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• Consider a continuous RV X with probability 
density function (pdf) p(x) and support S 
(values for which p(x) > 0)

• We can use X to define a discrete RV

2



x

p(x)



x

p(x)



x
xi-1 xi

Let yi = [xi-1,xi) be a subinterval of width Δ = xi - xi-1



x
xi-1 xi

Assign to yi the probability 𝑞𝑞𝑖𝑖 = ∫𝑥𝑥𝑖𝑖−1
𝑥𝑥𝑖𝑖 p 𝑥𝑥 𝑑𝑑𝑑𝑑



• The RV XΔ whose outcomes are the yi has 
entropy

  H(XΔ) = −∑𝑖𝑖 𝑞𝑞𝑖𝑖log𝑞𝑞𝑖𝑖
• 𝑞𝑞𝑖𝑖 = ∫𝑥𝑥𝑖𝑖−1

𝑥𝑥𝑖𝑖 p 𝑥𝑥 𝑑𝑑𝑑𝑑 ≈ p �𝑥𝑥𝑖𝑖 Δ
    where �𝑥𝑥𝑖𝑖  is a point in the subinterval
 yi = [xi-1,xi)   
    and the approximation gets better as Δ gets      

smaller 
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x̄ i

qi = p(x̄ i)Δ

From the Mean Value Theorem, if p(x) is continuous we can 
always pick a value of �𝑥𝑥𝑖𝑖  such that

p �𝑥𝑥𝑖𝑖 Δ = �
𝑥𝑥𝑖𝑖−1

𝑥𝑥𝑖𝑖
p 𝑥𝑥 𝑑𝑑𝑑𝑑



H(XΔ) = −�
𝑖𝑖

𝑞𝑞𝑖𝑖log𝑞𝑞𝑖𝑖 −�
𝑖𝑖

p �𝑥𝑥𝑖𝑖 Δlog p �𝑥𝑥𝑖𝑖 Δ

Expanding the log and using

�
𝑖𝑖

p �𝑥𝑥𝑖𝑖 Δ  = �p 𝑥𝑥 𝑑𝑑𝑑𝑑 = 1

gives

H(XΔ) = −�
𝑖𝑖

p �𝑥𝑥𝑖𝑖 Δlog p �𝑥𝑥𝑖𝑖 − logΔ
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Using the Riemann approximation

�
𝑖𝑖

p �𝑥𝑥𝑖𝑖 Δ →�p 𝑥𝑥 𝑑𝑑𝑑𝑑

as Δ → 0
gives

H(XΔ) = −�p 𝑥𝑥 logp 𝑥𝑥 𝑑𝑑𝑑𝑑 − logΔ

as Δ → 0
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Differential Entropy

The differential entropy of X is defined as

h(X)≜ −�
𝑆𝑆

p 𝑥𝑥 logp 𝑥𝑥 𝑑𝑑𝑑𝑑 = E −logp 𝑥𝑥

where S is the support of X
Then H(XΔ) = h(X) − logΔ
as Δ → 0
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Uniform Distribution
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• Consider a random variable distributed uniformly
from 0 to a so that its density is 1/a from 0 to a and 0
elsewhere

• Then its differential entropy is

• Note: For a < 1, loga < 0, and the differential entropy
is negative. Hence, unlike discrete entropy,
differential entropy can be negative

h(X) = −�
0

𝑎𝑎
1
𝑎𝑎

log
1
𝑎𝑎
𝑑𝑑𝑑𝑑 = log 𝑎𝑎



Gaussian Distribution

• pdf   f(𝑥𝑥) = 1
2𝜋𝜋𝜎𝜎2

𝑒𝑒
−𝑥𝑥2

2𝜎𝜎2

• Changing the base of the logarithm gives 
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h(X) = −�f(𝑥𝑥) ln f 𝑥𝑥 𝑑𝑑𝑑𝑑 = −� f(𝑥𝑥) −
−𝑥𝑥2

2𝜎𝜎2
− ln 2𝜋𝜋𝜎𝜎2 𝑑𝑑𝑑𝑑

=
E X2

2𝜎𝜎2
+

1
2

ln 2𝜋𝜋𝜎𝜎2 =
1
2

+
1
2

ln 2𝜋𝜋𝜎𝜎2 =
1
2

ln 𝑒𝑒 +
1
2

ln 2𝜋𝜋𝜎𝜎2

= 1
2

ln 2𝜋𝜋𝜋𝜋𝜎𝜎2 nats 

h X = 1
2

log22𝜋𝜋𝜋𝜋𝜎𝜎2 bits



Joint Differential Entropy

• Consider two RVs X and Y with joint pdf p(x,y)
• The joint differential entropy is
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h(XY) = −�p(𝑥𝑥,𝑦𝑦) log p (𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑



Mutual Information
• The mutual information I(X;Y) between two random 

variables with joint density f(x,y) is defined as

• I(X;Y) ≥ 0 with equality iff X and Y are independent
• From the definition we have that
 I(X;Y) = h(X) − h(X|Y)
           = h(Y) − h(Y|X)
           = h(X) + h(Y) − h(XY)
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I(X; Y) = ∫ f(𝑥𝑥,𝑦𝑦)log f(𝑥𝑥,𝑦𝑦)
f(𝑥𝑥)f(𝑦𝑦)

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑



Relative Entropy

• The relative entropy D(p(X)||q(X)) between two 
probability densities p(X) and q(X) is defined as

• D(p(X)||q(X)) ≥ 0 with equality iff p(X) = q(X)
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D(p(X)||q(X)) = ∫ p(𝑥𝑥)log p(𝑥𝑥)
q(𝑥𝑥)

𝑑𝑑𝑑𝑑



BSC Channel Capacity

19

X Y

Z  noise

⊕

crossover probability
p = Pr(z = 1) 

0w
X Y

1w

0

1

p
p

p

p

input output

Pr( 0)x w= =
Pr( 1) 1x w w= = − =

1
2

C 1 h( )

w w

p

= =

= −



AWGN Channel Capacity
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X Y

Z  noise

input output

f(𝑧𝑧) = 1
2𝜋𝜋𝜎𝜎2

exp − 𝑧𝑧−𝜇𝜇 2

2𝜎𝜎2



AWGN Channel Capacity

 Let
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𝐶𝐶 = 𝑊𝑊 log2 1 +
𝑃𝑃

𝑁𝑁0𝑊𝑊
𝐸𝐸 = 𝑃𝑃𝑃𝑃 → 𝑃𝑃 = 𝐸𝐸𝑏𝑏𝑅𝑅𝑏𝑏
𝐶𝐶

= 𝑊𝑊 log2 1 +
𝐸𝐸𝑏𝑏𝑅𝑅𝑏𝑏
𝑁𝑁0𝑊𝑊

𝐶𝐶
𝑊𝑊

= log2 1 +
𝐸𝐸𝑏𝑏
𝑁𝑁0

𝐶𝐶
𝑊𝑊

𝐸𝐸𝑏𝑏
𝑁𝑁0

=
2𝐶𝐶/𝑊𝑊 − 1
𝐶𝐶/𝑊𝑊

𝑅𝑅𝑏𝑏 = 𝐶𝐶



Bandwidth Efficiency versus SNR
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