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Cross Entropy

• The cross entropy between the probability 
distributions p(X) and q(X) is defined as

  H(p,q) = H(p(X))+D(p(X)||q(X))
  H(p,q) = Ep[-log(q(X)]
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H(p, q) = −�
𝑖𝑖=1

𝑛𝑛

p 𝑦𝑦𝑖𝑖 log q(𝑦𝑦𝑖𝑖)



Linear Regression
• Training data: 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑖𝑖 = 1,2,⋯ ,𝑛𝑛
• Model: �𝑦𝑦 = 𝑤𝑤𝑤𝑤 + 𝑏𝑏
• Loss function: Mean Squared Error (MSE)

MSE =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖 2

•  Optimization function:

min
𝑤𝑤,𝑏𝑏

1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖 2

  = min
𝑤𝑤,𝑏𝑏

1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖 − 𝑤𝑤𝑥𝑥𝑖𝑖 + 𝑏𝑏 2
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ECE 515 Student Data
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Hours Studied (x) Grade (y)
10 100
3.5 72
2.5 68
4.5 78
6.5 88
1.5 55
2.8 66
3.2 71
7.5 92
5.5 83

Hours Studied (x) Grade (y)
2 65
3 70
5 80
1 50
4 75
6 85
8 95
7 90
9 98
0 45
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Grade: 50.78+5.52×(Hours Studied)
Intercept: b=50.78
Slope: w=5.52



Logistic Regression

• Important analytical tool in natural and social 
sciences

• Key supervised machine learning tool for 
classification

• The foundation of neural networks
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Binary Outcomes are Common and 
Important

• The patient survives the operation or does not
• The accused is convicted or is not
• The customer makes a purchase or does not
• The marriage lasts at least five years or does 

not
• The student passes the exam or does not
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ECE 515 Student Data
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Hours Studied (x) Passed Exam (y)
16 0
17 1
18 1
19 1
20 1
21 0
22 1
23 1
24 1
25 1
26 1
27 1
28 1
29 1
30 1

Hours Studied (x) Passed Exam (y)
1 0
2 0
3 0
4 0
5 0
6 0
7 1
8 0
9 1

10 1
11 1
12 1
13 1
14 0
15 1



Linear Regression vs. Logistic Regression
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Linear Regression Curve             Logistic Regression Curve



Logistic Regression

• Output is binary
 y=1 (pass) or y=0 (fail)
• A function is required that is restricted to [0,1]
• A common choice is the Logistic (Sigmoid) 

function 

• Can be treated as a probability
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σ 𝑧𝑧 = 1
1+𝑒𝑒−𝑧𝑧



The Logistic (Sigmoid) Function
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𝑧𝑧

σ 𝑧𝑧
σ 𝑧𝑧 =1/ 1 + 𝑒𝑒−𝑧𝑧



Logistic Function

σ 𝑧𝑧 = 1
1+𝑒𝑒−𝑧𝑧

1 − σ 𝑧𝑧 = 1 − 1
1+𝑒𝑒−𝑧𝑧

= 𝑒𝑒−𝑧𝑧

1+𝑒𝑒−𝑧𝑧
= 1

1+𝑒𝑒𝑧𝑧
= σ −𝑧𝑧

𝑑𝑑𝑑𝑑 𝑧𝑧
𝑑𝑑𝑧𝑧

= σ(𝑧𝑧)(1 − σ(𝑧𝑧))
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𝜎𝜎 𝑧𝑧

𝜕𝜕𝜕𝜕 𝑧𝑧
𝜕𝜕𝑧𝑧



Idea of Logistic Regression

• Compute 𝑧𝑧 = 𝑤𝑤𝑤𝑤 + 𝑏𝑏
• Pass it through the logistic function

�𝑦𝑦 = σ 𝑧𝑧 = σ 𝑤𝑤𝑤𝑤 + 𝑏𝑏
• Then treat it as a probability

p 𝑦𝑦 = 1|𝑥𝑥 = σ 𝑧𝑧 = 1
1+𝑒𝑒− 𝑤𝑤𝑤𝑤+𝑏𝑏

p 𝑦𝑦 = 0|𝑥𝑥 = 1 − σ 𝑧𝑧 = 1 − p 𝑦𝑦 = 1|𝑥𝑥
• Combining these gives
p 𝑦𝑦|𝑥𝑥 = p 𝑦𝑦 = 1|𝑥𝑥 𝑦𝑦× p 𝑦𝑦 = 0|𝑥𝑥 1−𝑦𝑦

             = p 𝑦𝑦 = 1|𝑥𝑥 𝑦𝑦× (1 − p 𝑦𝑦 = 1|𝑥𝑥 )1−𝑦𝑦
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Loss Function

• Given w and b, the probability of generating the training data 
is the likelihood function

𝐿𝐿 = �
𝑖𝑖=1

𝑛𝑛

𝑝𝑝( 𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖)

• We want to find the parameters w and b that maximize L

argmax
𝑤𝑤,𝑏𝑏

𝐿𝐿 = argmax
𝑤𝑤,𝑏𝑏

�
𝑖𝑖=1

𝑛𝑛

p( 𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖)

• For simplicity, the log is typically used

log𝐿𝐿 = �
𝑖𝑖=1

𝑛𝑛

log p 𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖

• This is called the log-likelihood function 14



Loss Function

• Maximizing the log-likelihood is the same as minimizing the 
negative log-likelihood

min
𝑤𝑤,𝑏𝑏

−log𝐿𝐿 = min
𝑤𝑤,𝑏𝑏

−�
𝑖𝑖=1

𝑛𝑛

log p 𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖

• Substituting the probability for logistic regression gives

−�
𝑖𝑖=1

𝑛𝑛

log p 𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖

=−�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦𝑖𝑖log p 𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖 + 1 − 𝑦𝑦𝑖𝑖 log 1 − p 𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖
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Cross Entropy

−�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦𝑖𝑖log p 𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖 + 1 − 𝑦𝑦𝑖𝑖 log 1 − p 𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖  

H(p, q) = −�
𝑖𝑖=1

𝑛𝑛

p 𝑦𝑦𝑖𝑖 log q(𝑦𝑦𝑖𝑖)

Distribution p(Y):
p 𝑦𝑦 = 1 = 𝑦𝑦

p 𝑦𝑦 = 0 = 1 − 𝑦𝑦
Distribution q(Y):
 q 𝑦𝑦 = 1 = σ(z)
 q 𝑦𝑦 = 0 = 1 − σ(z)
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Optimization Function

min
𝑤𝑤,𝑏𝑏

−�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦𝑖𝑖log p 𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖 + 1 − 𝑦𝑦𝑖𝑖 log 1 − p 𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖

• Because the loss function is convex, a simple 
optimization algorithm such as gradient 
descent can be used
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Example

• Passing ECE 515 Final Exam
• Feature: Hours of Study
• Output: pass or fail 

• p pass = 1
1+𝑒𝑒−(𝑤𝑤𝑤𝑤+𝑏𝑏)

• p fail = 1 − p pass = 1 − 1
1+𝑒𝑒− 𝑤𝑤𝑤𝑤+𝑏𝑏

• x is the number of hours studied
• w is the weight (slope)
• b is the bias (intercept)
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ECE 515 Student Data

19

Hours Studied (x) Passed Exam (y)
16 0
17 1
18 1
19 1
20 1
21 0
22 1
23 1
24 1
25 1
26 1
27 1
28 1
29 1
30 1

Hours Studied (x) Passed Exam (y)
1 0
2 0
3 0
4 0
5 0
6 0
7 1
8 0
9 1

10 1
11 1
12 1
13 1
14 0
15 1



Gradients

• The gradient of a function of many variables is a vector 
pointing in the direction of the greatest increase in a function.

• Gradient Descent: Find the gradient of the loss function at the 
current point and move in the opposite direction.

• For a scalar w
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Loss Function

21

Optimal weight w = 0.296
Optimal bias b = -2.373 

Lo
ss





Logistic Regression
• Training data: 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑖𝑖 = 1,2,⋯ ,𝑛𝑛
• Model: �𝑦𝑦 = σ 𝑧𝑧 =  σ(𝑤𝑤𝑤𝑤 + 𝑏𝑏)
• Loss function: cross entropy

−�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦𝑖𝑖log p 𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖 + 1 − 𝑦𝑦𝑖𝑖 log 1 − p 𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖

•  Optimization function:

min
𝑤𝑤,𝑏𝑏

−�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦𝑖𝑖log p 𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖 + 1 − 𝑦𝑦𝑖𝑖 log 1 − p 𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖
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Turning a Probability Into a Classifier

�𝑦𝑦 = �1 if p 𝑦𝑦 = 1 𝑥𝑥 > 0.5
0 otherwise

 0.5 is called the decision boundary
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Probabilistic Classifier

25

𝑧𝑧

σ 𝑧𝑧
σ 𝑧𝑧 =1/ 1 + 𝑒𝑒−𝑧𝑧





𝑧𝑧 = �
𝑖𝑖

𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑏𝑏

Neuron Structure

𝑧𝑧

𝑤𝑤1

𝑤𝑤𝑖𝑖

𝑤𝑤I

…

𝑥𝑥1

𝑥𝑥𝑖𝑖

𝑥𝑥I

+

𝑏𝑏

𝜎𝜎 𝑧𝑧

…

…
…

p 𝑦𝑦 = 1|𝑥𝑥

𝜎𝜎 𝑧𝑧

𝑧𝑧

𝜎𝜎 𝑧𝑧 =
1

1 + 𝑒𝑒−𝑧𝑧

Sigmoid Function



MSE Loss

• Left: linear regression MSE loss
• Right: logistic regression MSE loss
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