
ELEC 405/511 
Error Control Coding 

 

Cyclic Codes 



Definition  

• A code C is cyclic if 
 1) C is a linear block code 
 2) a cyclic shift of any codeword  
  
  is another codeword 
 
• Examples: 

 C1 = {000, 111} 
 C2 = {000, 101, 011, 110} 
   

0 1 1( , , , )i nc c c −=c 

1 0 1 2( , , , , )j n nc c c c− −=c 
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Another Example 

• C3 = {0000,1001,0110,1111} is not cyclic 
 

• Interchange positions 3 and 4  
  (equivalent code) 
  
• C3' = {0000,1010,0101,1111} is cyclic 

3 



• Code polynomials  
 

• GF(q)[x] is the set of polynomials with 
coefficients from GF(q) 

• GF(q)[x] is a commutative ring with identity 
(not a field) 

−
−= + + + ∈

1
0 1 1( ) ,     GF( )n

n ic x c c x c x c q
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• Define the ring of polynomials modulo f(x) of degree 
n as GF(q)[x]/f(x) 

• This is a finite ring 
• Example: choose f(x)=x2-1 which in GF(2) is x2+1 

– then the ring is GF(2)[x]/(x2+1) 
– x2+1 is not irreducible 
– elements are {0, 1, x, x+1} 
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• Over any field 
 
so  xn-1 is never irreducible 

• Let Rn denote GF(q)[x]/(xn-1) 
• Any polynomial of degree ≥ n can be reduced 

modulo xn-1 to a polynomial of degree less than n 

1 21 ( 1)( 1)n n nx x x x x− −− = − + + + +
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Ideals 

• Let R be a ring. A nonempty subset           is called an 
Ideal if it satisfies the following 
– I forms a group under addition 
–               for all           and     

• superclosed under multiplication 

• Examples 
– {0} and R are trivial Ideals in R 
– {0, x4+x3+x2+x+1} is an Ideal in GF(2)[x]/(x5-1) 
– even numbers in Z (even integers) 

 
 

I R⊆

a r I⋅ ∈ a I∈ r R∈
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Ideal Example 

• GF(2)[x]/(x3-1) = R3 
 
 
 

 

2 2

2 2

0 000 1 100
010       1 110

001       1 101

011    1 111

x x

x x

x x x x

→ →
→ + →

→ + →

+ → + + →

2 2{0,1 ,1 , }I x x x x= + + + is an Ideal in R3 

{000, 110, 101, 011}  is a cyclic code 
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Theorem 5-1 

 A code which is a vector subspace over a field 
GF(q) is a cyclic code iff it corresponds to an 
ideal in GF(q)[x]/(xn-1) (the ring of polynomials 
modulo xn-1) 
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Cyclic Code Generation  
• Let f(x) be any polynomial in Rn and let < f(x) > 

denote the subset of Rn consisting of all multiples of 
f(x) modulo xn-1 

  
• < f (x) > is the cyclic code generated by f(x) 
• Example: C = < 1+x2 > in R3 = GF(2)[x]/(x3-1)  

– Multiplying by all 8 elements in R3 produces only 
4 distinct codewords  

   C={0,1+x,1+x2,x+x2}  

( ) { ( ) ( )| ( ) }nf x r x f x r x R< >= ∈
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Generator Polynomial 
• Any cyclic code can be generated by a polynomial 

from Rn 
• Let C be a cyclic code in Rn.  Then we have the 

following facts: 
1. There exists a unique monic polynomial g(x) of 

smallest degree in C 
2. C=< g(x) > 
3.  g(x)|xn-1 

  g(x) is called the generator polynomial of the cyclic 
code 
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Cyclic Codes 

• Any polynomial c(x) of degree less than n is in C iff 
g(x)|c(x) 

• If g(x) has degree n-k, |C|=qk 
• Every codeword has the form 
   c(x) = m(x)g(x) 

codeword 
polynomial of 
degree n-1 or 
less 

message 
polynomial of 
degree k-1 or 
less 

generator 
polynomial of 
degree n-k 
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• To determine the possible g(x), factor xn-1 
• Example:  
  x3-1 = (x+1)(x2+x+1) over GF(2)  

Generator 
polynomial 

Code in R3 Code in 3-tuples 

1 R3 V3 

x+1 {0,1+x,1+x2,x+x2} {000,110,101,011} 

x2+x+1 {0,1+x+x2} {000,111} 

x3-1 {0} {000} 
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Generator Matrix 
• Since  1
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is a generator matrix 
for the cyclic code 
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Generator Matrix Example  
• R7 = GF(2)[x]/(x7-1) 
• x7-1 = (1+x+x3)(1+x2+x3)(1+x) 
• g(x) = 1+x+x3 

 
 
 
 
 
 
 

 

•  C is a (7,4,3) code – a binary cyclic code 
•  All binary cyclic codes with g(x) a primitive polynomial are 

equivalent to Hamming codes 

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

 
 
 =
 
 
 

G
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Wicker Example 5-1  
• g(x) = (1+x+x3)(1+x) = 1+x2+x3+x4 

 
 
 
 
 
 
 

 

•  C is a (7,3,4) binary cyclic code 

1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

 
 =  
  

G
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Parity Check Matrix 

• The generator matrix is not in systematic form.   
 How to find the parity check matrix?  

• g(x) is a factor of xn-1, i.e. g(x)h(x) = xn-1 
• h(x) is a monic polynomial with degree k, and is the 

generator polynomial of a cyclic code C', but not 
necessarily of the dual code of C. 

• For the (7,4,3) code example 
   h(x) = (1+x2+x3)(1+x) = 1+x+x2+x4 
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• x7-1 = (1+x+x3)(1+x2+x3)(1+x) 
• g(x) = 1+x+x3 

 
 
 
 
 
 

 
 

•  h(x) = (1+x2+x3)(1+x) = 1+x+x2+x4 
 

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

 
 
 =
 
 
 

G

1 1 1 0 1 0 0
' 0 1 1 1 0 1 0

0 0 1 1 1 0 1

 
 =  
  

H
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• g(x)h(x)=0 mod xn-1 in Rn is not the same as 
vectors in Vn being orthogonal. 

• Let H be the matrix generated from  
 h*(x)=xkh(x-1)=hk+xhk-1+…+xkh0    reciprocal poly. of h(x) 
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Parity Check Matrix H 

• c(x)h(x) = m(x)g(x)h(x) = m(x)(xn-1) = m(x)+ xnm(x) 
• m(x) has degree < k, thus the coefficients of xk to xn-1 

in c(x)h(x) must be zero 

0 1 1 0

1 2 1 1 0

1 1 1 0

0
0
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
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
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Hamming Code Example (Cont.) 
• h*(x) =1+x2+x3+x4 generates the parity check matrix 

of g(x) and the dual cyclic code of g(x) 
 
 
 
 

• H is the parity check matrix for the (7,4,3) Hamming 
code 

• h*(x)=1+x2+x3+x4 is the generator polynomial for a 
(7,3,4) cyclic code since h*(x)| xn-1 
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1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

 
 =  
  

H



Example 5.1 (Cont.)  
• To construct the parity check matrix for the (7,3,4) 

code, use h(x) = 1+x2+x3 
• h*(x) = 1+x+x3 is the generator polynomial for a 

(7,4,3) code since h*(x)|xn-1 
• h*(x) generates the parity check matrix H as well as 

the dual cyclic code 
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1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

 
 
 =
 
 
 

H
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Binary Cyclic Codes of Length 7 
• x7-1=(1+x+x3)(1+x2+x3)(1+x) 

 
• g(x) = 1+x         (7,6,2)   
  dual code h*(x) = 1+x+x2+x3+x4+x5+x6   (7,1,7)  
• g(x) = 1+x+x3   (7,4,3) 
  dual code h*(x) = 1+x2+x3+x4       (7,3,4)  
• g(x) = 1+x2+x3  (7,4,3) 
  dual code   h*(x) = 1+x+x2+x4       (7,3,4)  
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Systematic Cyclic Codes  
• GF(2)[x]/(x7-1) 
• x7-1 = (1+x+x3)(1+x2+x3)(1+x) 
• g(x) = 1+x+x3 

 
 
 
 

• C is a (7,4,3) code – not in systematic form 
• To transform into systematic form: 

– permute columns 1 and 4, then add rows 2 and 4 to get a 
new row 4 

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

 
 
 =
 
 
 

G
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Systematic Generator Matrix  
• Permute columns 1 and 4, then add rows 2 and 4 to get a new 

row 4. 
• The resulting generator matrix has a systematic form, but is 

not cyclic. 
 
 
 
 
 

• Check: divide the last row of G' by g(x) 
• c(x) = 1+x+x2+x6 is not divisible by g(x) = 1+x+x3 

1 1 0 1 0 0 0
0 1 1 0 1 0 0

'
1 0 1 0 0 1 0
1 1 1 0 0 0 1

 
 
 =
 
 
 

G
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• We require an algebraic means of generating a 
systematic code while preserving divisibility by g(x).  

• Approach: divide xi by g(x), i = n-k to n-1 
  xi = g(x)qi(x)+di(x)     di(x) has degree less than n-k 

 rearranging xi - di(x) = g(x)qi(x)      divisible by g(x) 

• xi - di(x) has only one non-zero coefficient for 
degrees n-k to n-1 

• Use xi - di(x) to form G 
   G = [P  Ik]      H = [In-k   -PT] 

Systematic Generator Matrix  
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Example 
• g(x) = 1+x+x3 

 xi  g(x)qi(x)     di(x)  xi +di(x)  
 x3 (1+x+x3)·1    1+x  1+x+x3 
     x4 (1+x+x3)·x    x+x2  x+x2+x4 
     x5 (1+x+x3)·(1+x2)      1+x+x2 1+x+x2+x5 
     x6 (1+x+x3)·(1+x+x3)   1+x2  1+x2+x6 

1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1

 
 
 =
 
 
 

G
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Systematic Encoding 

• Systematic encoding is achieved by multiplying m(x) 
by xn-k and dividing this product by g(x) to obtain d(x)  
 

• c(x) = m(x)xn-k + m(x)xn-k/g(x)   
 

• Example (7,4,3) code 
 m(x) = x2+x+1   
 m(x)xn-k = x5+x4+x3     divide by g(x) = x3+x+1 → d(x) = x 
 c(x) = x5+x4+x3+x 
 c = 0101110 
 

use the remainder d(x) 
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Implementation of Cyclic Codes 

• Encoding  
– in non-systematic form: c(x) = m(x)g(x) 
– in systematic form: c(x) = m(x)xn-k+d(x) 
   d(x) is the remainder of m(x)xn-k/g(x) 

 
• Thus we require circuits for multiplying and dividing 

polynomials 
• Solution: use shift registers 



Nonsystematic Binary Cyclic Code Encoder 
• Encoding can be done by multiplying two polynomials  

– a message polynomial m(x) and the generator polynomial g(x) 
• The generator polynomial is 
 g(x) = g0 + g1x + … + gr xr  of degree r = n-k 

 
• If a message vector m is represented by a polynomial m(x) of 
degree k-1, m(x) is encoded as c(x) = m(x)g(x) using the following 
shift register circuit 

 
»                                                                                                                             

 
        

XOR gate delay  
element 
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c(x) 

m(x) 

gr=1 g0=1 



Nonsystematic Shift Register Encoder 
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Encoder for the (7,3) Binary Cyclic 
Code with g(x) = 1+x2+x3+x4   

32 
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Polynomial Division 

• Polynomial division is performed using a 
 Linear Feedback Shift Register (LFSR) 
• This circuit divides a polynomial a(x) by the 

 polynomial g(x) 
• The result in the register is the remainder d(x) 
• Consider the long division 

 
 

• The first term in the quotient is 
35 



• The remainder after subtracting 
 from a(x) is  
 
 
• Since gr=1 this is 
 
• After n shifts, a(x) has been input and the remainder 

d(x) is located in the shift register 
• For a binary generator polynomial 

– g0=1 
36 
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Polynomial Division Circuit 
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Encoder for an (n,k) Cyclic Code 
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Encoder for a Binary (n,k) Cyclic Code 
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Encoder for the (7,4) Cyclic Code 
Generated by g(x) = 1+x+x3 
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Encoding m(x) = 1+x2+x3 

input r0 r1 r2 output 
1 1 1 0 1 
1 1 0 1 1 
0 1 0 0 0 
1 1 0 0 1 
- 1 0 0 
- 1 0 
- 1 
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Encoding 1+x2 with g(x) = 1+x2+x3+x4 

input r0 r1 r2 r3 output 
1 1 0 1 1 1 
0 1 1 1 0 0 
1 1 1 0 0 1 
- 1 1 0 0 
- 1 1 0 
- 1 1 
- 1 
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Binary Syndrome Computation Circuit 
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Syndrome Circuit for the (7,4) Cyclic 
Code Generated by g(x) = 1+x+x3 

46 

1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

 
 =  
  

H



Syndrome for x2+x4+x5 
input s0 s1 s2 

0 0 0 0 
1 1 0 0 
1 1 1 0 
0 0 1 1 
1 0 1 1 
0 1 1 1 
0 1 0 1 

47 
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Shortened Cyclic Codes  
• Systematic cyclic codes can be shortened by setting 

the j most significant bits of the codeword (message 
bits) to zero 

• The resulting length is only limited by the length of 
the original cyclic code n and the redundancy r=n-k 

• An (n,k) code is shortened to an (n-j, k-j) code 
• Since we are using a subset of the original 

codewords, the error correction and detection 
capability is at least as good as the original cyclic 
code 
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• Shortened cyclic codes are usually not cyclic, but we 
can still use the same shift registers for encoding and 
decoding as the original cyclic codes. 

• Shortened cyclic codes are often called polynomial 
codes 

• Widely used shortened cyclic codes: 
– Cyclic Redundancy Check (CRC) codes 

• CRC codes are used for error detection and as hash 
functions 
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Cyclic Redundancy Check Codes 

• A common choice for the generator polynomial is 
  g(x) = (x+1)b(x)    (to detect all odd error patterns)  

 where b(x) is a primitive polynomial 
• Example: CRC-12 
  g(x) = (x11+x2+1)(x+1) 
 This is a cyclic code of length n = 211-1 = 2047 and 

dimension k = 2047-12= 2035 
• Only 12 bits of redundancy (parity bits) 
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CRC g(x) 

CRC-32B (IEEE 
802) 

x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 

+ x5 + x4 + x2 + x + 1 
CRC-32 x32+x30+x29+x28+x26+x20+x19+x17+x16+x15+x11 

+x10+x7+x6+x4+x2+x+1 = 
(x28+x22+x20+x19+x16+x14+x12+x9+x8+x6+1)(x+1) 
(x3+x2+1) 

CRC-40 (GSM) x40+x26 +x23+x17+x3+1 

CRC-64 (SWISS-
PROT) 

x64+x4+x3+x+1 

CRC-64 
(improved) 

x64+x63+x61+x59+x58+x56+x55+x52+x49+x48+x47 

+x46+x44+x41+x37+x36+x34+x32+x31+x28+x26+x23 

+x22+x19+x16+x13+x12+x10+x8+x7+x5+x3+1  

Long CRC Polynomials 

52 
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• Coverage is the fraction of words that will be 
detected in error should the input be completely 
corrupted (worst case: a random sequence of 
symbols) 
 
 

• For example, CRC-12 
 

• The larger r=n-k, the greater the coverage 
 

( )1 1
n k

n k r
n

q q q q
q

λ − − −−
= = − = −

121 2 0.999756λ −= − =
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Burst Errors 

• Hardware faults and multipath fading environments 
cause burst errors 
– Error patterns of the form 
 e = …00001XXX…XXX10000… 
– A burst error of length 6 is 
 e = …0001XXXX100… 

• CRC codes are particularly well suited for detecting 
burst errors 
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• It can be shown that a q-ary CRC code constructed 
from a cyclic code can detect 
– All burst error patterns of length n-k = r or less 

where r is the degree of g(x) 
– A fraction 1-q1-r/(q-1) of all burst error patterns of 

length r+1 
– A fraction 1-q-r of all burst error patterns of length 

b > r+1 
• Example: CRC-12 (q=2, r=12) 

– detects 99.95% of all length 13 burst errors 
– detects 99.976% of all length > 13 burst errors 
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