

# ELEC 405/511

# Error Control Coding

## Cyclic Codes

# Definition

- A code  $C$  is cyclic if
  - 1)  $C$  is a linear block code
  - 2) a cyclic shift of any codeword

$$\mathbf{c}_i = (c_0, c_1, \dots, c_{n-1})$$

is another codeword

$$\mathbf{c}_j = (c_{n-1}, c_0, c_1, \dots, c_{n-2})$$

- Examples:

$$C_1 = \{000, 111\}$$

$$C_2 = \{000, 101, 011, 110\}$$

# Another Example

- $C_3 = \{0000, 1001, 0110, 1111\}$  is not cyclic
- Interchange positions 3 and 4  
(equivalent code)
- $C_{3'} = \{0000, 1010, 0101, 1111\}$  is cyclic

- Code polynomials

$$c(x) = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1}, \quad c_i \in \text{GF}(q)$$

- $\text{GF}(q)[x]$  is the set of polynomials with coefficients from  $\text{GF}(q)$
- $\text{GF}(q)[x]$  is a commutative ring with identity (**not** a field)

- Define the ring of polynomials modulo  $f(x)$  of degree  $n$  as  $\text{GF}(q)[x]/f(x)$
- This is a finite ring
- Example: choose  $f(x)=x^2-1$  which in  $\text{GF}(2)$  is  $x^2+1$ 
  - then the ring is  $\text{GF}(2)[x]/(x^2+1)$
  - $x^2+1$  is **not** irreducible
  - elements are  $\{0, 1, x, x+1\}$

- Over any field

$$x^n - 1 = (x - 1)(x^{n-1} + x^{n-2} + \cdots + x + 1)$$

so  $x^n - 1$  is never irreducible

- Let  $R_n$  denote  $\text{GF}(q)[x]/(x^n - 1)$
- Any polynomial of degree  $\geq n$  can be reduced modulo  $x^n - 1$  to a polynomial of degree less than  $n$

$$x^n \rightarrow 1$$

$$x^{n+1} \rightarrow x$$

$$x^{n+2} \rightarrow x^2$$

# Ideals

- Let  $R$  be a ring. A nonempty subset  $I \subseteq R$  is called an **Ideal** if it satisfies the following
  - $I$  forms a group under addition
  - $a \cdot r \in I$  for all  $a \in I$  and  $r \in R$ 
    - superclosed under multiplication
- Examples
  - $\{0\}$  and  $R$  are trivial Ideals in  $R$
  - $\{0, x^4+x^3+x^2+x+1\}$  is an Ideal in  $\text{GF}(2)[x]/(x^5-1)$
  - even numbers in  $\mathbb{Z}$  (even integers)

# Ideal Example

- $\text{GF}(2)[x]/(x^3-1) = R_3$

$$0 \rightarrow 000 \quad 1 \rightarrow 100$$

$$x \rightarrow 010 \quad 1+x \rightarrow 110$$

$$x^2 \rightarrow 001 \quad 1+x^2 \rightarrow 101$$

$$x+x^2 \rightarrow 011 \quad 1+x+x^2 \rightarrow 111$$

$I = \{0, 1+x, 1+x^2, x+x^2\}$  is an Ideal in  $R_3$

$\{000, 110, 101, 011\}$  is a cyclic code

# Theorem 5-1

A code which is a vector subspace over a field  $GF(q)$  is a **cyclic code** iff it corresponds to an **ideal** in  $GF(q)[x]/(x^n-1)$  (the ring of polynomials modulo  $x^n-1$ )

# Cyclic Code Generation

- Let  $f(x)$  be any polynomial in  $R_n$ , and let  $\langle f(x) \rangle$  denote the subset of  $R_n$  consisting of all multiples of  $f(x)$  modulo  $x^n - 1$

$$\langle f(x) \rangle = \{r(x)f(x) \mid r(x) \in R_n\}$$

- $\langle f(x) \rangle$  is the cyclic code generated by  $f(x)$
- Example:  $C = \langle 1+x^2 \rangle$  in  $R_3 = \text{GF}(2)[x]/(x^3-1)$ 
  - Multiplying by all 8 elements in  $R_3$  produces only 4 distinct codewords

$$C = \{0, 1+x, 1+x^2, x+x^2\}$$

# Generator Polynomial

- Any cyclic code can be generated by a polynomial from  $R_n$
- Let  $C$  be a cyclic code in  $R_n$ . Then we have the following facts:
  1. There exists a unique monic polynomial  $g(x)$  of smallest degree in  $C$
  2.  $C = \langle g(x) \rangle$
  3.  $g(x) | x^n - 1$

$g(x)$  is called the generator polynomial of the cyclic code

# Cyclic Codes

- Any polynomial  $c(x)$  of degree less than  $n$  is in  $C$  iff  $g(x) | c(x)$
- If  $g(x)$  has degree  $n-k$ ,  $|C|=q^k$
- Every codeword has the form

$$c(x) = m(x)g(x)$$

↑      ↑      ↑

codeword      message      generator  
polynomial of      polynomial of      polynomial of  
degree  $n-1$  or      degree  $k-1$  or      degree  $n-k$   
less      less

- To determine the possible  $g(x)$ , factor  $x^n-1$
- Example:

$$x^3-1 = (x+1)(x^2+x+1) \text{ over GF}(2)$$

| Generator polynomial | Code in $R_3$              | Code in 3-tuples         |
|----------------------|----------------------------|--------------------------|
| 1                    | $R_3$                      | $V_3$                    |
| $x+1$                | $\{0, 1+x, 1+x^2, x+x^2\}$ | $\{000, 110, 101, 011\}$ |
| $x^2+x+1$            | $\{0, 1+x+x^2\}$           | $\{000, 111\}$           |
| $x^3-1$              | $\{0\}$                    | $\{000\}$                |

# Generator Matrix

- Since  $c(x) = m(x)g(x) = (m_0 + m_1x + \cdots + m_{k-1}x^{k-1})g(x)$   
 $= m_0g(x) + m_1xg(x) + \cdots + m_{k-1}x^{k-1}g(x)$

$$= [m_0 \ m_1 \ \cdots \ m_{k-1}] \begin{bmatrix} g(x) \\ xg(x) \\ \vdots \\ x^{k-1}g(x) \end{bmatrix} = \mathbf{mG}$$

$$\mathbf{G} = \begin{bmatrix} g_0 & g_1 & \cdots & g_{n-k} & \mathbf{0} \\ g_0 & g_1 & \cdots & g_{n-k} & \\ \ddots & \ddots & & \ddots & \\ g_0 & g_1 & \cdots & g_{n-k} & \\ \mathbf{0} & g_0 & g_1 & \cdots & g_{n-k} \end{bmatrix}$$

is a generator matrix  
for the cyclic code

# Generator Matrix Example

- $R_7 = \text{GF}(2)[x]/(x^7-1)$
- $x^7-1 = (1+x+x^3)(1+x^2+x^3)(1+x)$
- $g(x) = 1+x+x^3$

$$\mathbf{G} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

- $C$  is a (7,4,3) code – a binary cyclic code
- All binary cyclic codes with  $g(x)$  a **primitive polynomial** are equivalent to Hamming codes

# Wicker Example 5-1

- $g(x) = (1+x+x^3)(1+x) = 1+x^2+x^3+x^4$

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

- $C$  is a (7,3,4) binary cyclic code

# Parity Check Matrix

- The generator matrix is not in systematic form.  
How to find the parity check matrix?
- $g(x)$  is a factor of  $x^n-1$ , i.e.  $g(x)h(x) = x^n-1$
- $h(x)$  is a monic polynomial with degree  $k$ , and is the generator polynomial of a cyclic code  $C'$ , but not necessarily of the dual code of  $C$ .
- For the (7,4,3) code example  
$$h(x) = (1+x^2+x^3)(1+x) = 1+x+x^2+x^4$$

- $x^7 - 1 = (1+x+x^3)(1+x^2+x^3)(1+x)$
- $g(x) = 1+x+x^3$

$$\mathbf{G} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

- $h(x) = (1+x^2+x^3)(1+x) = 1+x+x^2+x^4$

$$\mathbf{H}' = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}$$

- $g(x)h(x) \equiv 0 \pmod{x^n-1}$  in  $R_n$  is not the same as vectors in  $V_n$  being orthogonal.

- Let  $\mathbf{H}$  be the matrix generated from

$$h^*(x) = x^k h(x^{-1}) = h_k + xh_{k-1} + \dots + x^k h_0 \quad \text{reciprocal poly. of } h(x)$$

$$\mathbf{H} = \begin{bmatrix} h_k & h_{k-1} & \cdots & h_1 & h_0 & 0 \\ h_k & h_{k-1} & \cdots & h_1 & h_0 & \\ \ddots & \ddots & & \ddots & \ddots & \\ h_k & h_{k-1} & \cdots & h_1 & h_0 & \\ 0 & h_k & h_{k-1} & \cdots & h_1 & h_0 \end{bmatrix}$$

# Parity Check Matrix $\mathbf{H}$

- $c(x)h(x) = m(x)g(x)h(x) = m(x)(x^n-1) = m(x) + x^n m(x)$
- $m(x)$  has degree  $< k$ , thus the coefficients of  $x^k$  to  $x^{n-1}$  in  $c(x)h(x)$  must be zero

$$c_0 h_k + c_1 h_{k-1} + \cdots + c_k h_0 = 0$$

$$c_1 h_k + c_2 h_{k-1} + \cdots + c_{k+1} h_0 = 0 \quad \Rightarrow \quad \mathbf{c} \mathbf{H}^T = \mathbf{0}$$
$$\vdots$$

$$c_{n-k-1} h_k + c_{n-k} h_{k-1} + \cdots + c_{n-1} h_0 = 0$$

# Hamming Code Example (Cont.)

- $h^*(x) = 1+x^2+x^3+x^4$  generates the parity check matrix of  $g(x)$  and the dual cyclic code of  $g(x)$

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

- $\mathbf{H}$  is the parity check matrix for the (7,4,3) Hamming code
- $h^*(x)=1+x^2+x^3+x^4$  is the generator polynomial for a (7,3,4) cyclic code since  $h^*(x) \mid x^7 - 1$

# Example 5.1 (Cont.)

- To construct the parity check matrix for the (7,3,4) code, use  $h(x) = 1+x^2+x^3$
- $h^*(x) = 1+x+x^3$  is the generator polynomial for a (7,4,3) code since  $h^*(x) | x^n - 1$
- $h^*(x)$  generates the parity check matrix  $\mathbf{H}$  as well as the dual cyclic code

$$\mathbf{H} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

# Binary Cyclic Codes of Length 7

- $x^7-1=(1+x+x^3)(1+x^2+x^3)(1+x)$
- $g(x) = 1+x \quad (7,6,2)$   
dual code  $h^*(x) = 1+x+x^2+x^3+x^4+x^5+x^6 \quad (7,1,7)$
- $g(x) = 1+x+x^3 \quad (7,4,3)$   
dual code  $h^*(x) = 1+x^2+x^3+x^4 \quad (7,3,4)$
- $g(x) = 1+x^2+x^3 \quad (7,4,3)$   
dual code  $h^*(x) = 1+x+x^2+x^4 \quad (7,3,4)$

# Systematic Cyclic Codes

- $\text{GF}(2)[x]/(x^7-1)$
- $x^7-1 = (1+x+x^3)(1+x^2+x^3)(1+x)$
- $g(x) = 1+x+x^3$

$$\mathbf{G} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

- $C$  is a (7,4,3) code – not in systematic form
- To transform into systematic form:
  - permute columns 1 and 4, then add rows 2 and 4 to get a new row 4

# Systematic Generator Matrix

- Permute columns 1 and 4, then add rows 2 and 4 to get a new row 4.
- The resulting generator matrix has a systematic form, but is not cyclic.

$$\mathbf{G}' = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- Check: divide the last row of  $\mathbf{G}'$  by  $g(x)$
- $c(x) = 1+x+x^2+x^6$  is not divisible by  $g(x) = 1+x+x^3$

# Systematic Generator Matrix

- We require an algebraic means of generating a systematic code while preserving divisibility by  $g(x)$ .
- Approach: divide  $x^i$  by  $g(x)$ ,  $i = n-k$  to  $n-1$   
$$x^i = g(x)q_i(x) + d_i(x) \quad d_i(x) \text{ has degree less than } n-k$$
  
rearranging  $x^i - d_i(x) = g(x)q_i(x)$  divisible by  $g(x)$
- $x^i - d_i(x)$  has only one non-zero coefficient for degrees  $n-k$  to  $n-1$
- Use  $x^i - d_i(x)$  to form **G**

$$\mathbf{G} = [\mathbf{P} \quad \mathbf{I}_k] \quad \mathbf{H} = [\mathbf{I}_{n-k} \quad -\mathbf{P}^T]$$

# Example

- $g(x) = 1+x+x^3$

| $x^i$ | $g(x)q_i(x)$                | $d_i(x)$  | $x^i + d_i(x)$ |
|-------|-----------------------------|-----------|----------------|
| $x^3$ | $(1+x+x^3) \cdot 1$         | $1+x$     | $1+x+x^3$      |
| $x^4$ | $(1+x+x^3) \cdot x$         | $x+x^2$   | $x+x^2+x^4$    |
| $x^5$ | $(1+x+x^3) \cdot (1+x^2)$   | $1+x+x^2$ | $1+x+x^2+x^5$  |
| $x^6$ | $(1+x+x^3) \cdot (1+x+x^3)$ | $1+x^2$   | $1+x^2+x^6$    |

$$\mathbf{G} = \left[ \begin{array}{ccc|cccc} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{array} \right]$$

# Systematic Encoding

- Systematic encoding is achieved by multiplying  $m(x)$  by  $x^{n-k}$  and dividing this product by  $g(x)$  to obtain  $d(x)$
- $c(x) = m(x)x^{n-k} + m(x)x^{n-k}/g(x)$
- Example (7,4,3) code

$$m(x) = x^2 + x + 1$$

$$m(x)x^{n-k} = x^5 + x^4 + x^3 \quad \text{divide by } g(x) = x^3 + x + 1 \rightarrow d(x) = x$$

$$c(x) = x^5 + x^4 + x^3 + x$$

$$c = 0101110$$



use the remainder  $d(x)$

# Implementation of Cyclic Codes

- Encoding
  - in non-systematic form:  $c(x) = m(x)g(x)$
  - in systematic form:  $c(x) = m(x)x^{n-k} + d(x)$   
 $d(x)$  is the remainder of  $m(x)x^{n-k}/g(x)$
- Thus we require circuits for multiplying and dividing polynomials
- Solution: use shift registers

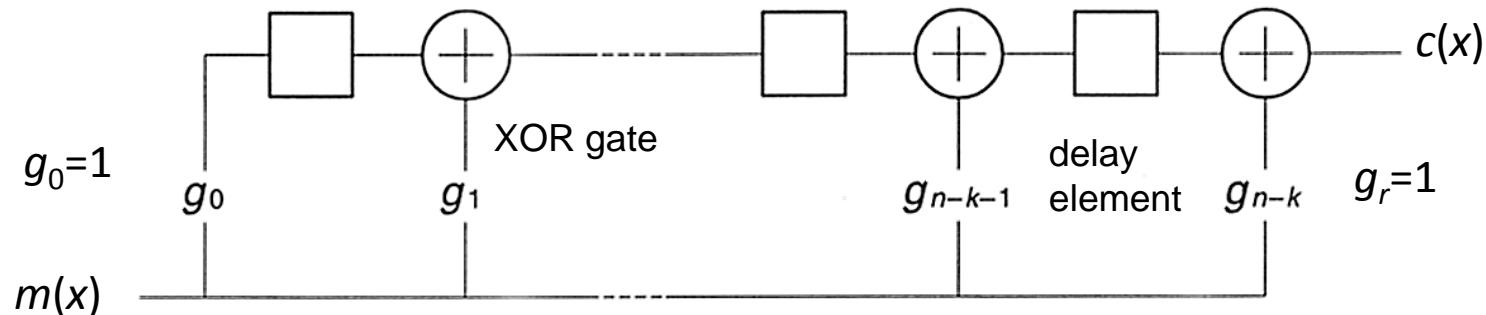
# Nonsystematic Binary Cyclic Code Encoder

- Encoding can be done by multiplying two polynomials
  - a message polynomial  $m(x)$  and the generator polynomial  $g(x)$

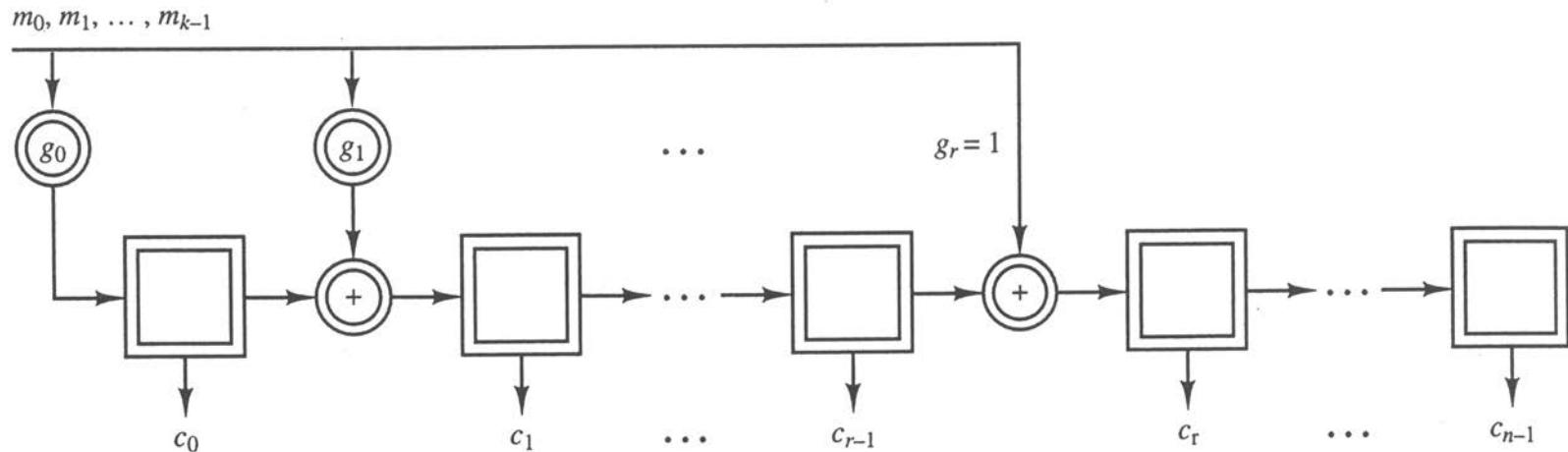
- The generator polynomial is

$$g(x) = g_0 + g_1x + \dots + g_rx^r \quad \text{of degree } r = n-k$$

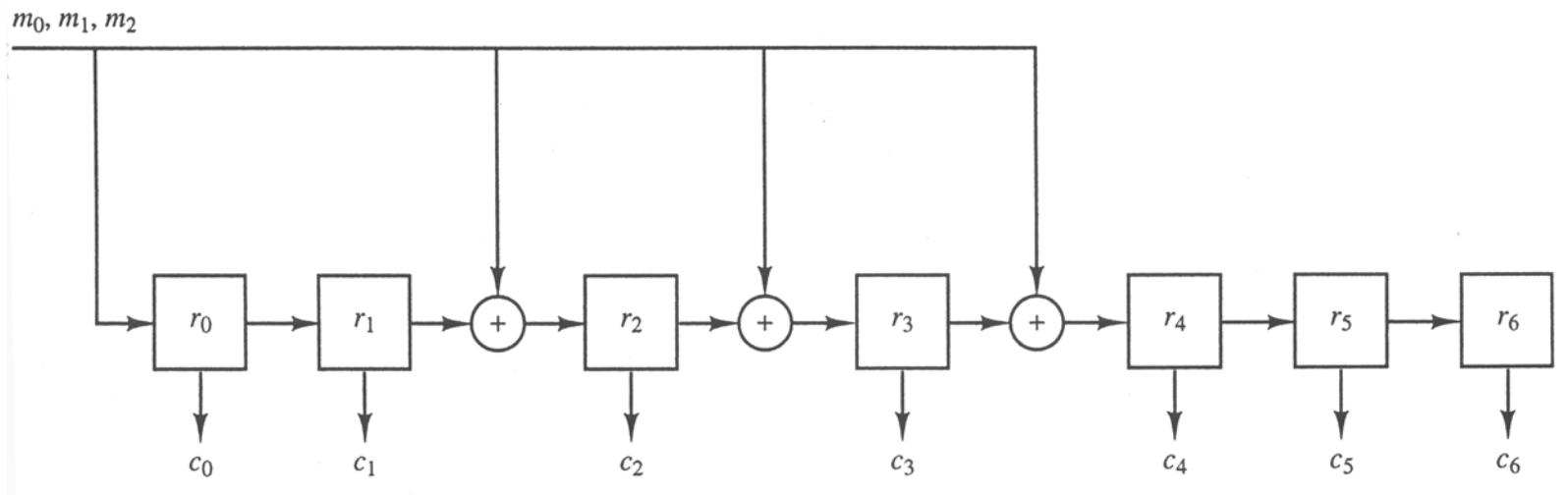
- If a message vector  $m$  is represented by a polynomial  $m(x)$  of degree  $k-1$ ,  $m(x)$  is encoded as  $c(x) = m(x)g(x)$  using the following shift register circuit



# Nonsystematic Shift Register Encoder



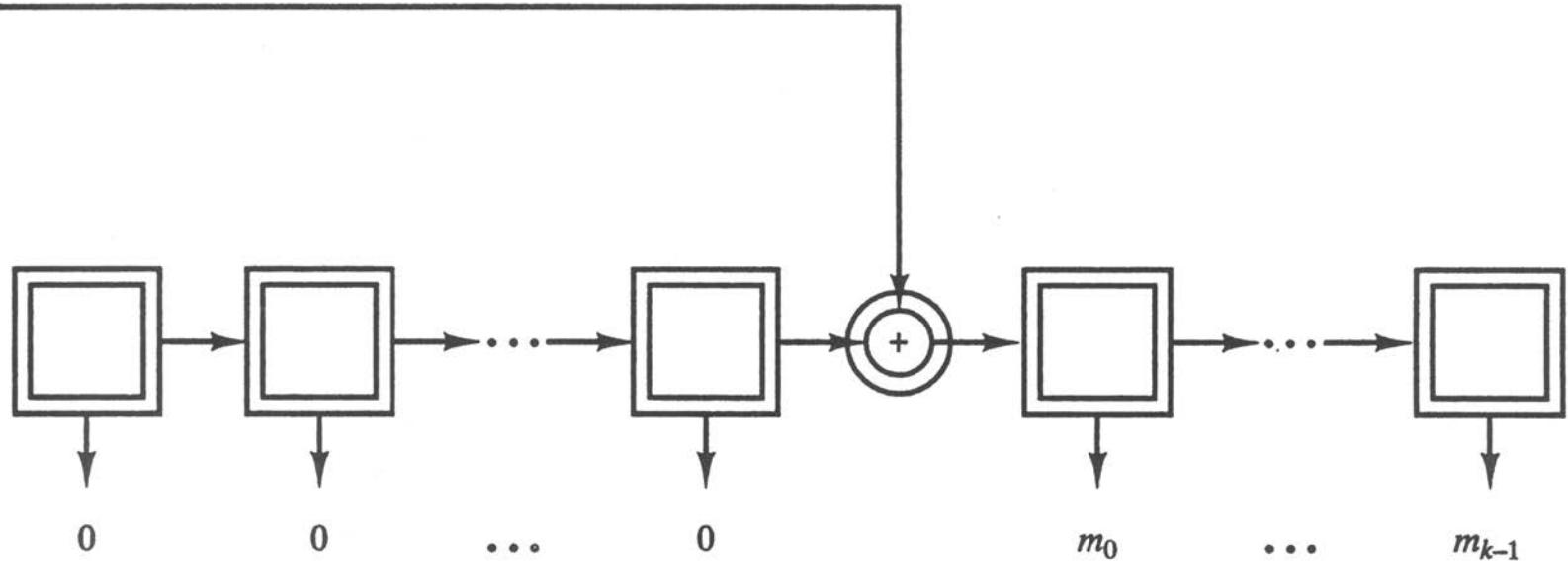
# Encoder for the (7,3) Binary Cyclic Code with $g(x) = 1+x^2+x^3+x^4$



| SR cells            | $r_0$ | $r_1$ | $r_2$ | $r_3$ | $r_4$ | $r_5$ | $r_6$ |
|---------------------|-------|-------|-------|-------|-------|-------|-------|
| Initial state       | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Input $m_2 = 1$     | 1     | 0     | 1     | 1     | 1     | 0     | 0     |
| Input $m_1 = 0$     | 0     | 1     | 0     | 1     | 1     | 1     | 0     |
| Input $m_0 = 1$     | 1     | 0     | 0     | 1     | 0     | 1     | 1     |
| Final state = $c_4$ | 1     | 0     | 0     | 1     | 0     | 1     | 1     |

**Figure 5-7.** Shift-Register Cell Contents During Encoding of  $m(x) = x^2 + 1$

$m_0, m_1, \dots, m_{k-1}$



**Figure 5-8.** Shift-Register Multiplication of  $m(x)$  by  $x^{n-k}$

# Polynomial Division

- Polynomial division is performed using a Linear Feedback Shift Register (LFSR)
- This circuit divides a polynomial  $a(x)$  by the polynomial  $g(x)$
- The result in the register is the remainder  $d(x)$
- Consider the long division

$$g_r x^r + g_{r-1} x^{r-1} + \cdots + g_1 x + g_0 \overline{)a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \cdots + a_1 x + a_0}$$

- The first term in the quotient is  $\frac{a_{n-1}}{g_r} x^{k-1}$

- The remainder after subtracting  $\frac{a_{n-1}}{g_r}x^{k-1}g(x)$  from  $a(x)$  is

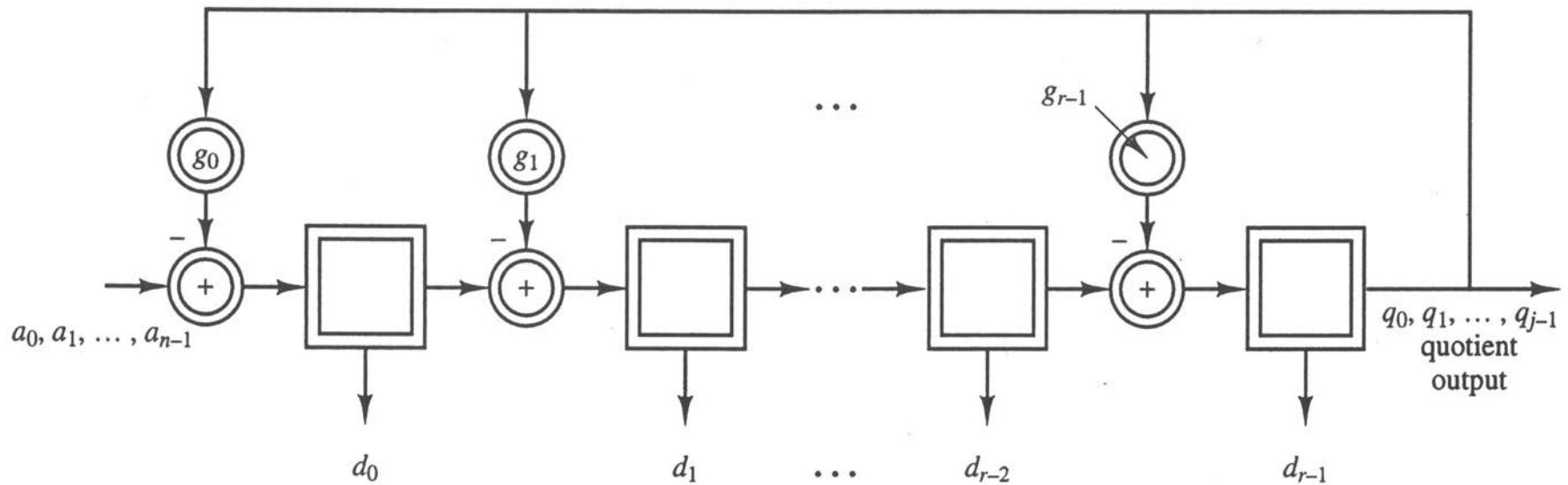
$$\left( a_{n-2} - \frac{a_{n-1}}{g_r} g_{r-1} \right) x^{n-2} + \cdots + \left( a_{k-1} - \frac{a_{n-1}}{g_r} g_0 \right) x^{k-1} + a_{k-2} x^{k-2} + \cdots + a_1 x + a_0$$

- Since  $g_r=1$  this is

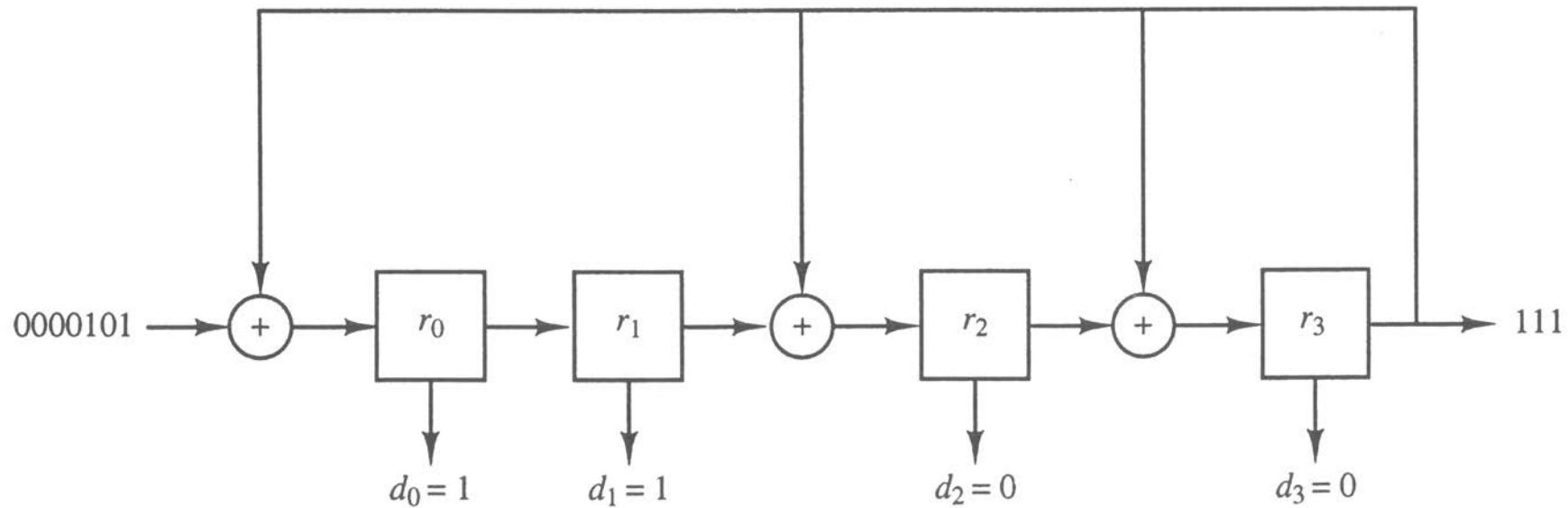
$$(a_{n-2} - a_{n-1}g_{r-1}) x^{n-2} + \cdots + (a_{k-1} - a_{n-1}g_0) x^{k-1} + a_{k-2} x^{k-2} + \cdots + a_1 x + a_0$$

- After  $n$  shifts,  $a(x)$  has been input and the remainder  $d(x)$  is located in the shift register
- For a binary generator polynomial
  - $g_0=1$

# Polynomial Division Circuit



**Figure 5-9.** Shift-Register Division of  $a(x)$  by  $g(x)$

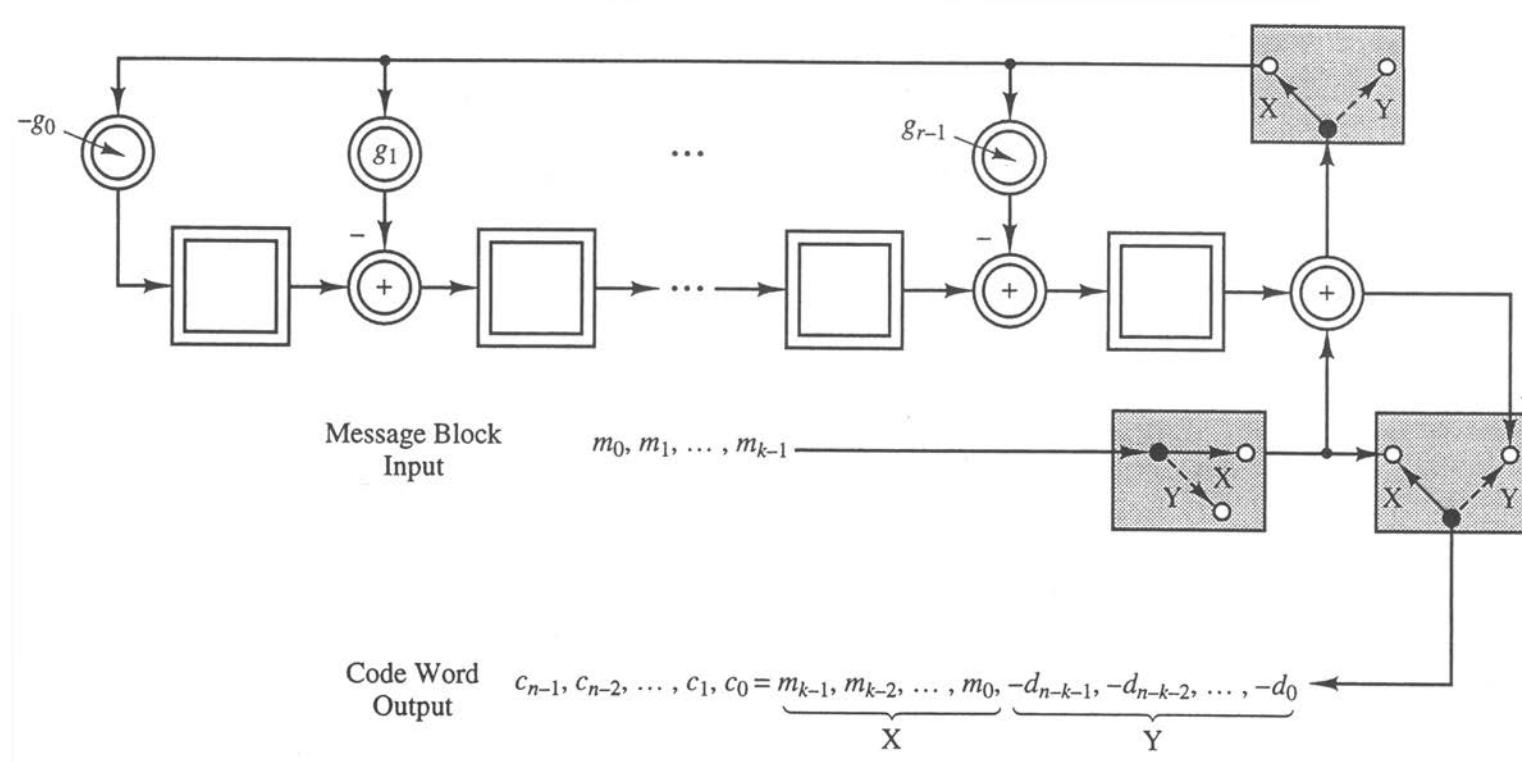


**Figure 5-10.** Shift-Register Division of  $x^6 + x^4$  by  $x^4 + x^3 + x^2 + 1$

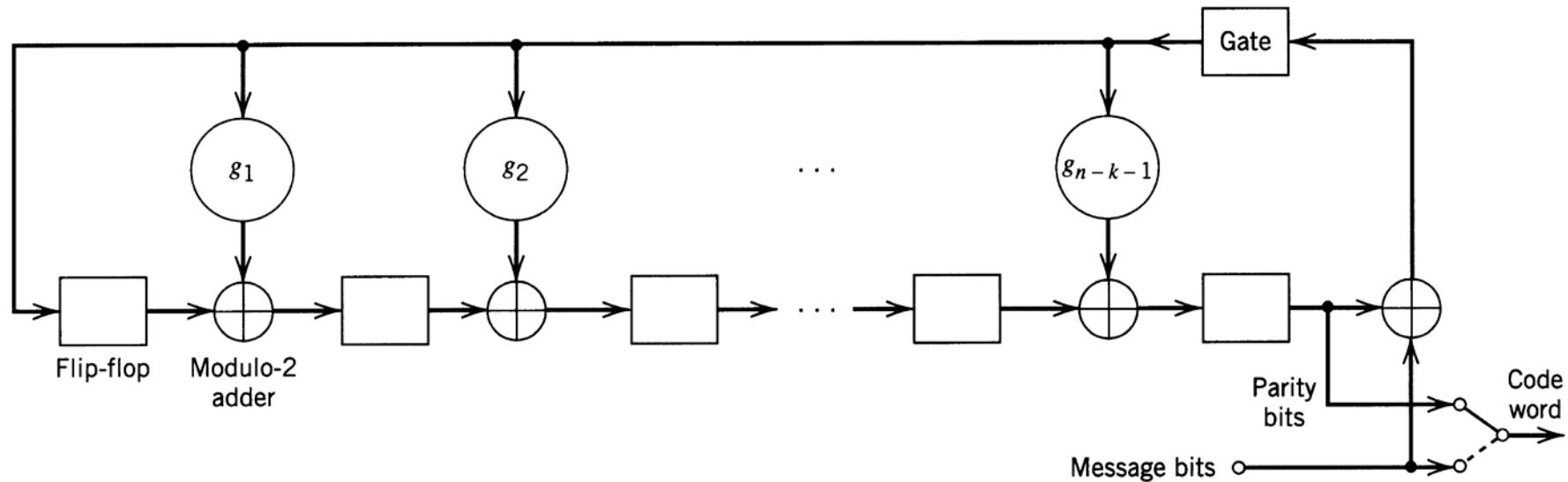
| SR cells          | $r_0$                          | $r_1$ | $r_2$ | $r_3$ |
|-------------------|--------------------------------|-------|-------|-------|
| Initial state     | 0                              | 0     | 0     | 0     |
| Input $a_6 = 1$   | 1                              | 0     | 0     | 0     |
| Input $a_5 = 0$   | 0                              | 1     | 0     | 0     |
| Input $a_4 = 1$   | 1                              | 0     | 1     | 0     |
| Input $a_3 = 0$   | 0                              | 1     | 0     | 1     |
| Input $a_2 = 0$   | 1                              | 0     | 0     | 1     |
| Input $a_1 = 0$   | 1                              | 1     | 1     | 1     |
| Input $a_0 = 0$   | 1                              | 1     | 0     | 0     |
| Final state = $r$ | 1                              | 1     | 0     | 0     |
|                   | $\Leftrightarrow d(x) = x + 1$ |       |       |       |

**Figure 5-11.** Shift-Register Cell Contents During Division of  $x^6 + x^4$  by  $x^4 + x^3 + x^2 + 1$

# Encoder for an $(n, k)$ Cyclic Code

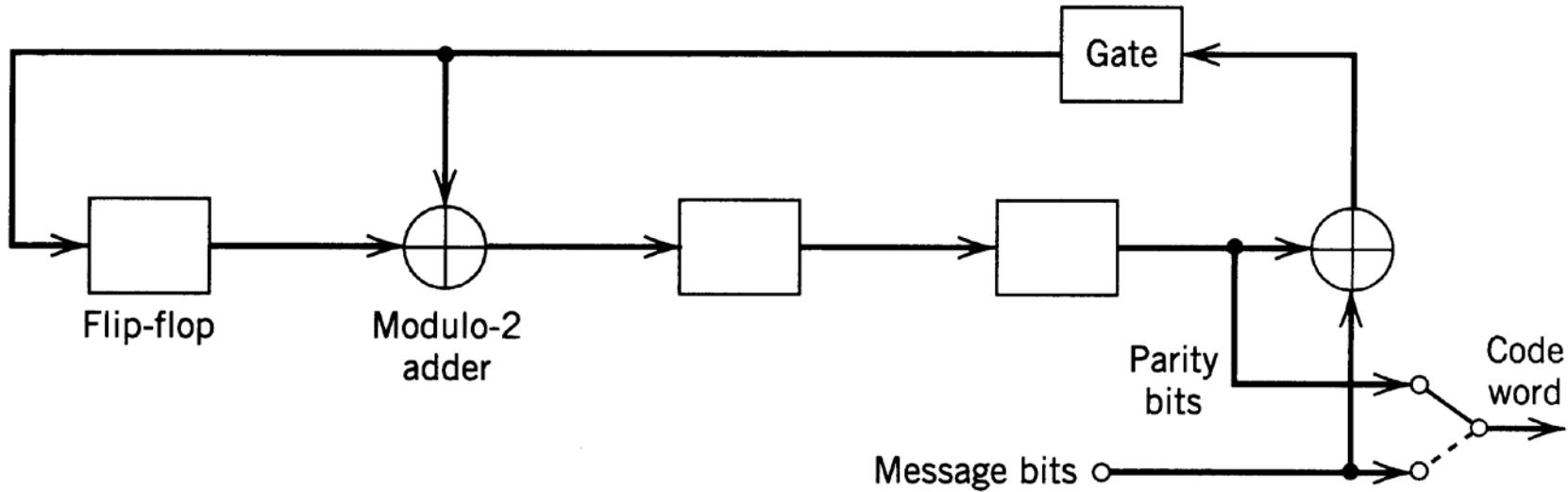


# Encoder for a Binary $(n, k)$ Cyclic Code



# Encoder for the (7,4) Cyclic Code

Generated by  $g(x) = 1+x+x^3$



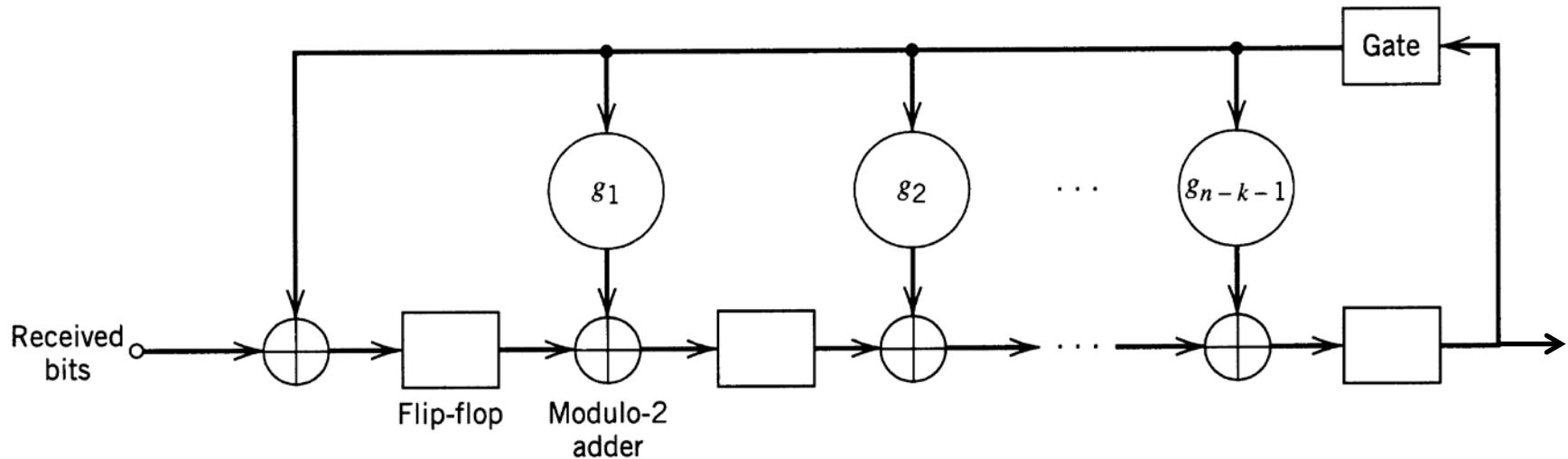
# Encoding $m(x) = 1+x^2+x^3$

| input | $r_0$ | $r_1$ | $r_2$ | output |
|-------|-------|-------|-------|--------|
| 1     | 1     | 1     | 0     | 1      |
| 1     | 1     | 0     | 1     | 1      |
| 0     | 1     | 0     | 0     | 0      |
| 1     | 1     | 0     | 0     | 1      |
| -     |       | 1     | 0     | 0      |
| -     |       |       | 1     | 0      |
| -     |       |       |       | 1      |

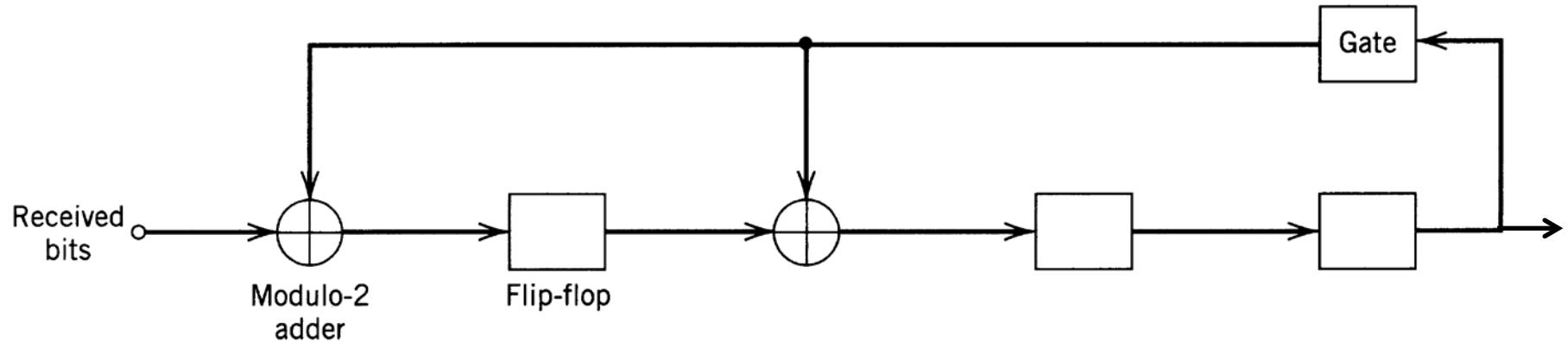
# Encoding $1+x^2$ with $g(x) = 1+x^2+x^3+x^4$

| input | $r_0$ | $r_1$ | $r_2$ | $r_3$ | output |
|-------|-------|-------|-------|-------|--------|
| 1     | 1     | 0     | 1     | 1     | 1      |
| 0     | 1     | 1     | 1     | 0     | 0      |
| 1     | 1     | 1     | 0     | 0     | 1      |
| -     |       | 1     | 1     | 0     | 0      |
| -     |       |       | 1     | 1     | 0      |
| -     |       |       |       | 1     | 1      |
| -     |       |       |       |       | 1      |

# Binary Syndrome Computation Circuit



# Syndrome Circuit for the (7,4) Cyclic Code Generated by $g(x) = 1+x+x^3$



$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

# Syndrome for $x^2+x^4+x^5$

| input | $s_0$ | $s_1$ | $s_2$ |
|-------|-------|-------|-------|
| 0     | 0     | 0     | 0     |
| 1     | 1     | 0     | 0     |
| 1     | 1     | 1     | 0     |
| 0     | 0     | 1     | 1     |
| 1     | 0     | 1     | 1     |
| 0     | 1     | 1     | 1     |
| 0     | 1     | 0     | 1     |

# Shortened Cyclic Codes

- Systematic cyclic codes can be shortened by setting the  $j$  most significant bits of the codeword (message bits) to zero
- The resulting length is only limited by the length of the original cyclic code  $n$  and the redundancy  $r=n-k$
- An  $(n,k)$  code is shortened to an  $(n-j, k-j)$  code
- Since we are using a subset of the original codewords, the error correction and detection capability is at least as good as the original cyclic code

- Shortened cyclic codes are usually not cyclic, but we can still use the same shift registers for encoding and decoding as the original cyclic codes.
- Shortened cyclic codes are often called polynomial codes
- Widely used shortened cyclic codes:
  - Cyclic Redundancy Check (CRC) codes
- CRC codes are used for error detection and as hash functions

# Cyclic Redundancy Check Codes

- A common choice for the generator polynomial is

$$g(x) = (x+1)b(x) \quad (\text{to detect all odd error patterns})$$

where  $b(x)$  is a primitive polynomial

- Example: CRC-12

$$g(x) = (x^{11}+x^2+1)(x+1)$$

This is a cyclic code of length  $n = 2^{11}-1 = 2047$  and dimension  $k = 2047-12 = 2035$

- Only 12 bits of redundancy (parity bits)

**CRC CODE****GENERATION POLYNOMIAL**

|                            |                                                                                                                                                                                                             |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CRC-4                      | $g_4(x) = x^4 + x^3 + x^2 + x + 1$                                                                                                                                                                          |
| CRC-7                      | $g_7(x) = x^7 + x^6 + x^4 + 1 = (x^4 + x^3 + 1)(x^2 + x + 1)(x + 1)$                                                                                                                                        |
| CRC-8                      | $g_8(x) = (x^5 + x^4 + x^3 + x^2 + 1)(x^2 + x + 1)(x + 1)$                                                                                                                                                  |
| CRC-12                     | $g_{12}(x) = x^{12} + x^{11} + x^3 + x^2 + x + 1 = (x^{11} + x^2 + 1)(x + 1)$                                                                                                                               |
| CRC-ANSI                   | $g_{ANSI}(x) = x^{16} + x^{15} + x^2 + 1 = (x^{15} + x + 1)(x + 1)$                                                                                                                                         |
| CRC-CCITT                  | $g_{CCITT}(x) = x^{16} + x^{12} + x^5 + 1$<br>$= (x^{15} + x^{14} + x^{13} + x^{12} + x^4 + x^3 + x^2 + x + 1)(x + 1)$                                                                                      |
| CRC-SDLC                   | $g_{SDLC}(x) = x^{16} + x^{15} + x^{13} + x^7 + x^4 + x^2 + x + 1$<br>$= (x^{14} + x^{13} + x^{12} + x^{10} + x^8 + x^6 + x^5 + x^4 + x^3 + x + 1)$<br>$\cdot (x + 1)^2$                                    |
| CRC24                      | $g_{24}(x) = x^{24} + x^{23} + x^{14} + x^{12} + x^8 + 1$<br>$= (x^{10} + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x + 1)$<br>$\cdot (x^{10} + x^9 + x^6 + x^4 + 1)(x^3 + x^2 + 1)(x + 1)$                       |
| CRC32 <sub>A</sub> [Mer]   | $x^{32} + x^{30} + x^{22} + x^{15} + x^{12} + x^{11} + x^7 + x^6 + x^5 + x$<br>$(x^{10} + x^9 + x^8 + x^6 + x^2 + x + 1)(x^{10} + x^7 + x^6 + x^3 + 1)$<br>$\cdot (x^{10} + x^8 + x^5 + x^4 + 1)(x + 1)(x)$ |
| CRC-32 <sub>B</sub> [Ga12] | $x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5$<br>$+ x^4 + x^2 + x + 1$                                                                                          |

# Long CRC Polynomials

| CRC                            | $g(x)$                                                                                                                                                                                                                                                                                  |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CRC-32 <sub>B</sub> (IEEE 802) | $x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$                                                                                                                                                                           |
| CRC-32                         | $x^{32} + x^{30} + x^{29} + x^{28} + x^{26} + x^{20} + x^{19} + x^{17} + x^{16} + x^{15} + x^{11} + x^{10} + x^7 + x^6 + x^4 + x^2 + x + 1 =$<br>$(x^{28} + x^{22} + x^{20} + x^{19} + x^{16} + x^{14} + x^{12} + x^9 + x^8 + x^6 + 1)(x + 1)$<br>$(x^3 + x^2 + 1)$                     |
| CRC-40 (GSM)                   | $x^{40} + x^{26} + x^{23} + x^{17} + x^3 + 1$                                                                                                                                                                                                                                           |
| CRC-64 (SWISS-PROT)            | $x^{64} + x^4 + x^3 + x + 1$                                                                                                                                                                                                                                                            |
| CRC-64 (improved)              | $x^{64} + x^{63} + x^{61} + x^{59} + x^{58} + x^{56} + x^{55} + x^{52} + x^{49} + x^{48} + x^{47} + x^{46} + x^{44} + x^{41} + x^{37} + x^{36} + x^{34} + x^{32} + x^{31} + x^{28} + x^{26} + x^{23} + x^{22} + x^{19} + x^{16} + x^{13} + x^{12} + x^{10} + x^8 + x^7 + x^5 + x^3 + 1$ |

- Coverage is the fraction of words that will be detected in error should the input be completely corrupted (worst case: a random sequence of symbols)

$$\lambda = \frac{q^n - q^k}{q^n} = 1 - q^{-(n-k)} = 1 - q^{-r}$$

- For example, CRC-12

$$\lambda = 1 - 2^{-12} = 0.999756$$

- The larger  $r=n-k$ , the greater the coverage

# Burst Errors

- Hardware faults and multipath fading environments cause burst errors
  - Error patterns of the form  
 $e = \dots 00001XXX\dots XXX1000\dots$
  - A burst error of length 6 is  
 $e = \dots 0001XXXX100\dots$
- CRC codes are particularly well suited for detecting burst errors

- It can be shown that a  $q$ -ary CRC code constructed from a cyclic code can detect
  - All burst error patterns of length  $n-k = r$  or less where  $r$  is the degree of  $g(x)$
  - A fraction  $1-q^{1-r}/(q-1)$  of all burst error patterns of length  $r+1$
  - A fraction  $1-q^{-r}$  of all burst error patterns of length  $b > r+1$
- Example: CRC-12 ( $q=2, r=12$ )
  - detects 99.95% of all length 13 burst errors
  - detects 99.976% of all length  $> 13$  burst errors