ECE 515
Information Theory

Joint Entropy, Equivocation and Mutual
Information



Entropy

H(X) = — zp(%) logy, p(4)




Joint Entropy
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Conditional Entropy

H(X]Y) =

N M

T Y p(zi, y]) logbp(%‘yj)
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Chain Rule

H(XY)=H(X)+ H(Y|X)
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Example

* X,Y,Z binary RVs
-x,=0,x,=1,y,=0,y,=1,2,=0,2,=1

* Four equally likely vectors (probability of each %)
[x,y,z] = [0,0,0]

0,1,0]

1,0,0]

1,0,1]

e Find H(XYZ) using

H(XYZ) = H(X) + H(Y|X) + H(Z|XY)




Example

2
H(X) = — Z p(x;)log, p(x;)

H(le) — zzp(xUYJ)lng p()’]lx)
2

2
H(Z|XY) = — Z Z Z p(xi, 5, i )logz p(zk|x1, y; )

2
=1 j=1k=1




Example

p(x;) = plx,) =%
H(X) = - Y2log,"s - Y2log,” = 1 bit

p(x.,y)) p(y;1x)

p(0,0) =7 p(0[0) =7
p(1,1)=0 p(1|1) =0
p(0,1) =7 p(1[0) =%
p(1,0) = % p(0|1) =1

H(Y | X) = - Jalog,%: - Yalog,% - Y:log,1
= %log,2 = % bit



Example

p(Xilylek) p(zklleyj)

p(0,0,0) =% p(0]0,0)=1
p(0,1,0) =% p(0]0,1)=1
p(1,0,0) =% p(0]1,0) =%
p(1,0,1) =% p(1]1,0) =%

H(Z|XY) = - Jalog,1 - Ylog,1 - Yalog, % - Yalog, Vs
=%log,2 =% bit



Example

H(XYZ) = H(X) + H(Y|X) + H(Z| XY)
H(X) = 1 bit

H(Y | X) = % bit

H(Z | XY) = % bit
H(XYZ) =1+ % + % = 2 bits

p(y1) =% p(yz) =7
H(Y) = - %alog,% - Ylog,% = .811 bit > H(Y|X)



Information Channels

An information channel is described by an

Input random variable X

Output random variable Y

Set of conditional probabilities p(y;|x))

Channel

—>




Binary Symmetric Channel

Transition probabilities
1-p

X4 V1

Received
signals

Transmitted
signals

X, 1)

X Y



Binary Symmetric Channel

Transition probabilities

1-p

X1 0 0 V1

Received
signals

Transmitted
signals

Xy 1Y

pY|X(O|1)=pY|x(1|O)=p |:p(y1|X1) p(yzlxl):|:|:1_p p :|
leX(OlO) - pY|X(1|1) =1-p Py, %) ply, [x,) p 1-p



* The probabilities p(y;|x;,) are called the
forward transition probabilities

e Using Bayes’ Theorem
ply; [ x;)p(x;)
ply;)

* The probabilities p(x;|y;) are called the
backward transition probabilities

p(x; ly;)=



Non-symmetric Binary Channel

2
3

X1

Hlw
o

X

Bl

ply, |x,) ply, le)}
ply, [ x,) ply,|x,)

channel matrix {




Backward Transition Probabilities

20
{p(xllyl) p(leyl)}:{pxw(OIO) va(llo):| 21 21

plx; [y,) PO [y,) 10 9
19 19

Puv(011) Py (111)

H(X|y=0) = - p(1|0)log,p(1]0) - p(0|0)log,p(0|0)
- (1/21)log,(1/21) - (20/21)log,(20/21)
209 +.067 = .276 bit

H(X|y=1) =- p(1]1)log,p(1]1) - p(0]1)log,p(0]1)
- (9/19)l0g,(9/19) - (10/19)log,(10/19)

511 +.487 = .998 bit

H(X]Y) = p(y=0) H(X|y=0) + p(y=0) H(X|y=0)
= (21/40)%(.276) + (19/40)x(.998) = .619 bit



Conditional Entropy

H(XY) = H(X) + H(Y | X)

H(XY) = H(Y) + H(X]Y)

f X and Y are statistically independent
— H(X) = H(X]Y)

— H(Y) = H(Y|X)

— H(XY) = H(X) + H(Y)

In general

— H(XY) < H(X) + H(Y)

— H(X) = H(X|Y)

— H(Y) = H(Y|X)




Two Questions

* Given two random variables X and Y
— How much information does Y give about X?

— How much information does X give about Y?



Mutual Information

x, —>| Channel — y.




Mutual Information

Hxivy;) = I(xg) — I(wily;)
I(l'?:;”yj) — —108;510(513@')— [—logbp(%\yj)]




Iyj;zi) = 1(y;) — I(yj]@)
I(y;;2:) = —log,p(y;) — [—logy, p(yjlzi)]

- plyjles)
I(y;; ;) = logy,
7 p(y;)

I(ziyy) = 1(y;; x0)




Average Mutual Information

N M

_ Z Zp(:(;@, yi) I(zi;y;)

i=1 j=1

N M

pla;|1
Zzp vi.y;) log, (wily;)

i p(w;)




Average Mutual Information

I[(X;Y)

I(X;Y)

N

P\ L5 |Y;
P(Cl%'ayj)logb ( ’J)
i=1 j=1 p(ajz)

N M

—> > plxi, y;) log, p(w;)

i=1 j=1

N M

+5°5N play, y;) logy plasly;)

i=1 j=1

H(X) - H(X]Y)
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H(X|Y) I I(X;Y)

26



Four Vectors Example

e [0,0,0], [0,1,0], [1,0,0], [1,0,1] (equiprobable)

* p(y=0)=.75, p(y=1) =.25 - H(Y) =.811 bit

o |(X;Y)=H(Y) - H(Y|X)

=.811-.500 =.311 bit

* p(x=0) = p(x=1) =.50 - H(X) =1 bit

o |(X;Y)=H(X)-H(X]Y)

=1.0-.689 =.311 bit

o H(XY) = H(X) + H(Y|X) = H(Y) + H(X|Y) = 1.5 bits



Non-symmetric Binary Channel

2
3

X1

Hlw
o

X

Bl

ply, |x,) ply, le)}
ply, [ x,) ply,|x,)

channel matrix {




Non-symmetric Channel Example

(X;Y) =.192 bit
H(X) =.811 bit
* H(X]Y) = H(X) - I(X;Y) =.619 bit

H(Y) =.998 bit
o H(Y|X) = H(Y) - I(X;Y) = .806 bit

o« H(XY) = H(X) + H(Y|X)
= H(Y) + H(X|Y) = 1.617 bits



Mutual Information for the BSC

crossover probability p

p=1-p

\ 4

BSC

v
<<

X Y
channel matrix

p
B 0 > 0
{p p} p p(x =0)=w
p p B P px=1)=1-w=w
w 1 1

1(X;Y) = H(Y) - H(Y|X)
1(X;Y) = H(X) - H(X]Y)




Mutual Information for the BSC

H(Y|X)

I(X:Y)

_ZZP ;. y;) log p(y,|x;)
- Z ZP )p(yilei) log p(y;|v:)
- Z p(x:) > plyjle:) log p(y;|a;)

j
—Zp ) plogp+plogp|

[pl()ngrph)gp}
H(Y)—-HYI|X)

H(Y)+[plogp+7plogp|
H(Y') = h(p)

31



Binary Entropy Function

h(p) = - plog,p - (1-p)log,(1-p)

I E
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ply=1) = wp+wp

H(Y) —[ (wp + wp) log(wp + wp) + (wp + wp) log(wp + Wp) |
= h(wp+ wp)

[(X;Y) = h(wp+wp) — h(p)

For w =1/2

[(X;Y) = h[1)2(p) +1/2(1 —p)|] — h(p)
= h(1/2) = h(p)
= L —="(p)

Forw=0or1

[(X:Y) = hip)—h(p)
— 0

33



Mutual information 7(X:Y)

1 —Ah(p)

N =

Probability of a **0"" at input, w



Entropy function
1.0 -11.0

H(Y) = h(wp + wp)’




Conditional Mutual Information

x. —> Channel J
| —_— Z
Kk
p(x;) p(x;|z,)

p(x;| yj,zk)



Conditional Mutual Information

I ylan) = Laila) — Iailyg )

p(xi|y;, 21)
p(xi|2k)

I(zi; yj]2) = log,




Conditional Mutual Information

I[(X;Y]|Z)

ARELANC p(ily;, 2)
SOSTS T (@i y5, 2) logy
=1 7=1 k=1

p(xs|2k)

N L
I(X,YlZ) — Sj JSjp(xiyyjazk)logbp(xi|yjazk)
=1 k=1

M
S
—1 j=1 k=
L
2
k=1

— > > p(wi, 2) logy plai|zk)
i=1 k=

I[(X;Y|Z)=H(X|Z) - H(X|YZ)



Conditional Mutual Information

[(X;Y|Z)=H(X|Z)- HX|YZ)

H(X|Z): average uncertainty remaining in X after the observation in Z
H(X|Y Z): average uncertainty remaining in X after the observation in both Z and Y

I(X;Y|Z): average amount of uncertainty in X resolved by the observation in Y



H (XY)

H(X|Y) H(Y|X)

1(X;Y) = I(Y;X)
1(X;Y) >0 (ng)
1(X;Y) < min[H(X),H(Y)]

1(X;Y) = H(X) — H(X]|Y)

1(X;Y) = H(Y) — H(Y | X)

40



Conditional Mutual Information

1(X;Y|2Z) = 1(Y:X|2)

1(X;Y|Z) 2 0

1(X;Y|Z) < min[H(X|Z),H(Y|2)]
1(X;Y|Z) = H(X|Z) = H(X|YZ)
1(X;Y|Z) = H(Y|Z) = H(Y|X2)




Joint Mutual Information

(X:YZ) = 1(X:Y) + 1(X:Z]Y)
1(X;YZ) = I(X;Z) + 1(X;Y]|Z)



Joint Mutual Information

Example: Broadcast Network
Y
* Source X
* ReceiversY,Z
* Transmissions can be X
encrypted or unencrypted
 Separate encryption for Y and Z Z

1(X;Y) information received at Y (encrypted and unencrypted)
1(X;Z|Y) information received just at Z (encrypted)

1(X;Z) information received at Z (encrypted and unencrypted)
1(X;Y|Z) information received just at Y (encrypted)

1(X;YZ) = 1(X;Y) + 1(X;Z]Y) = 1(X;Z) + |(X;Y|Z)



Joint Mutual Information

1(X;YZ)
= |(X;Y) information received at Y (encrypted and unencrypted) B
+ 1(X;Z]Y) information received just at Z (encrypted) []

44



Mutual Information

 For two random variables

1(X;Y) = H(X) = H(X

Y)

H(Y) = H(Y|X)

e For three random varia

1(X;Y;Z) =

(X;Y) = I(X;Y
(X;Z) — I(X;Z

Y)

(Y;2) = 1(Y;Z|X)



Joint Mutual Information

Example: Broadcast Network
Y
* Source X
* ReceiversY,Z
* Transmissions can be X
encrypted or unencrypted
Z

1(X;YZ)

= (X;Z|Y) information received just at Z (encrypted)

+ 1(X;Y|Z) information received just at Y (encrypted)

+ 1(X;Y;Z) information received at both Y and Z (unencrypted)



Joint Mutual Information

1(X;YZ)

= |(X;Z|Y) information received just at Z (encrypted) []

+ 1(X;Y|Z) information received just at Y (encrypted) [

+ 1(X;Y;Z) information received at both Y and Z (unencrypted)[]



Two Random Variables X and Y

1(X;Y) = H(X) + H(Y) = H(XY)

48



Three Random Variables X, Y and Z

H(YZ)



Three Random Variables X, Y and Z

\

>H(XYZ)

S

1(X;Y;Z) = H(X) + H(Y) + H(Z) = H(XY) = H(XZ) = H(YZ) + H(XYZ)

50



Three Random Variables X, Y, and Z

\

> H(XYZ)

A
H(XYZ) = H(X|YZ) + H(Y|XZ) + H(Z|XY) + 1(X;Y]Z) + 1(X;Z]Y) + 1(Y:Z|X) + 1(X;Y;Z)

51



H(XYZ) H(XYZ)

4 N\ g “\
(a) ()
() (d)
52




XOR Gate

Z, =X, Dy,

X VA
Y zk:{o X =Y

1 X, #Yy,

p(x;) = p(y;) =0.5
X and Y are statistically
independent

= = O O | X
= O = 0OIXx
O L = O|N

1(X;Y;Z) = 1(X;Y) = (X;Y]|Z)



Probabilities for Three RVs

vi yyoa | Py k) plalyy, z) pledze)  plesy;) pla)
0 0 0 1/4 1 1/2 /4 1/2
0 0 1 0 0 1/2 /4 1/2
0 1 0 0 0 1/2 /4 1/2
0 1 1 1/4 1 1/2 /4 1/2
1 0 0 0 0 1/2 /4 1/2
10 1 1/4 1 1/2 /4 1/2
1 1 0 1/4 1 1/2 /4 1/2
11 1 0 0 1/2 /4 1/2




XOR Gate

1(X;Y;Z) = 1(X;Y) = (X;Y]|Z)

X and Y are independent so I(X;Y) =0
1(X;Y|Z) = 1 bit

1(X;Y;Z) =0—1=-1 bit

1(X;Y;Z) is called the Interaction Information



XOR Gate




(X:Y:2)

X —rain
Y —dark
/ — cloudy
Which is larger?
I(rain;dark) or I(rain;dark|cloudy)

Since cloudy partly accounts for the correlation
between rain and dark, it can be argued that

I(rain;dark) or I(rain;dark|cloudy)



Additivity of Mutual Information

X —> Channel > Y,




Additivity of Mutual Information

(6Y,Y,..Yy) = 10GY,) + 10GY, [ Y,) + 1(X;Y5]Y,Y,)
F o+ 10GY YY)

(X;Y,Y,...Yy) < H(X)

All terms on the RHS >0



Binary Symmetric Channel

X —> BSC

crossover probability p

p=1-p

X Transition probabilities Y
1 =
0 i 0
—> Y
Transmitted Received
signals signals

1 1

channel matrix

;s



Mutual Information for N=1

1 1
~ 1 —hip)
<
~ 1 1
S 2[ 12
©
£
L
R =
©
£
= 0 L
0 1 1
2

Probability of a “‘0"" at input, w



Additivity of Mutual Information

X BSC




Probabilities for a Repetitive BSC

vi vy 2 | plr) plas,yy, 2k) p(Y;, zk)

0 0 0| 1/2 1/200°) 1/20*+7%)
0 0 1| 1/2 1/2(p) pp

0 1 0| 1/2 120D PP

0 1 1| 1/2 172007 1/2(p*+7?)
10 0 1/2 1/20% 1/20*+7)
10 1|1/2  1/2(pp) PP
11 0| 1/2 1/2(p) PP
11 1|12 1200 1202 +77)




Additivity of Mutual Information

I(X:Y) = 1—hp)

I(X:YZ) = B+ [l/z( P )]

p*+ 7’



1.0

0.8

o o
£ (o))

o
N

Mutual information

Asymptote

] | 1

Probability of error p

0.2 04 0.6 0.8 1.0

0.8

0.6

0.4

0.2



Cascaded Channels

Channel 1

\ 4

Channel 2

Channel N




Cascaded Channels

The RVs from Xto Y form a
Markov chain

so the conditional distributions of the channel
outputs depend only on the immediate inputs
and are conditionally independent of the
previous RVs




Two Cascaded Channels

T 1 :J_ y 1
— > —
T channel 1 ~k y channel 2 Yi
: {p(zp|xi)} : {p(y)lzx)} ;

TN A Ynr
— - -

p(y;1x.2,) = ply;1 2,)
p(x, |zk1yj) = p(x]z)




Two Cascaded Channels

[Cover and Thomas p. 34]

Three random variables X)Y,Z form a Markov

chain, denoted by X > Z Y, if their joint
probability

p(x,Y,2) = p(x;)p(z | X)py; [ X2, )
can be factored as

p(Xilyjlzk) = p(x,-)p(zklx,-)p(yjlzk)



Two Cascaded Channels

e If X,Y,Z form a Markov chain, then
1(X;Y) < I(X;Z)

* To prove this, note that I(X;Y|Z) =0 and
1(X;YZ) = 1(X;Z) + 1(X;Y]|Z) = I(X;Y) + I(X;Z]Y)
so that
1(X;Z) = 1(X;Y) + 1(X;Z]Y)
or
1(X;Y) = 1(X;Z) - I(X;Z]Y)



Two Cascaded Channels

¢ 1(X;Y]|Z)=0

o 1(X;Y) < I(X;2)

H(X) = H(X|Y) < H(X) = H(X|Z)
H(X|Y) = H(X|Z)

* I(Y;X) £ I(Y;2)

H(Y) — H(Y|X) < H(Y) — H(Y|Z2)
H(Y|X) 2 H(Y|2)



 I(X;Y]|Z)=0
e I(X;Z]Y)=0
 I(X;Y;2)=0

Two Cascaded Channels

o 1(X:Y) = 1(X:Y]Z) + 1(X:Y:2) = 1(X:Y:2)

o (X;Z) =1(X;Z]Y)+ I(X;Y;Z) = I(X;Y)



Two Cascaded Channels
H(X]Y) [ H(X|Zz)

Y X

H(X|Y) > H(X]Z2)



Data Processing Inequality

 The mutual information between the input and
output can never exceed the mutual information
between the input and an intermediate point

1(X;Y) < 1(X;2)

 The mutual information between the output and
input can never exceed the mutual information
between the output and an intermediate point

(Y:X) < 1(Y;2)

* Data processing cannot increase the amount of
information



Cascaded BSCs

X —{ BSC1

\ 4

BSC channel matrix

|

Ep}
p p

BSC 2

BSC N




Cascaded BSCs p=.01

Number of Equivalent Crossover 1(X;Y)
Channels N Probability

2 .0198 .860

4 .0388 .763

.0915 .559

w =
I o




Mutual information |(X:Y)

1.0 1.0

0.8 \ / 0.8

0.6 N=1 10.6

N=2

0 4 = \/_ N=3 = 0.4

0.2} -10.2
0 I ) | 0
0 0.2 0.4 0.6 0.8 1.0

Single channel error probability p



A Mathematical Theory of
Communications, BSTJ July, 1948

"The fundamental problem of communication is
that of reproducing at one point exactly or
approximately a message selected at another
point. ... If the channel is noisy it is not in general
possible to reconstruct the original message or
the transmitted signal with certainty by any
operation on the received signal.”



A Mathematical Theory of
Communications, BSTJ July, 1948

WE FI A e, A s B B IR

e e
e B P T

Communication is a basic problem in accurate
reproduction of a point or another point about
the selected message. If the channel is the noise
is generally possible to reconstruct the original
message, or to determine the transmitted signal
from the received signal to any operation.



A Mathematical Theory of
Communications, BSTJ July, 1948
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Networking is a fundamental problem in the
exact reproduction of one point or another
about the selected message. If the channel noise
is generally possible to reconstruct the original
message, or to determine the transmitted signal
from the received signal to any process.



A Mathematical Theory of
Communications, BSTJ July, 1948

Networking ist ein grundsatzliches Problem in der exakten
Wiedergabe der einen oder anderen Punkt Gber die
ausgewahlte Nachricht. Wenn der Kanal Rauschen ist in
der Regel moglich, die urspriingliche Nachricht zu
rekonstruieren, um die Ubertragenen Signals aus dem
empfangenen Signal flr jeden Prozess zu bestimmen.

Networking is a fundamental problem in the exact
reproduction of one point or another over the selected
message. If the channel noise is normally possible to
reconstruct the original message in order to determine
the transmitted signal from the received signal for each
process.



A Mathematical Theory of
Communications, BSTJ July, 1948
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Networking at one point or another of the selected
message is a fundamental problem in accurate
reproduction. Channel noise for each process receives
the signal from the transmit signal to determine the
message again to organize normally possible.




Entropy

* Let X be a random variable with probability
distribution

p(X) = {p(x;)}
* H(X) = E_ [-log(p(X)]

H(X) = — zp(%’) logy, p(4)




Relative Entropy

e Let X be a random variable with two different
probability distributions

p(X) = {p(x;)}
a(X) ={alx;)}
 Example: two dice
p(X) ={1/6, 1/6, 1/6, 1/6, 1/6, 1/6}  (fair)
q(X) = {.40, .12, .12, .12, .12, .12} (loaded)



Relative Entropy

* The relative entropy between two probability

distributions p(X) and g(X) is defined as the

expectation of the logarithm of the ratio of
the distributions

Dp(X)| [a(X)] = E [log(p(X)/a(X))]



Relative Entropy

N

Dp(X)lg(X)] =3 plas) log, [

1=1

p(fb‘i)

q(;)

|




Relative Entropy

* The relative entropy is a measure of how
different the probability distributions
p(X) and q(X) are.

* Thus, the relative entropy is a distance
measure.



Divergence Inequality

D[p(X)||a(X)] =0

with equality iff p(X)=q(X)



Relative Entropy

Information

> X
Source

* |f nothing is known about the source, the best
approximation is a uniform distribution

a(x;) =1/N
* |n this case

D[p(X)| [a(X)] = log,N - H(p(X))



Example 1: Four Symbol Source

Information
—>

Source

° p(Xl) =1/2 p(Xz) =1/4 p(X3) = p(X4) =1/8
* q(x;) = alx,) = alxs) = alx,) = 1/4 (equiprobable)

* H(p(X)) =1.75 bits

* H(q(X)) = log,N = 2.00 bits

* D[p(X)][a(X)] = log,N - H(p(X)) = 0.25 bit



Example 2: Two Symbol Source

° p(X1) = p(Xz) = 1/2
* q(x,) =1/4 q(x,) =3/4

.208 bit
.188 bit

* D[p(X)[a(X)
* Dla(X)[1p(X)




D[p(X) | |a(X)] versus D[q(X) ]| | p(X)]

* p(Xi) =1/N

* qlxy) =€ a(x,) = (1-€)/(N-1) i#1
e as -0

Dlp(X)| [a(X)] = oo

D[a(X)| | p(X)] = log(N/(N-1))



D[p(X) | |a(X)] versus D[q(X) ]| | p(X)]

* ForN=10 0<€¢<0.1

D[p(X)| |a(X)] D[a(X)] | p(X)]



D[p(X) | |a(X)] versus D[q(X) ]| | p(X)]

e ForN=10 0<¢<0.1

DIp(X)| |a(X)] - DIa(X) | [ p(X)]
* Note that the difference is small except for €
closeto O



D[p(X) | |a(X)] versus D[q(X) ]| | p(X)]

e Fore=0.01N=3to 20

D[p(X)[ a(X)] Dla(X)[ | p(X)]
* These results show that Relative Entropy is a
convex function



Similar Measures

e Kullback and Leibler defined the divergence as

DIp(X)[ |a(X)] + D[a(X)] [ p(X)]
to make it symmetric

* the Jensen-Shannon divergence is
1/2xD[p(X) | Im(X)] + 1/2xD[q(X)| [ m(X)]
where
m(X) = 1/2x[p(X)+q(X)]



Cross Entropy

* The cross entropy between the probability
distributions p(X) and q(X) is defined as

H(p,q) = H(p(X))+D(p(X)| | a(X))
H(p,q) = E,[-log(q(X)]

H(p,q) ZP‘ ) log q(;)



Example 3: Four Symbol Source

° p(Xl) = 1/2 p(Xz) = 1/4 p(X3) = p(X4) = 1/8
° Q(Xl) = 1/2 Q(Xz) = Q(X3) = Q(X4) = 1/6

* H(p(X)) =1.75 bits
 D[p(X)]||q(X)] = 0.0425 bit
* H(p,q) =1.7925 bits



Minimum Cross Entropy

Since

D(p(X)||a(X)) =0
and

H(p,a) = H(p(X))+D(p(X)| |a(X))
it must be that

H(p,q) = H(p(X))
and

H(p,q) = H(p(X)) when q(X) = p(X)



Cross-Entropy and Iterative Decoding

Michael Moher, Member, IEEE. and
T. Aaron Gulliver, Senior Member, IEEE

Abstract—1In this correspondence, the relationship between iterative
decoding and techniques for minimizing cross-entropy is explained. It is
shown that minimum cross-entropy (MCE) decoding is an optimal lossless
decoding algorithm but its complexity limits its practical implementation.
Use of a maximum a posteriori (MAP) symbol estimation algorithm
instead of the true MCE algorithm provides practical algorithms that
are identical to those proposed in the literature. In particular, turbo
decoding is shown to be equivalent to an optimal algorithm for iteratively
minimizing cross-entropy under an implicit independence assumption.
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Cross Entropy Minimization for Efficient
Estimation of SRAM Failure Rate

Mohammed Abdul Shahid
Electrical Engineering Department,
University of California, Los Angeles. CA 90095, USA
Email: amohammed @ucla.edu

Abstract—As the semiconductor technology scales down to
45nm and below, process variations have a profound effect on
SRAM cells and an urgent need is to develop fast statistical
tools which can accurately estimate the extremely small failure
probability of SRAM cells. In this paper, we adopt the Impor-
tance Sampling (IS) based information theory inspired Minimum
Cross Entropy method, to propose a general technique to quickly
evaluate the failure probability of SRAM cells. In particular, we
first mathematically formulate the failure of SRAM cells such
that the concept of 'Cross Entropy Distance’ can be leveraged,
and the distance between the ideal distribution for 1S and the
practical distribution for IS (which is vsed for generating samples),
is well-defined. This cross entropy distance is now minimized
resulting in a simple analytical solution to obtain the opfimal
practical distribution for 1S, thereby expediting the convergence
of estimation. The experimental results of a commercial 45nm
SRAM cell demonstrate that for the same accuracy, the proposed
method yields computational savings on the order of 17~50X over
the existing state-of-the-art techniques.

tation of MC requires a prohibitive amount of time (100’s of
millions, or billions of samples in order to produce a handful
of failures) to obtain accurate information. The accuracy of
the analytical models and their ability to exactly capture the
circuit behaviour is also a matter of concern. Thus, most of
the traditional approaches fail to quickly estimate the extreme
statistics of rare events of SRAM circuits.

The more recent approaches to improve the sampling ef-
ficiency of MC have been based on Importance Sampling
(IS) [3]-[5]. [7]-[9]. In IS, the original distribution (PDF) is
shifted towards the rare infeasible failure region. and using this
new shifted distribution called practical distribution for 1S, the
failure region is now directly sampled. The non-triviality lies
in determining the optimal shift, which results in the optimal
practical distribution for 1S, in order to predict quickly and
accurately. In [3]-[5], the optimal practical distribution for 1S,
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Cross Entropy versus Squared Error

X. Glorot and Y. Bengio, Understanding the difficulty of training deep feedforward neural networks

Loss 3-

Lo

Figure 5: Cross entropy (black, surface on top) and
quadratic (red, bottom surface) cost as a function of two
weights (one at each layer) of a network with two layers,
W, respectively on the first layer and W5 on the second,

output layer.
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Mutual Information

D [p(XY)|[p(X

N M

=> > pxi,y;) log,

1=17=1

[ p(xi, yj)

p( )p(yj)

] = I(X;Y)




Conditional Relative Entropy

* For joint probability density functions
p(XY) and g(XY)
the conditional relative entropy is

DIp(Y[X)[Ta(Y[X)]



Chain Rule for Relative Entropy

D[p(XY)| |a(XY)] = D[p(X)| [a(X)] + D[p(Y|X) | [a(Y|X)]



Three Random Variables X, Y and Z

1(X;Y;Z)

1(X;Y|2) X
H(Y | X2)+1(Y;Z| X)
H(X)

H(X|YZ) 1(X;2) = 1I(X;Y;Z) + 1(X;Z]Y)
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