ELEC 405/511
Error Control Coding

Cyclic Codes



Definition

e Acode Ciscyclicif
1) Cis a linear block code
2) a cyclic shift of any codeword
¢, =(c,,¢,, "€ )
is another codeword
¢, =(¢,1,€5,Crh " sColy)
e Examples:
C, ={000, 111}
C, ={000, 101, 011, 110}



Another Example

e (,={0000,1001,0110,1111}is not cyclic

e Interchange positions 3 and 4
(equivalent code)

e (,,={0000,1010,0101,1111}is cyclic



e Code polynomials
c(x)=c,+c,x+---+c_x"", ¢ eGF(qg)

e GF(qg)[x] is the set of polynomials with
coefficients from GF(q)

e GF(qg)[x] is a commutative ring with identity
(not a field)



e Define the ring of polynomials modulo f(x) of degree
n as GF(q)[x1/f(x)
e This is a finite ring
e Example: choose f(x)=x?-1 which in GF(2) is x>+1
— then the ring is GF(2)[x]/(x?+1)
— x?+1 is not irreducible
— elements are {0, 1, x, x+1}



e QOver any field
X"=1=(x-D)x""+x""+---+x+1)
so x"-1is never irreducible
e Let R, denote GF(q)[x]/(x"-1)

e Any polynomial of degree > n can be reduced
modulo x"-1 to a polynomial of degree less than n

n

x —1
Xn+1—)X

Xn+2 N X2



|deals

Let R be a ring. A nonempty subset /R is called an
Ideal if it satisfies the following

— [ forms a group under addition

— a-rel forall ael and reRr

e superclosed under multiplication
Examples
— {0} and R are trivial Ideals in R
— {0, x*+x3+x?+x+1} is an Ideal in GF(2)[x]/(x>-1)

— even numbers in Z (even integers)



ldeal Example

o GF(2)[xI/(x*-1) = R,

0 — 000 1 — 100
X — 010 1+ x — 110

x> — 001 1+x* — 101

X+x>— 011 1+x+x*— 111

1={0,14+x,1+ x*,x+x"} isan Ideal in R,

{000, 110, 101, 011} is a cyclic code



Theorem 5-1

A code which is a vector subspace over a field
GF(qg) is a cyclic code iff it corresponds to an

ideal in GF(qg)[x]/(x"-1) (the ring of polynomials
modulo x"-1)



Cyclic Code Generation

e Let f(x) be any polynomial in R, and let < f(x) >
denote the subset of R, consisting of all multiples of
f(x) modulo x"-1

< fx)>={r(x)f(x)| r(x)eR,}
e < f(x)>isthe cyclic code generated by f(x)
e Example: C=<1+x2>in Ry;= GF(2)[x]/(x3-1)

— Multiplying by all 8 elements in R; produces only
4 distinct codewords

C={0,1+x,1+x?,x+x?%}
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Generator Polynomial

Any cyclic code can be generated by a polynomial
from R,

Let C be a cyclic code in R,. Then we have the
following facts:

1. There exists a unique monic polynomial g(x) of
smallest degree in C

2. C=<g(x)>
3. g(x)|x"-1

g(x) is called the generator polynomial of the cyclic

code
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Cyclic Codes

e Any polynomial ¢(x) of degree less than nis in Ciff
g(x)|c(x)

e |f g(x) has degree n-k, |C|=g¥

e Every codeword has the form

c(x) = m(x)g(x)

AN

codeword message generator
polynomial of polynomial of  polynomial of
degree n-1 or degree k-1 or degree n-k

less less
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e To determine the possible g(x), factor x"-1

e Example:
x3-1 = (x+1)(x?+x+1) over GF(2)

Generator | Codein R, Code in 3-tuples
polynomial

1 R, V,

x+1 {0,1+x,1+x?%,x+x?}| {000,110,101,011}
x2+x+1 {0,1+x+x?} {000,111}

x3-1 {0} {000}
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Generator Matrix

e Since  c(x)=m(x)g(x)=(m, +mx+---+m,_ x"")g(x)

=m,g(x)+mxg(x)+---+m,_ x""g(x)

 g(x)
xg(x)
:[mo ml mk—l] : :mG

x“g(x).

gO gl ) gn—k 0

gO gl gn—k
G= IS @ generator matrix
g, g, - g, for the cyclic code
_0 gO gl gn—k
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Generator Matrix Example

R, = GF(2)[x]/(x’-1)
x7-1 = (1+x+x3)(1+x%+x3) (1+x)
g(x) = 1+x+x3

1101000
0110100
=0 011010
0001101

Cisa(7,4,3) code —a binary cyclic code

All binary cyclic codes with g(x) a primitive polynomial are
equivalent to Hamming codes



Wicker Example 5-1

° g(X) - (1+X+X3)(1+X) = 1+X2+X3+X4

1 011100
G=|0 1 01110
0 01011 1

e Cisa(7,3,4) binary cyclic code
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Parity Check Matrix

The generator matrix is not in systematic form.
How to find the parity check matrix?

g(x) is a factor of x"-1, i.e. g(x)h(x) = x"-1

h(x) is a monic polynomial with degree k, and is the
generator polynomial of a cyclic code C', but not
necessarily of the dual code of C.

For the (7,4,3) code example

h(x) = (1+x%24x3)(1+x) = 1+x+x%+x*
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o x7-1 = (1+x+x3)(1+x%+x3)(1+x)
e g(x) = L+x+x3

h(x) = (1+x2+x3)(1+x) = 1+x+x%+x*

H' =

1
1
0
0

© O O -

1 1
0 1
0 0

o + = O

1
0
1
1

0
1
1

0
1
0
1

1
0
1

o » O O
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e g(x)h(x)=0 mod x"-1in R, is not the same as
vectors in V, being orthogonal.

e Let H be the matrix generated from

h*(X)=th()(1)=hk+th_1+...+thO reciprocal poly. of h(x)
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Parity Check Matrix H

e c(x)h(x) = m(x)g(x)h(x) = m(x)(x"-1) = m(x)+ x"m(x)

e m(x) has degree < k, thus the coefficients of x to x1
in c(x)h(x) must be zero

c,h +¢c,h_,+---+ch,=0

ch +ch_ +-+c,h, =0 — cH' =0

Cn—k—lhk T Cn—khk—l Tt Cn—1ho =0
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Hamming Code Example (Cont.)

e h*(x) =1+x*+x3+x* generates the parity check matrix
of g(x) and the dual cyclic code of g(x)

1
H=|0
0

o — O

1
0
1

o K
R S

0 O]
1 0
1 1

e His the parity check matrix for the (7,4,3) Hamming
code

e h*(x)=1+x*+x3+x* is the generator polynomial for a
(7,3,4) cyclic code since h*(x)| x"-1
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Example 5.1 (Cont.)

e To construct the parity check matrix for the (7,3,4)
code, use h(x) = 1+x?+x3

e h*(x) = 1+x+x3 is the generator polynomial for a
(7,4,3) code since h*(x) | x"-1

e h*(x) generates the parity check matrix H as well as
the dual cyclic code

1 1 01 00O
0110100
=10 01101 0
000110 1
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Binary Cyclic Codes of Length 7

x7-1=(1+x+x3)(1+x%+x3)(1+x)

g(x) = 1+x (7,6,2)

dual code h*(x) = 1+x+x2+x3+x*+x>+x® (7,1,7)
g(x) = 1+x+x3 (7,4,3)

dual code  h*(x) = 1+x2+x3+x* (7,3,4)
g(x) = 1+x2+x3 (7,4,3)

dual code  h*(x) = 1+x+x2+x* (7,3,4)
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Systematic Cyclic Codes

GF(2)[x]/(x’-1)
x7-1 = (1+x+x3)(1+x%+x3) (1+x)

g(x) = 1+x+x3 - -

1101000
0110100
=0 011010
0001101

Cisa(7,4,3) code — not in systematic form
To transform into systematic form:

— permute columns 1 and 4, then add rows 2 and 4 to get a
new row 4



Systematic Generator Matrix

Permute columns 1 and 4, then add rows 2 and 4 to get a new
row 4.

The resulting generator matrix has a systematic form, but is
not cyclic.

1101000
0110100
=1 010010
111000 1

Check: divide the last row of G' by g(x)
c(x) = 1+x+x%+x® is not divisible by g(x) = 1+x+x3
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Systematic Generator Matrix

We require an algebraic means of generating a
systematic code while preserving divisibility by g(x).

Approach: divide x' by g(x), i = n-k to n-1
x' = g(x)g:x)+d.(x) d(x) has degree less than n-k
rearranging x'- di(x) = g(x)g(x) divisible by g(x)

x'- d{(x) has only one non-zero coefficient for
degrees n-k to n-1

Use x'- d(x) to form G
G=[PI] H=[l_ -P']
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e g(x) = 1+x+x3

Example

X g(x)gx) d(x) X+ ()
x> (1+x+x3)-1 1+x 1+x+x3
x4 (1+x+x3)-x X+X2 X+X2+X3
x°  (1+x+x3)-(1+x2) 1+x+x2 1+x+X%+X°
x®  (14x+x3)-(1+x+x3) 1+x2 1+x2+x5
1 1 O 1 O 0 O
0110100
=1 11001 0
101000 1
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Systematic Encoding

e Systematic encoding is achieved by multiplying m(x)
by x"* and dividing this product by g(x) to obtain d(x)

e ¢(x) = m(x)x"k+ m(x)x"*/g(x)
use the remainder d(x)
e Example (7,4,3) code
m(x) = x*+x+1
m(x)x"k = x>+x*+x3 divide by g(x) = x3+x+1 — d(x) = x
c(x) = xP+x*+x3+x
c=0101110
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Implementation of Cyclic Codes

e Encoding
— in non-systematic form: c(x) = m(x)g(x)
— in systematic form: c(x) = m(x)x"*+d(x)
d(x) is the remainder of m(x)x"*/g(x)

e Thus we require circuits for multiplying and dividing
polynomials

e Solution: use shift registers
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Nonsystematic Binary Cyclic Code Encoder

e Encoding can be done by multiplying two polynomials
— a message polynomial m(x) and the generator polynomial g(x)

e The generator polynomial is

g(x) =gy +gx+..+g.x"

of degree r = n-k

e |If a message vector m is represented by a polynomial m(x) of
degree k-1, m(x) is encoded as c(x) = m(x)g(x) using the following

shift register circuit

1) 1) 1) c(x)
NUY L N
_ XOR gate del
=1 elay _
9o go g1 gn-k-1 element gGn-k g~1

m(x)
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Nonsystematic Shift Register Encoder

31



Encoder for the (7,3) Binary Cyclic
Code with g(x) = 1+x%+x3+x*

Y
\
8?:
[

32



SR cells o r rs rs rs I's Ie

Initial state 0 0 0 0 0 0 0
Input m, =1 1 0 1 1 1 0 0
Input m; =0 0 1 0 1 1 1 0
Input mp = 1 1 0 0 1 0 1 1
Final state = ¢, 1 0 0 1 0 1 1

Figure 5-7. Shift-Register Cell Contents During Encoding of m(x) = x* + 1
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mg, my,

cee s Mp_q

-

f Y

O L 0 mo
Figure 5-8. Shift-Register Multiplication of m(x) by x"~

k

}

my_q
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Polynomial Division

e Polynomial division is performed using a
Linear Feedback Shift Register (LFSR)

e This circuit divides a polynomial a(x) by the
polynomial g(x)

e The result in the register is the remainder d(x)

e Consider the long division

grxr + Q-r—liUr_l _~_ ... _~_ glx + Q(J)Gn,—lil?n_l _~_ an—an_Q _~_ ... _~_ alx _~_ ao

e The first term in the quotient is o=t k-1
gr
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e The remainder after subtracting =L, *-14)

gr

from a(x) is

Up—1 — (p—1 . .
((In_g — p gr_l) L (ak_l — p go> P a0 P a4 ag
T T

e Since g,=1 this is

n—2

) k—1 k—2 )
(an—2 — ap—1gr—1) 2" "+ -+ (Ap—1 — An—190) "~ + ap—2x” ~ + -+ a12 + ag

e After n shifts, a(x) has been input and the remainder
d(x) is located in the shift register

e For a binary generator polynomial
— gO=1
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Polynomial Division Circuit

-
q0, 915 -+ » gj-1
quotient

i J' . l output

do di e d.3 d.

Figure 5-9. Shift-Register Division of a(x) by g(x)
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0000101 —»é}——» ro

l

do=1

T

o

r

b

r3 = 111

l

d1=1

¢

dr=0

Figure 5-10. Shift-Register Division of x® + x* by x* + x> + x* + 1
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SR cells To r r rs
Initial state 0 0 0 0
Input as = 1 1 0 0 0
Input as = 0 0 1 0 0
Input a, = 1 1 0 | 0
Input a; = 0 0 1 0 1
Input a; = 0 1 0° 0 1
Input q, = 0 1 1 i 1
Input ao = 0 1 1 0 0
Final state = r 1 1 0 0 &®dx)=x+1

Figure 5-11. Shift-Register Cell Contents During Division of x®+ x* by
*+x*+x+1
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Encoder for an (n,k) Cyclic Code

-8

Message Block moy, my, ..., Mgy
Input
Code Word ¢, | Cp-2s -+ 5 €1, CQ= Mp_y, Mp_3, ... , Mo, =dp_p_1, =Ap_t2, ... , —dg
Output > Ve o < ’

X Y
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Encoder for a Binary (n,k) Cyclic Code

“
1/ \L/

Flip-flop  Modulo-2
adder
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Encoder for the (7,4) Cyclic Code
Generated by g(x) = 1+x+x3

)/L Gate | —
> > —

L/

NU
Flip-flop Mogg!o—2 Parity Code
adder
bits AN\ rord
Message bits o >0’



Encoding m(x) = 1+x2+x3

r

1 1 1 0 1
1 1 0 1 1
0 1 0 0 0
1 1 0 0 1
- 1 0 0
- 1 0

1
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Encoding 1+x? with g(x) = 1+x%2+x3+x*

input ro rs output

1 1 0 1 1 1
0 1 1 1 0 0
1 1 1 0 0 1
- 1 1 0 0
i 1 1 0
' 1 1

1
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Binary Syndrome Computation Circuit

Gate =&

Received )_\J/Lj -

bits

Flip-flop  Modulo-2
adder
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Syndrome Circuit for the (7,4) Cyclic
Code Generated by g(x) = 1+x+x3

JL Gate (€
Received }/Y\ - - >

bits 1/ NI

Modulo-2 Flip-flop
adder

1001011
H=0 1 0 1 1 1 0
0010111




Syndrome for x2+x*+x>

i)
>
o
-
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Shortened Cyclic Codes

Systematic cyclic codes can be shortened by setting
the j most significant bits of the codeword (message
bits) to zero

The resulting length is only limited by the length of
the original cyclic code n and the redundancy r=n-k

An (n,k) code is shortened to an (n-j, k-j) code

Since we are using a subset of the original
codewords, the error correction and detection
capability is at least as good as the original cyclic
code
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Shortened cyclic codes are usually not cyclic, but we
can still use the same shift registers for encoding and
decoding as the original cyclic codes.

Shortened cyclic codes are often called polynomial
codes

Widely used shortened cyclic codes:

— Cyclic Redundancy Check (CRC) codes

CRC codes are used for error detection and as hash
functions
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Cyclic Redundancy Check Codes

e A common choice for the generator polynomial is
g(x) = (x+1)b(x) (to detect all odd error patterns)
where b(x) is a primitive polynomial
e Example: CRC-12
g(x) = (x**+x2+1)(x+1)

This is a cyclic code of length n = 2%1-1 = 2047 and
dimension k=2047-12= 2035

e Only 12 bits of redundancy (parity bits)
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CRC CODE GENERATION POLYNOMIAL

CRC-4 gpu(x) =o' +2* + 2+ +1

CRC-7 QT(I):IT+$B—I—.’1}4—I—1—( + 23+ 1) (2 + x4+ 1) (r+1)
CRC-8 g)=(@ +2*+ 22+ 22+ )22+ 2+ 1)(z + 1)
CRC-12 go@) =242 342 4o+ 1= (2" + 224+ 1)(z+1)
CRC-ANSI gansi(z) =z + a5+ a2+ 1= (¥ +z+1)(z+1)

CRC-CCITT gocrrr(z) =z + 22 + 2° +1

CRC-SDLC gspre(@) =0 + 2B B " 2t 4+ 22 o+ 1
(2 +1)7
CRC24 gu@) = + 28 M 122 428 41

=@ +8+"+ab+ 2ttt 4+ 1)
(2P + 2+ 25+t + )2+ 22+ 1) (2 + 1)

CRC32 4[Mer] LR R R Ry Ly LNy o Ry Ly
(042"t a2 o+ (2 2"+ 25+ 27 4+ 1)
("2 2+t )+ 1)(2)

CRC-32p[Gal2] a2+ a8 + a8 a2 42 a2 ol 29 4 2% 427 4 2°
dot4 P+ +1



Long CRC Polynomials

CRC

g(x)

CRC-32, (IEEE
802)

X324+ X206 4 x23 4 x22 4 x16 4 512 4 511 4 510 4 48 | 7
+X+x x>+ x+1

CRC-32

+X 0+ x 74X+ x4 X2+ x+1 =
(X284+x224x204 x4+ X104 x 44 x 124 x4+ x84+ x5+ 1) (x+1)

(+x2+1)
CRC-40 (GSM) XxA0+x26 +x23+x17+x3+41]
CRC-64 (SWISS- | x®%+x*+x3+x+1

PROT)

CRC-64
(improved)

X4 X034 X014 x4 x84 xO04 x4 x50 24 x4 x84 x4

X224 Hx 04X B4 x 24 x 0B+ x 7+ +x3+1
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e Coverage is the fraction of words that will be
detected in error should the input be completely
corrupted (worst case: a random sequence of
symbols)

—(n—k)

zl—q_r

e For example, CRC-12

A=1-2"=0.999756

e The larger r=n-k, the greater the coverage
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Burst Errors

e Hardware faults and multipath fading environments
cause burst errors

— Error patterns of the form

e = ...00001XXX...XXX10000...
— A burst error of length 6 is

e =...0001XXXX100...

e CRC codes are particularly well suited for detecting
burst errors
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e |t can be shown that a g-ary CRC code constructed
from a cyclic code can detect

— All burst error patterns of length n-k =r or less
where r is the degree of g(x)

— A fraction 1-g*"/(g-1) of all burst error patterns of
length r+1

— A fraction 1-g” of all burst error patterns of length
b>r+l

e Example: CRC-12 (g=2, r=12)
— detects 99.95% of all length 13 burst errors
— detects 99.976% of all length > 13 burst errors
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