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Differential Entropy



* Consider a continuous RV X with probability
density function (pdf) p(x) and support S
(values for which p(x) > 0)

e \We can use X to define a discrete RV



p(x)




7T

Al



Let y. = [x,,X;) be a subinterval of width A =X, - x; ,
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Assign to y; the probability q; = fx‘_1 p(x)dx

TN

A1 N\




* The RV X2 whose outcomes are the y; has
entropy

H(X?) = —2; qilogg;
+ g = [;' p()dx ~ p(x)A
where X; is a point in the subinterval
Y = [X;.0,X))

and the approximation gets better as A gets
smaller
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From the Mean Value Theorem, if p(x) is continuous we can
always pick a value of X; such that

pe)n = | PG
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H(X2) = —z qilogq; — z p(x;)Alog p(x;)A

Expanding the log and using

D P = [pGodx =1

gives

HOX?) = = p()Alogp(E) - logA



Using the Riemann approximation

D P - [ peax

asA - 0
gives

H(X2) = —fp(x)logp(x)dx — logA

asA - 0



Differential Entropy

The differential entropy of X is defined as

h(X) £ — f p(x)logp(x)dx = E[—logp(x)]

S
where S is the support of X

Then H(X2) = h(X) — logA
asA - 0



Uniform Distribution

 Consider a random variable distributed uniformly
from O to a so that its density is 1/a from O to a and O

elsewhere
* Then its differential entropy is

a

1 1
h(X) = — | =log=dx =1
(0 = - [ log dx = loga
0
 Note: For a <1, loga <0, and the differential entropy
iIs negative. Hence, unlike discrete entropy,
differential entropy can be negative



Gaussian Distribution
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* pdf f(x)= Tw e20?

2

X
h(X) = — ff(x) Inf(x)dx = — f f(x) [—— —In+/2mo?|dx
—qu+112 2 =2 n2no? = Sine 4 in2no?
=— 7 t5ln2mo®=-+-In2no” =lne n2mo

1
= Eln 2 meo? nats

* Changing the base of the logarithm gives
h(X) = %logZZneaz bits



Joint Differential Entropy

e Consider two RVs X and Y with joint pdf p(x,y)
* The joint differential entropy is

h(XY) = — f p(x,y)logp (x,y)dxdy



Mutual Information

The mutual information I(X;Y) between two random
variables with joint density f(x,y) is defined as

f(x,
1(X;Y) = [ f(x, )log ;322 dxdy

1(X;Y) = 0 with equality iff Xand Y are independent
From the definition we have that

I(X:Y) = h(X) = h(X|Y)
= h(Y) - h(Y[X)
= h(X) + h(Y) = h(XY)



Relative Entropy

* The relative entropy D(p(X)| | (X)) between two
probability densities p(X) and q(X) is defined as

D(p(X)[a(X)) = [ p(x)log B2 dx

* D(p(X)||qg(X)) =0 with equality iff p(X) = q(X)



BSC Channel Capacity

o /Z noise
crossover probability |
p=Pr(z=1)
input output
_ 1
=W =—
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Pr(x=0)=w
Prix=1)=1-w=w C=1—h(p)




AWGN Channel Capacity

Z noise
X () y
input U output
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AWGN Channel Capacity
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Bandwidth Efficiency versus SNR
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