studied set of human actions.   

Index Terms—computer vision, interactive motion analysis, 

spatiotemporal motion representation 

I. INTRODUCTION

Human motion analysis has been a central research 

topic in the Computer Vision community for over two 

decades. As shown in a recent survey by Moeslund et al 

[1], this sustained interest is motivated by the theoretical 

complexity of the problem (i.e. the high variability and 

level of sophistication of human gestures and activity), 

and also by the wide spectrum of potential applications in 

biometrics, medicine, sports, gesture-controlled interfaces 

etc.  

The analysis of human motion from video data is 

mostly focused by applications in surveillance. Indeed, 

prestigious academic journals such as IEEE Transactions 

on Pattern Analysis and Machine Intelligence and the 

Journal on Multimedia Systems have dedicated special 

issues to research advances in vision-based surveillance 

[2], [3]. Some major surveillance-related themes address 

human activity identification, gait-based biometrics and 

real-time abnormal event detection.  

An emerging area of interest for vision-based human 

motion analysis is the field of perceptual human-

computer interfaces. Perceptual interfaces are typically 

multi-modal; their design is focused towards broadening 

the bandwidth of communication between the user and 

the system. Computer Vision techniques for gesture 

recognition have been successfully integrated into 

perceptual interfaces for video games such as EyeToy [4], 

and for motor-impaired users, as proposed by Betke et al 

in [5].  

Both above-mentioned areas of application, namely 

video surveillance and perceptual human-computer 

interaction, are detection- and recognition-oriented. The 

main goal in such applications is to detect and recognize 

either the motion/action/gesture performed by the human, 

or the human subject herself from her motion-based 

signature. 

However, changing the main goal from recognition to 

analysis and quantification of motion performance 

unveils a variety of new challenges and new research 

directions for the development of computer vision 

algorithms. In other words, the main question that we 

want to investigate is “How well is the motion 

performed?” rather than “What motion is performed?”. 

At the best of our knowledge, motion analysis for 

performance quantification is still a fairly unexplored 

field in computer vision with promising application areas 

such as aging-in-place, rehabilitation, sports etc.  

The work described in this paper was done in a 

rehabilitation context about frail elderly subjects. Our 

main goal is not to recognize the activity performed by a 

subject, but to analyze a standardized set of common 

human activities in order to quantify and monitor the 

subjects’ performance over time. In our research, 

abnormal motion is not considered an outlier, but a 

quantifiable deviation from normal motion.   

Motion analysis is not a well-studied problem; indeed, 

it poses different challenges with respect to action or 

subject recognition. For instance, early work of Cutting 

and Kozlowski [6] showed that typical humans are 

experts in recognizing human activities and perform well 

at identifying familiar people from their gait. Therefore, 
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vision-based algorithms for activity recognition and gait 

identification can easily be validated against ground truth 

data produced by human reasoning. In fact, intelligent 

visual surveillance systems aim to be a more efficient 

alternative to CCTV systems with a human operator in 

the loop.   

On the other side, an accurate performance analysis of 

basic, daily human activities can be performed only by 

professionals such as physiotherapists and kinesiologists. 

For this purpose, they typically employ measurements 

such as the Berg Balance Score (BBS) [7] which assesses 

on a 5 point ordinal scale 14 basic human activities 

common to everyday life. Hence, the validation of a 

computer vision-based approach for human motion 

assessment against BBS is not feasible. This new type of 

approach should be validated with physiotherapists in the 

loop and designed as to allow an optimal trade-off 

between interactivity and automation. It is anticipated 

that an interactive tool based on computer vision 

algorithms for human motion analysis will complement 

score-based assessments as it will provide additional 

information about the subject’s evolution over time.  

This paper proposes a new spatiotemporal template, 

namely the Volumetric Motion History Image (VMHI), 

and its application to the analysis of irregularities in 

human motion. Preliminary results of our study appeared 

in Branzan Albu et al [20]. The present paper contains 

significant conceptual and experimental updates with 

respect to [20]. 

 The remainder of the paper is organized as follows. 

Section 2 presents related work in the field of human 

motion analysis. Section 3 describes our proposed 

approach, while section 4 discusses experimental results. 

Section 5 draws conclusions and outlines ongoing and 

future work directions.    

II. RELATED WORK

The extraction of information about human motion 

from video sequences can be performed with a diversity 

of approaches, which can be either model-based or 

model-free, as shown in Aggarwal and Cai [8]. This 

motion information is necessary for building a motion 

representation appropriate for the task of interest. While 

motion representation is identified by Moeslund and 

Granum [9] as an essential component of tracking (a pre-

processing step), it is also necessary for the achievement 

of global goals such as recognition and analysis. The 

generation of an adequate motion representation is not 

trivial, since trade-offs must be made between the 

richness of the representation, the time necessary for 

generating it and the computational complexity of the 

algorithms which will further use it. These trade-offs are 

usually critical for real-time decision systems. Other 

challenges are related to the robustness of the motion 

representation to self-occlusion and to errors occurred in 

background subtraction, tracking, or other preprocessing 

steps.  As a conclusion, the motion representation must be 

task-oriented in order to address properly all contextual 

constraints.  

The rehabilitation context of our work imposes 

constraints such as dealing with loose clothing and with a 

high variability of body shapes. For this reason, model-

based approaches for motion representation do not 

represent a suitable option, since they are based on joint 

segmentation and tracking. The remainder of this section 

will therefore discuss related work on holistic or 

appearance-based motion representations.  

Appearance-based methods focus on whole-body 

motion of the human silhouette, without decomposing it 

into absolute and the relative motion of body parts. These 

methods identify global patterns of motion as opposed to 

temporal trajectories of anatomic joint; these patterns are 

usually encoded as spatiotemporal templates. 

Most of existing spatiotemporal templates are 2D 

images, which offer a compact representation of motion 

information and are suitable for analysis and 

classification using standard image processing techniques 

for feature extraction and pattern recognition.   

Polana and Nelson proposed in [10] the temporal 

texture for the study of quasi-random motion such as 

windblown trees and ripples on water; the temporal 

texture can be further analyzed with standard techniques 

similar for spatial texture analysis. They also introduced 

in [11] a feature-based representation of periodic human 

motion; this representation contains spatiotemporal 

motion magnitudes obtained with Fourier image analysis.  

Cutler and Davis introduced in [12] the 2D inter-frame 

similarity matrix, a spatiotemporal representation that 

they used for detecting periodic human and non-human 

motion.  

While periodicity characterizes all types of human 

locomotion (walking and running), the above-mentioned 

approaches for motion representation are not extendable 

for the analysis of non-periodic basic human actions. The 

concepts of Motion Energy Image (MEI) and Motion 

History Image (MHI) introduced by Davis and Bobick in 

[13] are spatiotemporal templates useful for aperiodic 

human activity description and recognition.  MEI is a 

binary image which encodes the spatial occurrence of 

motion throughout the video sequence. MHI is a gray-

level image which encodes the recency of motion in gray-

levels. Both MEI and MHI are generated over a temporal 

window of  frames, with parameter  either empirically 

chosen or computed after an exhaustive, iterative 

matching against a reference template. Moreover, MEI 

and MHI are not independent, since MEI can be retrieved 

from MHI via a simple thresholding. 

The main advantage of the MHI representation is its 

compactness, which makes it suitable for real-time 

activity recognition. However, the recognition process 

has to be thoroughly supervised, since it needs to be 

label-based and reference templates must be available for 

each activity of interest. A second shortcoming of the 

initial MHI representation is its lack of robustness against 

spatial motion self-occlusion occurring during the same 

temporal window; this event happens rather frequently in 

human actions.  

A hierarchical extension to the original MHI 

framework was proposed by Davis in [14]. This extension 
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aims at eliminating previous problems related to limited 

recognition capabilities and variable speed of motion. A 

second parameter  is introduced in [14] for measuring 

the decay factor, which is necessary for varying the 

length of the captured history of movement. The 

hierarchical pyramid of MHIs allows for recovering to a 

certain extent motions of varying speed by exploiting 

spatial gradient information.  

Valstar et al described in [15] a different extension of 

MHI, namely the multiple-level MHI (MMHI), which 

aims at handling motion self-occlusion by recording 

motion history at multiple time intervals. Their work 

focused on the automatic detection of facial actions units 

that compose facial expressions. The experimental results 

shown in [15] do not clearly demonstrate the superior 

performance of MMHI with respect to the standard MHI 

in the context of their application. 

Weinland et al introduced in [16] a 3D extension to the 

initial MHI, namely Motion History Volumes. This 

extension was used for viewpoint-independent action 

recognition. The transition from 2D to 3D is 

straightforward, since pixels are replaced with voxels, 

and the standard image differencing function D(x,y) is 

substituted with an occupancy function D(x,y,z,t). The 

Motion History Volumes offer an interesting alternative 

to action recognition from video stream acquired 

simultaneously with multiple cameras. However, issues 

such as the additional computational complexity 

introduced by calibration, synchronization of multiple 

cameras, and parallel background subtraction are not 

discussed in [16]. 

Yilmaz and Shah [17] use spatiotemporal volumes for 

action recognition. The volumes are created by stacking 

silhouette contours extracted from adjacent frames into 

parallel equidistant planes. Inter-slice point-by-point 

correspondences are obtained using weighted bipartite 

graphs. Their motion representation, which is a 

parametric 3D surface, is described using 8 surface 

primitives, namely peaks, ridges, saddle ridges, pits, 

valleys, and saddle valleys. The types and relative 

locations of the surface primitives on the Spatiotemporal 

Volume corresponding to one atomic action compose an 

action sketch.   

Blank et al [18] also use spatiotemporal volumes for 

the description and recognition of human actions. They 

build the volumes by assigning to each space-time point 

the mean time required for a particle undergoing a 

random-walk process starting from the point to hit the 

boundaries. Their action representation is based on 

primitive spatio-temporal entities, namely “sticks”, 

“plates”, and “balls”. Spatio-temporal saliency is also 

extracted at every point in the shape, which allows for 

minimizing the number of features representing an action. 

When shifting the primary focus from motion 

recognition to motion analysis, existing 2D and 3D 

motion representations exhibit shortcomings. For 

instance, it has been shown in [17, 18] that the action 

sketch and the space-time shapes are able to discriminate 

between different actions such as dancing, kicking, 

walking, jumping-jacks etc. However, the current form of 

the above representations does not allow for detecting 

and quantifying subtle differences that occur between 

various performances of the same action.   

To address such current limitations, this paper 

describes a new methodology for the interactive analysis 

of a volumetric motion representation. Our motion 

representation, called Volumetric Motion History Image 

(VMHI), is a 3D extension for the initial MHI concept in 

[13]. Our proposed approach allows for interactive 

visualization and analysis. Moreover, it handles 

successfully issues such as motion self-occlusion, speed 

variability, and variable-length motion sequences. The 

following section describes in detail the proposed motion 

representation as well as a new measure for motion 

irregularity. 

III. PROPOSED APPROACH

A. The Volumetric Motion History Image 

The standard MHI concept is computed in [13] using 

an iterative replacement and decay operator as follows: 

,,),(

otherwise11,,,0max

1,,
,,

yxHyxMHI

tyxH

tyxDif
tyxH

 (1) 

where: 

- D(x,y,:) is a binary image sequence indicating 

regions of motion and created with a simple 

frame-by-frame differencing technique.  

-  is the length of the temporal window. 

The second equation in (1) does not appear explicitly 

in [13]; we have derived it after a close analysis of their 

experimental results and of their MHI example 

illustrations. 

Our paper proposes a 3D extension of MHI which 

eliminates the need of a pre-specified length of the 

temporal window . Input data is represented by an image 

sequence S(:, :, k) k=1..N of binary silhouettes obtained 

with background subtraction from an initial video 

sequence acquired with one stationary camera.  

The proposed Volumetric Motion History Image 

(VMHI) is a set of parallel and equidistant slices where 

the z coordinate encodes discrete temporal information as 

represented by frame indexes. In this sense, it is similar to 

the spatiotemporal volume used in [17], although it 

neither stacks silhouette contours, nor computes inter-

slice point-by-point correspondences.  

Let us consider contS (:, :, k), the one pixel thick 

contour of the binary silhouette in frame k.  The VMHI 

representation is defined as follows: 

1,1,,1,,1

1,,,,1

1,,,,

1,,,,

,,

NkYyXx

kyxcontSkyxcontS if

kyxcontSkyxcontSif

kyxSkyxS

kyxVMHI
(2)  

where x, y correspond to spatial coordinates in the 

image plane and X,Y are the frame dimensions in pixels, 

while k encodes discrete temporal information;  stands 

for the symmetric difference operator. 
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Each slice in the VMHI representation is built by 

integrating two types of information, related to:   

a) the motion occurred within a pair of adjacent 

frames, captured with the symmetric difference operator 

between two adjacent binary silhouettes;  

b) the spatial occupancy, captured with the binary 

contour comparison. 

The standard MHI [13] is based on motion information 

only, which is retrieved by using a simple frame-by-

frame differencing technique. Its hierarchical extension in 

[14] can be computed using either motion information or 

spatial occupancy; the spatiotemporal volumes in [17, 18] 

are based on spatial occupancy only. We believe that 

integrating information about both motion and spatial 

occupancy can provide a more robust representation than 

using one source of information only. The use of spatial 

occupancy only results in connected spatial regions in the 

VMHI horizontal slices; however, it does not lead to an 

explicit motion representation. The use of silhouette 

differencing only for the extraction of motion information 

leads to disconnected regions in the horizontal slices of 

the VMHI, which are difficult if not impossible to 

visualize in 3D.   

Fig. 1 shows an example of articulated human motion. 

The binary image in Fig. 1b contains motion information 

only obtained by upper body silhouette differencing. Due 

to motion self-occlusion and imperfect background 

subtraction, a significant portion of the arm contour is 

lost. These portions are successfully retrieved in Fig. 1c, 

which shows a slice of VMHI computed with (1).  The 

gray level display is used for the purpose of visualization 

only: it shows contour information (spatial occupancy) in 

white, motion occurring from background-foreground 

transition in light gray, and motion from foreground-

background transition in dark gray. 

Fig. 1. a) frame in a sequence containing a picking up action; b) result 

of binary silhouette differencing; c) result obtained with Eq.(1).  

One may notice the disappearance of the  parameter 

encoding the length of the temporal window from the 

VMHI definition. In the standard (MEI, MHI) framework 

for activity recognition,  was either empirically set, or 

determined with an exhaustive research of the best 

correlation match between the template to be classified 

and a reference template. The absence of a reference 

template and the change of goal from recognition to 

analysis led to the conclusion that  is not needed in the 

VMHI representation. The temporal window of interest is 

typically defined over the entire motion sequence; it can 

also be specified by the user via a graphical user 

interface. 

B.  Overcoming limits of the MHI representation in the 

motion analysis context 

The (MEI, MHI) template set was proven reliable for 

action recognition in controlled environments such as 

KidsRoom[19]. However, this compact motion 

representation is not able to capture subtle details of 

human motion required for an accurate quantitative and 

qualitative motion analysis. The main factors limiting the 

use of (MEI, MHI) representation in a motion analysis 

context are listed below. The ability of the proposed 

VMHI to overcome these shortcomings is also discussed.  

1) Motion self-occlusion. 

Due to the replacement-and decay operator used in (1) 

for the computation of the standard MHI [13], the most 

recent motion will overwrite all the motion information 

previously gathered at the same spatial location. In the 

context of motion analysis, this overwriting process leads 

to loss of important information and has to be eliminated.  

To analyze systematically the effects of the 

overwriting process on the MHI, we have built two 

sequences of identical length (58 frames) containing rigid 

horizontal translation with different motion irregularities. 

Key frames of the two sequences are shown in Fig. 2a. 

Sequence A contains a rectangle in translation; its motion 

changes orientation for a certain time interval (frames 11-

31), then resumes the initial orientation. Sequence B is 

identical to A, except for the irregularity occurring during 

the same time interval (frames11-31), where the object 

stops and remains immobile instead of moving leftwise. 

The computation of the MHI was performed as in [13] 

with =58. Since both sequences have identical MHIs, it 

can be concluded that the MHI representation fails to 

capture information about irregularities in motion. The 

choice of a smaller  can certainly lead to different MHIs 

for the two test sequences, but this choice would have to 

be empirically made, since no a priori information about 

the occurrence and nature of irregularities is available. 

Fig. 2c and 2d contain the VMHI motion 

representations for test sequences A and B respectively. 

A simple visualization of these 3D motion models allows 

for: a) detecting the occurrence of the motion irregularity 

in both sequences; b) discriminating between the two 

motion irregularities.    

One may notice that capturing a temporary stop of the 

moving object (as in test sequence B) is possible because 

the VMHI model definition in Eq. (2) integrates 

information about motion and spatial occupancy.  Sudden 

short stops occur quite frequently in actions performed by 

elderly subjects, as they usually correspond to hesitations 

of the subject. 
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a)

b)

c)

d)
Figure 2. a) left: keyframes corresponding to the test sequence A 

containing a temporary change in motion orientation; right: keyframes 

corresponding to the test sequence B containing a temporary stop of the 

moving object; b) MHI is identical for both test sequences; c) VMHI for 

sequence A; d) VMHI for sequence B. 

2) Subject-dependent  motion  speed.  

While fit subjects perform a given activity in a 

relatively short time frame, hesitant frail subjects take 

usually a much longer time to perform the same activity. 

For instance, at an acquisition rate of 30 fps, the length of 

a typical sit-to-stand normal action sequence is 56 frames, 

while an abnormal sit-to-stand lasts 148 frames. Thus, it 

is difficult to quantify the differences between normal 

and abnormal actions using the standard MHI, since this 

representation is defined over a fixed-length temporal 

window. An attempt to normalize the length of the 

sequences before the MHI generation has been reported 

in [15] for facial action units. The proposed normalization 

was based upon a uniform subsampling of the longer 

sequence. The spatiotemporal volumes in [17] are also 

speed-normalized, since Yilmaz and Shah claim that 

volumes obtained from an initial action sequence and 

from a randomly subsampled version of the same action 

look similar. However, neither uniform nor random 

undersampling are appropriate for the context of our 

work, since by eliminating frames in the longer sequence 

relevant information about motion irregularities will be 

lost. 

Our proposed solution is the computation of VMHI 

models for normal and abnormal motions respectively 

without attempting to normalize the models for a direct 

inter-model comparison. The irregularities the 

spatiotemporal 3D surface of each model are to be 

interactively observed and selected via a graphical user 

interface and further analyzed with a measure of surface 

smoothness (see Section IV). The variable speed of 

motion, which is also an index of abnormality, can also 

be directly measured if working with non-normalized 

models. Such measurements are detailed in Section IV. 

Fig. 3 shows VMHI models for normal and abnormal 

sit-to-stand. Key frames of the abnormal and normal 

motion are shown in Fig. 3a and 3b respectively. For the 

abnormal motion, the key frames capture a significant 

motion irregularity occurring at the beginning of the 

action, namely a horizontal sway used by a frail subject to 

initiate the upward motion. The VMHI model in Fig. 3d 

corresponds to the temporal interval where this 

irregularity occurs. The normal motion does not present 

irregularities and therefore results in a smooth VMHI.   

3) Variable length of the action sequences. 

The capture of slow motion results in long video 

sequences. Therefore, an increase in the length  of the 

temporal window is translated into a larger number of 

gray levels in the MHI. Encoding motion information in a 

gray-level image is thus limited by the maximum number 

of gray levels. The proposed VMHI representation 

encodes the temporal information along the z coordinate, 

which is a suitable solution for both long and short 

sequences.

a)

b)

        
c)                                            d) 

Figure 3. a) key frames in abnormal sit-to-stand showing initial sway; b) 

key frames in normal sit-to-stand; c) VMHI for the initial sway in 

abnormal sit to stand; d) VMHI for the normal sit-to-stand sequence. 
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4) Motion periodicity 

Due to the overwriting phenomenon discussed above, 

the MHI template is not applicable for the analysis of 

periodic human motion. The approaches in [17, 18] are 

also applicable to atomic, non-periodic actions only, due 

to the automatic extraction of surface-related descriptors.  

The proposed VMHI enables the representation and 

analysis of periodic motion. Moreover, it can be also used 

for detecting the fundamental period of motion by 

searching for pairs of similar slice sequences in the 

VMHI model separated by a minimum number of frames.   

IV. EXPERIMENTAL RESULTS

A. Design of the experiment 

The input data for the proposed work consists in 6 

pairs of video sequences containing normal and abnormal 

motion respectively. Each pair comprises the same 

human action. The actions of interest, selected in 

collaboration with a team of domain experts 

(physiotherapists) consist of sit-to-stand, stand-to-sit, 

reaching, picking up an object placed on the floor, 

stepping on one stair step, and transfer from one chair to 

another. Both normal motions and abnormal simulations 

were performed by a certified physiotherapist. Working 

with simulated abnormal actions was considered most 

appropriate for the goal of this study which focused on 

finding the optimal motion representation for the analysis 

of abnormal motion.  As mentioned in Section V, future 

work will focus on the analysis of the motion of frail 

elderly subjects. All sequences in our database were 

acquired with a monocular camera at 30 frames/second 

from an orthogonal view to the direction of motion. Prior 

to generating VMHI models, all sequences were 

binarized with a background subtraction method based on 

statistical foreground-background differences.    

In the context of the work presented here, abnormal 

motion is defined as a quantifiable deviation from normal 

motion. This deviation is due to several types of 

spatiotemporal motion irregularities. The sway is the 

most encountered motion irregularity and consists in 

repetitive, quick changes in motion orientation due to a 

temporary loss of balance or to insufficient strength in 

lower limbs (see Fig. 3a for an example).  Other motion 

irregularities include variations in the speed magnitude, 

temporary stops in motion, and limited range of motion. 

While the VMHI representation allows for the 

visualization and quantification of all the above 

mentioned motion irregularities, the work presented in 

this paper is focused on sway and speed analysis only. 

B. Sway analysis and visualization 

Human motion can be defined from a kinematic 

standpoint as an articulated motion, as it is composed of 

constrained relative translations/rotations of the various 

body parts. A smooth, consistent limb/torso translation or 

rotation defines a quasi-planar surface region in its VMHI 

template; the orientation of this surface region encodes 

the direction of motion. Therefore, the VMHI surface of a 

normal, temporally smooth motion is spatially smooth, 

and piecewise planar. It consists of a limited number of 

quasi-planar surface regions with orientations encoding 

the direction of motion of various body parts. The unit 

normals to the vertices in each quasiplanar region exhibit 

therefore a low variance in their orientation. 

In a motion with sway-type irregularities, the relative 

translation of body parts features frequent changes of 

speed and orientation. Consequently, its corresponding 

VMHI features an ‘unsmooth’ appearance, since the sway 

translates into spatiotemporal ‘ripples’. The normals to 

the vertices in the VMHI surface region corresponding to 

a sway have therefore a high variance in their orientation.  

The above observations resulted in choosing a 

descriptor of the VMHI surface smoothness for the 

analysis of sway irregularities. For a given activity 

performed abnormally (i.e. as abnormal activity), this 

descriptor measures its deviation from the same activity 

performed normally (i.e. the normal activity).

Let us consider the following notations: 

-  VMHIabn : the VMHI of the abnormal activity; 

-  VMHIn : the VMHI of the normal activity; 

- (nx, ny, nz): unit normal vectors defined on each 

vertex of  the VMHI surface. 

- var(nx, ny, nz)|VMHI = (var(nx), var(ny), var(nz))|VMHI : 

the statistical variance of the orientations of the normal 

vectors to a given VMHI surface. 

The deviation of an abnormal activity from its 

corresponding normal activity is measured with a 

deviation vector D, defined as follows: 

n

nabn

n

nabn

VMHIy

VMHIyVMHIy
y

VMHIx

VMHIxVMHIx
x

yx

n

nn
D

n

nn
D

DDD

var

var)var(

var

var)var(

,

            (3) 

The Dx and Dy components of the deviation vector 

quantify motion irregularities occurring along the vertical 

and horizontal directions respectively (i.e. horizontal and 

vertical sway).  

The deviation vector has only two components, since 

the variance of nz, var (nz) is significantly influenced by 

the speed of motion. The following experiment is to 

prove this affirmation. Three test sequences containing a 

60x40 pixel rectangle in horizontal translation at constant 

slow, medium and fast speed were generated. As shown 

in Table 1, the variance var (nz) of the unit normal vectors 

over the VMHI templates generated for each sequence is 

clearly correlated with the speed of motion.  

Table 1. Correlation between var (nz) and speed of translatory motion in 

three test sequences. 

Speed of motion var(nz)

2 pixels/frame 0.3775 

5 pixels/frame 0.6217 

10 pixels/frame 0.7684 
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a)

b)

c)                                             d) 

Figure 4. a) key frames in abnormal reaching; b) key frames in normal 

reaching; c) VMHI for user-selected sway region in abnormal reaching ; 

d) VMHI for normal reaching. 

a)

b)

c)                                           d) 
Figure 5. a) key frames in abnormal stepping; b) key frames in normal 

stepping; c) VMHI for user-selected region in abnormal stepping 

showing a temporary stop in motion; d) VMHI for normal stepping. 

As mentioned in section 3.2, this work does not deal 

with the automatic detection of sway-type irregularities. 

Instead, the VMHI model is adequate for interactive 

visualization, modification and analysis of sway in a user 

interface which enables the user to: 

a) rotate freely the VMHI of a given human action for 

inspection of motion irregularities; 

b) visualize simultaneously and thus compare two 

VMHIs of normal and abnormal motion respectively; 

c) generate a more precise VMHI for a spatiotemporal 

region of interest containing sway by specifying its 

temporal limits (i.e. start and end frames); 

d) compute the deviation vector D between normal and 

abnormal motion with Eq. (2) 

Figures 3, 4, 5, 6, and 7 illustrate the visualization of 

VMHI templates corresponding to normal and abnormal 

actions respectively. Sway-type motion irregularities are 

annotated in each figure.  

Table 2 contains the statistical variance of the normal 

orientations to the surfaces of the VMHI models built for 

each activity. It is easy to notice that var(nx) and var(ny)

are always higher in the abnormal activity than in the 

corresponding normal activity. This result is consistent 

with our initial assumption which correlates the 

smoothness of the VMHI surface to the motion 

coherency.   

a)

b)

c)                                           d) 
Figure 6. a) key frames in abnormal picking up; b) key frames in normal 

picking up; c) VMHI for user-selected region in abnormal picking up 

showing horizontal sway; d) VMHI model for normal picking up. 
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Table 3 uses the data in Table 2 for computing the   

[Dx, Dy] vector of deviations with Eq. (2). The largest 

deviation, Dy=76.41%, was obtained for the horizontal 

sway in the abnormal sit-to-stand. This result is consistent 

with the qualitative observation of a large-amplitude 

sway in the abnormal sit-to-stand video. The abnormal 

reaching, characterized by a subtler vertical sway, has the 

Dx deviation larger than Dy. The abnormal picking up and 

the stand-to-sit feature horizontal sway, which results in 

Dy larger than Dx.  The smallest Dx and Dy deviations are 

obtained for the abnormal stepping, which contains a 

temporary stop.  

The abnormality in the transfer motion (see Fig. 7) is 

not represented by sway; the temporal evolution of 

postures is what differentiates abnormal from normal in 

this case. Indeed, in abnormal transfer (see Fig. 7a) the 

subject assumes a much lower posture than in normal 

transfer (see Fig. 7b). The postural differences are visible 

in Fig. 7c and 7d. One may also notice that VMHI is 

suitable for analyzing human actions which involve 

rotations around the body axis, which is not feasible with 

other motion representations built from monocular 

sequences.

The above results suggest that, for temporary stops in 

motion and for motions differentiated by postural 

information, additional measures, for instance speed-

related, are necessary. The next section describes a 

simple measure for the speed of motion using VMHI. 

a)

b)

c) d)

Figure 7. a) key frames in abnormal transfer; b) key frames in normal 

transfer; c) VMHI for abnormal transfer; d) VMHI for normal transfer. 

Table 2. Statistical variance of the unit normals to VMHI surfaces 

Table 3. Deviation from the normal pattern of activity 

Reaching 48.84 36.13  Vertical sway 

Stepping 14.91 10.99  Temporary stop 

Picking up 34.07 53.62  Horizontal sway 

C. Speed analysis 

Every slice in the VMHI representation as defined by 

Eq. (1) contains quantitative information about the 

motion that occurs in the corresponding pair of adjacent 

frames. Hence, the speed of movement S is computed on 

a frame by frame basis for the entire video sequence of 

length N as follows:     

NkkVMHIcardkS ..1:,:,   (3) 

where card denotes the cardinal of the set represented 

by the binary VMHI slice. In other words, speed is 

measured as the number of pixels in motion between each 

pair of adjacent frames. This simple measure serves well 

the purpose of this study, which deals with a global 

assessment of the irregularities in motion. Future work 

will focus on assessing the relative speed of motion of 

body parts, which will allow for the characterization of 

more subtle, local irregularities.  

Activity Start- end 

frames 

var (nx) var (ny) var (nz)

Sit to stand 

abnormal 

1-84 0.3430 0.3373 0.3183 

Sit to stand 

normal 

1-56 0.2778 0.1912 0.5249 

Stand to sit 

abnormal 

1-90 0.2239 0.4583 0.3311 

Stand-to-sit 

normal 

1-60 0.2108 0.3086 0.4765 

Reaching 

abnormal 

102-173 0.4446 0.3477 0.2064 

Reaching 

normal 

33-72 0.2987 0.2554 0.4443 

Stepping 

abnormal 

1-98 0.3898 0.2099 0.3950 

Stepping 

normal 

1-30 0.3392 0.1819 0.4732 

Picking up 

abnormal 

1-200 0.4147 0.2872 0.2972 

Picking up 

normal 

1-50 0.3093 0.1866 0.4945 

Transfer 

abnormal 

1-102 0.3743 0.2225 0.3973 

Transfer 

normal 

1-65 0.3019 0.1486 0.5287 

Activity  Dx (%) Dy (%) Dominant motion 

irregularity 

Sit-to-stand 23.47 76.41  Horizontal sway 

Stand-to-sit 1.31 48.51 Horizontal sway 
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Figure 8. Speed plots for abnormal and normal activities. Red encodes 

abnormal motion, while blue encodes normal motion. Horizontal axis is 

graded in frames and shows time. Vertical axis is graded in no of pixels 

per frame and shows speed as a function of time. 

Figure 8 contains the representation of speed as a 

function of time for normal and abnormal motion over 

our database of human activities. These plots allow for 

the following qualitative observations: 

- In most activities, the speed of the normal motion is 

much higher than the speed of abnormal motion. One 

exception is abnormal sit-to-stand, where a high 
acceleration can be noticed towards the end of the 

motion. This acceleration corresponds to the subject 

ending her motion by “falling” in her chair instead of 
reclining smoothly. A similar situation is observed in 

abnormal stepping, where the subject is unable to control 

the speed of motion. 
- The pattern of accelerations and decelerations 

occurring in normal motion is quite different from the 

pattern occurring in abnormal motion. Specifically, 
abnormal motions such as stepping, transfer, reaching, 

and picking up contain hesitations, therefore they exhibit 

a lot more accelerations and decelerations than their 
normal equivalent.  

-  The only motion where the patterns of normal and 

abnormal speed are similar up to an additive constant is 
reaching. In reaching, the main abnormality is the limited 

range of motion; the subject finishes her motion once her 

maximal range of motion is reached. Hence, a postural 

analysis based on pose estimation would help towards a 

more precise quantification of abnormalities. This is one 

of our main future work directions. 

V. CONCLUSIONS

This paper proposes a new spatiotemporal template 

based on the 3D extension of the MHI concept introduced 

by Aaron and Bobick [8]. Our template handles issues 

such as motion self-occlusion, variable speed and 

sequence length in the context of human motion analysis. 

Consequently, the VMHI representation is suitable for the 

visualization and quantification of several types of 

motion irregularities. This work focuses on the analysis 

of sway and speed irregularities. Horizontal and vertical 

sways are visualized and quantified via an interactive 

user interface using the deviation vector, which is a 

measure of spatiotemporal surface smoothness. The 

experimental results show that this measure is reliable for 

quantifying the deviation of the abnormal motion from its 

corresponding normal motion.  

A simple global measure of speed allows for 

visualizing differences in speed patterns in normal and 

abnormal motion.  

Ongoing work focuses on refining our speed measure 

in order to be able to extract information about the 

relative speed of motion of various body parts. We are 

also interested in developing methods for analysis and 

quantification of other types of motion irregularities, such 

as postural changes.  

Future work will be focused on the quantitative 
performance evaluation for motions of different degrees 

of abnormality, in order to be able to correlate the 

evolution of elderly subjects over a period of time with 
customized rehabilitation programs, medication etc.  
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