
 

 

Abstract 
 

This paper proposes a novel approach for 
monitoring sleep using pressure data. The goal of sleep 
monitoring is to detect and log events of normal 
breathing, sleep apnea and body motion. The proposed 
approach is based on translating the signal data to the 
image domain by computing a sequence of inter-frame 
similarity matrices from pressure maps acquired with a 
mattress of pressure sensors. Periodicity analysis was 
performed on similarity matrices via a new algorithm 
based on segmentation of elementary patterns using 
the watershed transform, followed by aggregation of 
quasi-rectangular patterns into breathing cycles. Once 
breathing events are detected, all remaining 
elementary patterns aligned on the main diagonal are 
considered as belonging to either apnea or motion 
events. The discrimination between these two events is 
based on detecting movement times from a statistical 
analysis of pressure data. Experimental results confirm 
the validity of our approach.  
 

1. Introduction 
Sleep of poor quality is a very common condition in 

our modern society. The quality of sleep is directly 
influenced by sleep disorders such as apnea and 
restlessness, which cause sleep fragmentation [1]. 

Monitoring the quality of sleep is typically done in 
sleep clinics via Polysomnography (PSG). The high 
cost associated with PSG makes it applicable only for 
the diagnosis and monitoring of severe sleep disorders. 
The proposed research addresses the development of a 
non-intrusive technique for monitoring sleep at home 
using pressure maps. The pressure maps are acquired 
continuously during the monitored period of sleep. 
Breathing, apnea, and motion-induced events are 
analyzed using the concept of inter-frame similarity 
matrix introduced by Cutler and Davis [2]. 

From a theoretical standpoint, a major novelty in the 

proposed approach consists in the processing of non-
visual input data (pressure signals) with computer 
vision techniques. This is possible because sleep 
irregularities induce variations in the periodicity of the 
studied signals. These variations are represented as 
visual patterns in the inter-frame similarity matrix. 

The remainder of this paper is structured as follows. 
Section 2 discusses related work. Next, the proposed 
approach is presented, followed by its experimental 
validation. The last section draws conclusions. 

2. Related work 
Research in sleep monitoring technology has been 

largely focused on two main directions, namely on 
biomedical sensors, and on signal processing 
techniques for the analysis of data produced by simple 
inexpensive sensors. This section discusses related 
work on signal processing techniques, as this is the 
closest area to the proposed approach. 

Watanabe et al [3] measure heartbeat, respiration, 
snoring and body movement using a pressure sensor 
placed under the bed mattress; their approach extracts 
and analyzes vital signals in the frequency domain. 
Pressure sensors are also used by Zhu et al [4], who 
perform real-time measurements of the respiration 
rhythm and pulse rate during sleep using the a trous 
algorithm. 

The approach proposed in this paper works with 
input signals extracted from an inexpensive (under 500 
$) full body pressure sensor [5] installed under the bed 
mattress. The main difference from existing 
approaches based on periodicity analysis consists in the 
translation of a signal processing problem in the video 
analysis domain. Working with image data rather than 
1D signal data offers the advantage of processing in 
parallel all pressure signals from the individual cells of 
the sensor, therefore exploiting their correlation.  

3. Proposed Approach 
The data acquisition process is discussed in 3.1. 
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Next, the transition from signal data to image data is 
described in 3.2. This transition generates the 
interframe similarity matrix which is the primary input 
for the proposed approach. Section 3.3 describes the  
segmentation of the interframe similarity matrix into 
patterns representing breathing, motion, and apnea.  

3.1. Data acquisition 
The bed sensor that was used in this work consists of 

144 optical pressure sensors placed on a regular 3x8 
inches grid. Pressure values are digitized and sent to a 
computer via the data acquisition board that samples 
each sensor at 5.3 Hz.  

The observation at moment k is thus recorded as a 
1D array  where each xi 
represents the value at individual pressure sensor i at 
time k. The  data acquisition set-up is shown in Fig. 1.  

 
 

Figure 1. Data acquisition set-up. The video camera was 
only used for collecting ground truth data. 

3.2. Image generation from pressure signals  
Pressure signals are integrated into a sequence of 

pressure maps. Periodic pressure changes induced in 
the pressure maps by breathing are detectable using the 
inter-frame similarity matrix [2] (further referenced as 
as similarity matrix in this paper). Given a window of 
N maps, the similarity matrix is of size N x N; the pixel 
at (i,j), i=1..N, j=1..N represents the correlation 
coefficient of the maps at times i and j respectively.  

Sleep monitoring requests data acquisition for long 
continuous time intervals. Therefore, using one 
similarity matrix for the whole duration of the 
acquisition process is not computationally feasible. 
This work implements a sliding version of the 
similarity matrix. The output is therefore a sequence of 
similarity matrices computed for a sliding fixed length 
window. The window size is set to 400 samples, which 
corresponds to 75 seconds of pressure data sampled at 
5.3Hz. At each iteration, the window shifts 50 samples 
(9.5 seconds) and a new instance of the similarity 
matrix is calculated. This instance contains 9.5 seconds 
of new information appended to it, while its oldest 9.5 
seconds are shifted out. The window and shift sizes 

have been set as a trade off between the computational 
cost and the amount of information contained in each 
window. The partial overlap enables tracking events 
across adjacent instances of the similarity matrix.  

3.3. Segmentation of the similarity matrix 
To detect the patterns associated with breathing, 

apnea, and body movement, a bottom-up approach is 
proposed. Elementary patterns aligned to both sides of 
the main diagonal are detected first. Next, they are 
aggregated into event-representative patterns. 

The detection of the elementary patterns is achieved 
via the watershed transform. This transform is suitable 
because every local minimum in the proximity of the 
main diagonal corresponds to an elementary pattern of 
interest. A typical result of the watershed segmentation 
is shown in Fig. 2b.  

From the segmented image, only patterns in the 
immediate proximity of the main diagonal are of 
interest. Due to the smoothness and the temporal 
symmetry of the pressure changes induced by 
breathing, elementary patterns corresponding to 
breathing are quasi-rectangular. Each complete cycle 
of breathing contains four rectangular patterns along 
both sides of the main diagonal of the similarity 
matrix. The more profound the breathing, the larger is 
the size of its patterns. Fig. 2 c and d show a similarity 
matrix containing shallow and profound breathing, as 
well as the patterns that were extracted along the main 
diagonal and grouped into breathing cycles.  

Breathing events are detected by aggregating along 
both sides of the main diagonal the elementary patterns 
with high rectangularity. The rectangularity is 
measured via the compactness factor, defined as 

, where P is the perimeter of the elementary 

pattern and A is its area. All patterns with C less than 
the compactness factor of a square (Csquare=16) are 
aggregated into breathing cycles, which are further 
grouped into breathing-representative events. 

The remaining elementary patterns detected by the 
watershed transform along the main diagonal that do 
not satisfy the compactness criterion are considered as 
belonging to events other than breathing, namely apnea 
or body movement.  

Body movements are characterized by pressure 
values of large variability and higher amplitude than 
for apnea and breathing. Jones at al [6] showed that 
pressure values recorded for body movements fall 
outside the normal distribution of pressure values.  
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 a) b) 

 
 c) d) 

 
 e) f) 

Figure 2. a)  similarity matrix; b) result of watershed 
segmentation; c) rectangular breathing patterns overimposed 

onto the similarity matrix; d)  aggregation of patterns 
(breathing cycles are in red and green); e) example of  
breathing (in green), and movement (in red) events; f) 
example of breathing (in green), and apnea (in blue). 

 
This paper adopts a similar approach to [6] for 

detecting temporal instances where movement occurs 
(i.e. movement times). Specifically, for a sliding 
temporal window (the same as for the generation of the 
sequence of similarity matrices), the distribution of the 
measured pressure values is described by first and 
second-order statistics  i=1..144. All time 
instances k located inside the current sliding window 
are evaluated as follows: 

€
 

k =

movement  time if there  exists  l such that 
xl > µ l + 3σ l  OR xl < µ l − 3σ l for  l = k, k +1
 
non −movement                           otherwise

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

  (3)  

All detected movement times are marked in the 

sequence of similarity matrices. Elementary patterns 
containing pixels located at movement times are 
considered as belonging to a body movement event. 
Fig. 2 e shows an example of  movement detection. 

Since apnea is a temporary stop in breathing, it 
should be represented by homogeneous rectangular 
patterns aligned to the main diagonal. However, due to 
the low signal to noise ratio of the bed sensor, the 
homogeneity criterion was not accurate enough for 
detecting apnea. Therefore, apnea events are detected 
after excluding previously detected body movements 
and regular breathing events. Fig. 2f shows an example 
of apnea detection. 

The output of the proposed approach for sleep 
monitoring consists in a sleep log text file, which can 
be read using standard text viewers. This file logs all 
events of normal breathing, apnea and movement with 
their start and end times computed from their 
corresponding spatial locations in the similarity 
matrices. 

 

4. Experimental evaluation 
The experimental database contains pressure data 

collected from 10 healthy young adults in two modes, 
namely scripted and unscripted.  

The unscripted mode confirmed the feasibility of 
monitoring long periods of sleep (1 night) from a 
computational viewpoint. The total computation time 
necessary to generate the sleep log for one night was 8 
hours and 27 minutes on a 2.4 GHz PC equipped with 
2 GB of RAM and using the Matlab environment.  

The scripted mode refers to acquisitions where each 
subject was instructed to breathe normally, simulate 
apnea, and perform body motions at precise time 
intervals, according to a predefined scenario. The 
scenario was designed to contain 50 events of apnea (5 
per subject), 30 events of limb movements (3 per 
subject), and 20 events of posture changes (supine to 
lateral and back- 2 per subject). Shallow and profound 
breathing are also present in the scenario. The 
sequencing and duration of events is predefined. The 
total acquisition time per subject is 17 minutes and 20 
seconds. 

The ground truth database consists of video 
sequences captured at 30 fps showing only the 
subjects’ face. A human operator, who generates an 
output in the same format as the sleep log, segmented 
this database into breathing, motion, and apnea events.   
The performance of the proposed approach is evaluated 
in terms of precision and recall. Results are shown in 
Table 1. 
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Table 1. Precision, recall, and misclassifications for the detection of apnea and movement events 

 

 
 

Recall and precision vary widely among subjects. 
This effect is due to the limited number of events per 
subject; one single apnea event counts 20% per subject. 
The majority of misclassifications involve apnea and 
movement. Movement misclassifications as apnea 
occur mostly for limb movements. Such small 
amplitude movements are visible as distorted 
elementary patterns in the similarity matrix. These 
movements do not alter significantly the statistics of 
the pressure values, and therefore they are 
misclassified as apnea.  

One major source of error is the low signal to noise 
ratio for the bed sensor. Moreover, apnea 
misclassifications as movement occur mostly because 
of the scripted nature of the event. The study of the 
ground truth video data has proven that, in preparation 
for simulating an apnea event, some subjects took a 
deep inhalation. This sudden change in pressure 
changed the statistics of the pressure signals and 
therefore resulted in misclassifying apnea as motion.   

Considering the low spatial and temporal resolutions 
of the bed sensor, as well as its low signal to noise rate, 
the presented results are considered promising. 

5. Conclusions 
This paper proposes a novel approach for monitoring 

sleep; its goal is to detect events of normal breathing, 
apnea and body motion. The proposed approach 
translates the signal data into the image domain by 
processing a sequence of inter-frame similarity 
matrices from pressure maps acquired with the array of 
pressure sensors. The main theoretical contribution of 
this work consists in the successful application of 

computer vision techniques for processing non-visual 
data. From a practical standpoint, the proposed system 
for sleep monitoring offers a cost-efficient, portable, 
and non-intrusive solution for the home monitoring of 
the quality of sleep. Future work will focus on 
improving the signal to noise ratio and the 
spatiotemporal resolution of the input pressure signals, 
and on extensive validations performed in a clinical 
environment on extended periods of sleep. 
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