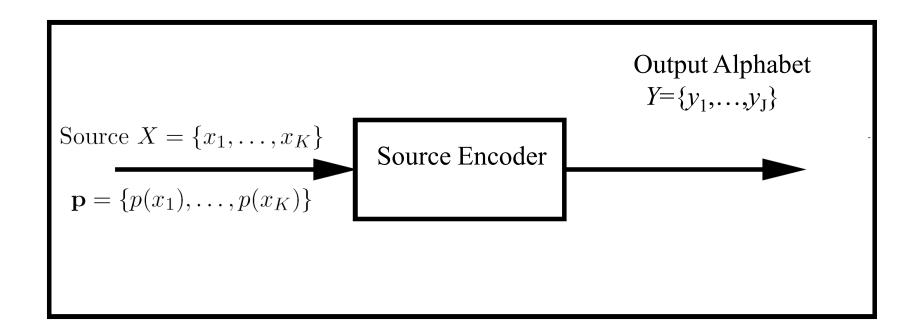
ECE 515 Information Theory

Distortionless Source Coding 1

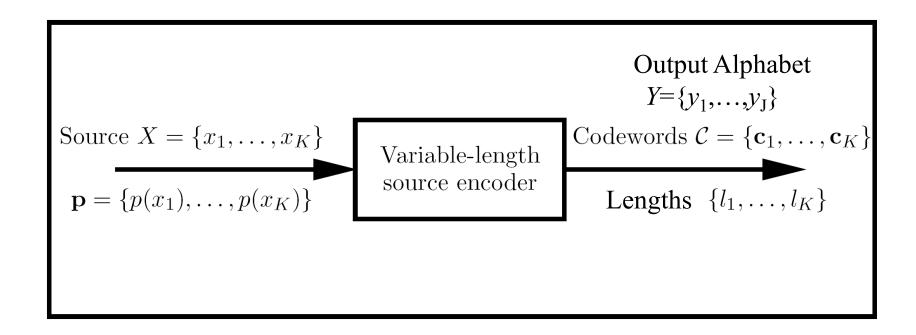
Source Coding

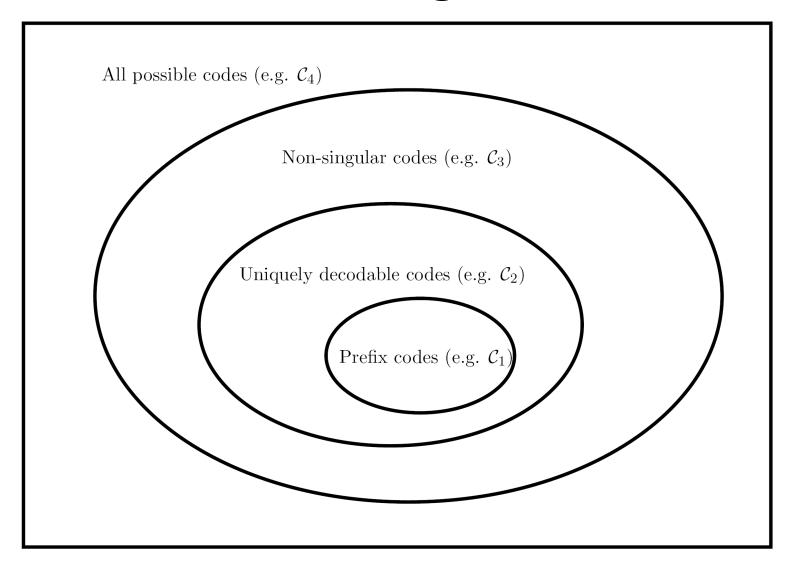


Source Coding

Two requirements

- 1. The source sequence can be recovered from the encoded sequence with no ambiguity.
- 2. The average number of output symbols per source symbol is as small as possible.





- Let K = 4, $X = \{x_1, x_2, x_3, x_4\}$, J = 2
- Prefix code (also prefix-free or instantaneous) $C_1 = \{0,10,110,111\}$
- Example sequence of codewords: 001110100110
- Decodes to:

0 0 111 0 10 0 110

 $X_1 X_1 \quad X_4 \quad X_1 \quad X_2 \quad X_1 \quad X_3$

Instantaneous Codes

• Definition:

A uniquely decodable code is said to be **instantaneous** if it is possible to decode each codeword in a sequence without reference to succeeding codewords.

A necessary and sufficient condition for a code to be instantaneous is that no codeword is a **prefix** of some other codeword.

- Uniquely decodable code (which is not prefix) $C_2=\{0,01,011,0111\}$
- Example sequence of codewords: 001110100110
- Decodes to:

0 0111 01 0 011 0

 X_1 X_4 X_2 X_1 X_3 X_1

Non-singular code (which is not uniquely decodable)

$$C_3 = \{0, 1, 00, 11\}$$

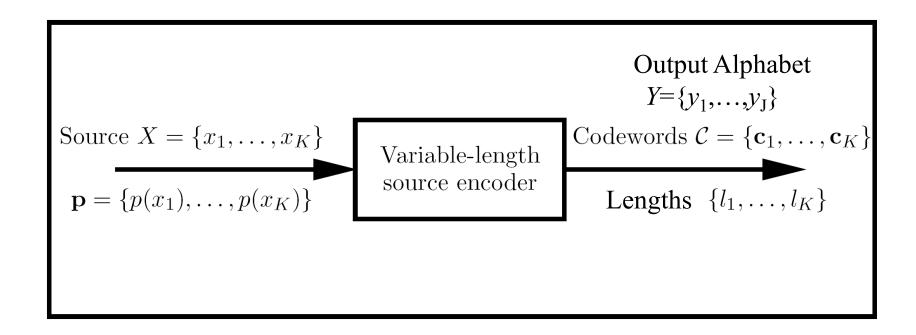
- Example sequence of codewords: 001110100110
- Decodes to:

Singular code

$$C_4 = \{0, 10, 11, 10\}$$

- Example sequence of codewords: 001110100110
- Decodes to:

$$0 \ 0 \ 11 \ 10 \ 10 \ 0 \ 11 \ 0$$
 $X_1 X_1 \ X_3 \ X_2 \ X_2 \ X_1 \ X_3 \ X_1$
 $X_1 X_1 \ X_3 \ X_4 \ X_2 \ X_1 \ X_3 \ X_1$



Source Symbol	Codeword	Codeword Length
x_1	$\mathbf{c}_1 = (c_{1,1}, c_{1,2}, \dots, c_{1,l}, \dots, c_{1,l_1})$	l_1
x_2	$\mathbf{c}_2 = (c_{2,1}, c_{2,2}, \dots, c_{2,l}, \dots, c_{2,l_2})$	l_2
÷	• •	: :
x_k	$\mathbf{c}_k = (c_{k,1}, c_{k,2}, \dots, c_{k,l}, \dots, c_{k,l_k})$	l_k
:	: :	: :
x_K	$\mathbf{c}_K = (c_{K,1}, c_{K,2}, \dots, c_{K,l}, \dots, c_{K,l_K})$	l_K

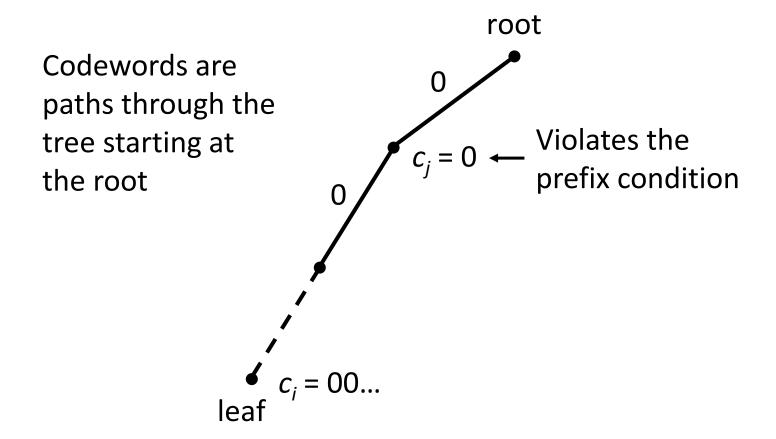
Average Codeword Length

$$L(C) = \sum_{k=1}^{K} p(x_k) I_k$$

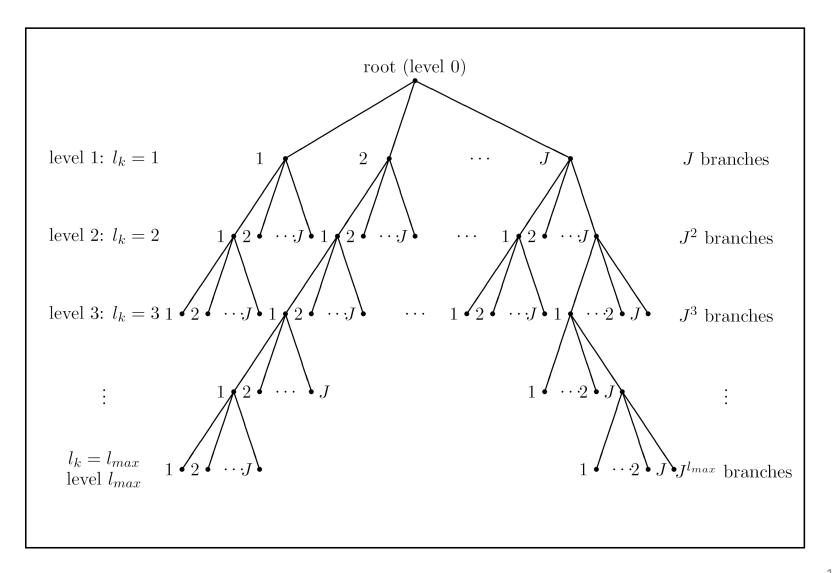
Kraft Inequality for Prefix Codes

$$\sum_{k=1}^{K} J^{-l_k} \le 1$$

Code Tree



Code Tree



Two Binary Prefix Codes

- Five source symbols: x_1 , x_2 , x_3 , x_4 , x_5
- K = 5, J = 2

- $c_1 = 0$, $c_2 = 10$, $c_3 = 110$, $c_4 = 1110$, $c_5 = 1111$ codeword lengths 1,2,3,4,4
- $c_1 = 00$, $c_2 = 01$, $c_3 = 10$, $c_4 = 110$, $c_5 = 111$
 - codeword lengths 2,2,2,3,3

Five Binary Codes

Source symbols	Code A	Code B	Code C	Code D	Code E
x ₁	00	0	0	0	0
x ₂	01	100	10	100	10
x ₃	10	110	110	110	110
x ₄	11	111	111	11	11

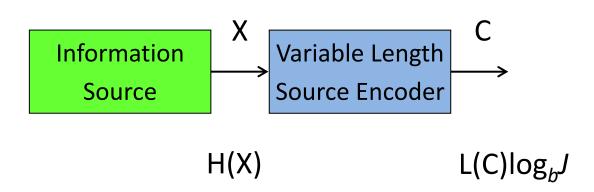
Ternary Code Example

- Ten source symbols: $x_1, x_2, ..., x_9, x_{10}$
- K = 10, J = 3

- $I_k = 1,2,2,2,2,3,3,3,3$
- $I_k = 1,2,2,2,2,2,3,3,3$
- $I_k = 1,2,2,2,2,3,3,4,4$

Average Codeword Length Bound

$$L(C) \ge \frac{H(X)}{\log_b J}$$



Four Symbol Source

•
$$p(x_1) = 1/2$$
 $p(x_2) = 1/4$ $p(x_3) = p(x_4) = 1/8$

• H(X) = 1.75 bits

$$x_1$$
 0 x_1 00 x_2 10 x_2 01 x_3 110 x_4 111 x_4 11 x_4 11 x_4 12

Code Efficiency

$$\zeta = \frac{\mathsf{H}(\mathsf{X})}{\mathsf{L}(\mathsf{C})\mathsf{log}_b J} \leq 1$$

- First code $\zeta = 1.75/1.75 = 100\%$
- Second code $\zeta = 1.75/2.0 = 87.5\%$

Compact Codes

A code C is called **compact** for a source X if its average codeword length L(C) is less than or equal to the average length of all other uniquely decodable codes for the same source and alphabet Y size J.

Codeword Lengths

$$H(X) = -\sum_{k=1}^{K} p(x_k) \log p(x_k)$$

$$L(C) = \sum_{k=1}^{K} p(x_k) I_k$$

Upper and Lower Bounds for a Compact Code

$$\frac{\mathsf{H}(\mathsf{X})}{\log_b J} \leq \mathsf{L}(\mathsf{C}) < \frac{\mathsf{H}(\mathsf{X})}{\log_b J} + 1$$

if
$$b = J$$

$$H(X) \leq L(C) < H(X) + 1$$

The Shannon Algorithm

- Order the symbols from largest to smallest probability
- Choose the codeword lengths according to

$$I_k = \left[-\log_J p(x_k) \right]$$

• Construct the codewords according to the cumulative probability P_k

$$P_k = \sum_{i=1}^{k-1} p(x_i)$$

expressed as a base J number with $P_1 = 0$

Example

- K = 10, J = 2
- $p(x_1) = p(x_2) = 1/4$
- $p(x_3) = p(x_4) = 1/8$
- $p(x_5) = p(x_6) = 1/16$
- $p(x_7) = p(x_8) = p(x_9) = p(x_{10}) = 1/32$

Converting Decimal Fractions to Binary

- To convert a fraction to binary, multiply it by 2
- If the integer part is 1, the binary digit is 1, otherwise it is 0
- Delete the integer part
- Continue multiplying by 2 and obtaining binary digits until the resulting fractional part is 0 or the required number of binary digits have been obtained

Example

- Convert $5/8 = 0.625_{10}$ to binary
 - $-2 \times 0.625 = 1.25 = 1 + 0.25$ MSB
 - $-2 \times 0.250 = 0.50 = 0 + 0.50$
 - $-2 \times 0.500 = 1.00 = 1 + 0.00$ LSB
 - $-0.625_{10} = 0.101_2$
- Convert $13/16 = 0.8125_{10}$ to binary
 - $-2 \times 0.8125 = 1 + 0.625$ MSB
 - $-2 \times 0.625 = 1 + 0.25$
 - $-2 \times 0.250 = 0 + 0.50$
 - $-2 \times 0.500 = 1 + 0.00$ LSB
 - $-0.8125_{10} = 0.1101_2$

Example

Symbol	$p(x_k)$	P_k	$ l_k $	Codeword
x_1	1/4	0	2	00
x_2	1/4	1/4	2	01
x_3	1/8	1/2	3	100
x_4	1/8	5/8	3	101
x_5	1/16	3/4	4	1100
x_6	1/16	13/16	4	1101
x_7	1/32	7/8	5	11100
x_8	1/32	29/32	5	11101
x_9	1/32	15/16	5	11110
x_{10}	1/32	31/32	5	11111

Shannon Algorithm

•
$$p(x_1) = .4 p(x_2) = .3 p(x_3) = .2 p(x_4) = .1$$

• H(X) = 1.85 bits

	1			1	1
	n a	nn	n	 \cap	
3	IIа		on	UU	て

 $x_1 = 00$

 $x_2 = 01$

 x_3 101

 x_4 1110

L(C) = 2.4 bits

$$\zeta = 77.1\%$$

Alternate Code

 x_1 0

 $x_2 = 10$

 x_3 110

 X_{Δ} 111

L(C) = 1.9 bits

 $\zeta = 97.4\%$

Shannon's Noiseless Coding Theorem

$$\frac{NH(X)}{\log_b J} \le L_N(C) < \frac{NH(X)}{\log_b J} + 1$$

$$\frac{H(X)}{\log_b J} \le \frac{L_N(C)}{N} < \frac{H(X)}{\log_b J} + \frac{1}{N}$$

Shannon's Noiseless Coding Theorem

If
$$b = J$$

$$NH(X) \leq L_N(C) < NH(X) + 1$$

$$H(X) \le \frac{L_N(C)}{N} < H(X) + \frac{1}{N}$$

Robert M. Fano (1917-2016)

The Fano Algorithm

- Arrange the symbols in order of decreasing probability
- Divide the symbols into J approximately equally probable groups
- Each group receives one of the J code symbols as the first codeword symbol
- This division process is repeated within the groups as many times as possible

Example

Symbol	$p(x_k)$					
x_1	1/4	0	0			
x_2	1/4	0	1	_		
x_3	1/8	1	0	0	_	
x_4	1/8	1	0	1	_	
x_5	1/16	1	1	0	0	_
x_6	1/16	1	1	0	1	_
x_7	1/32	1	1	1	0	0
x_8	1/32	1	1	1	0	1
x_9	1/32	1	1	1	1	0
x_{10}	1/32	1	1	1	1	1

Shannon Algorithm vs Fano Algorithm

•
$$p(x_1) = .4 p(x_2) = .3 p(x_3) = .2 p(x_4) = .1$$

• H(X) = 1.85 bits

Shannon Code	Fano Code
<i>x</i> ₁ 00	$x_1 = 0$
x ₂ 01	x ₂ 10
x ₃ 101	x ₃ 110
x ₄ 1110	x ₄ 111
L(C) = 2.4 bits	L(C) = 1.9 bits
ζ = 77.1%	ζ = 97.4%

Upper Bound for the Fano Code *J*∈{2,3}

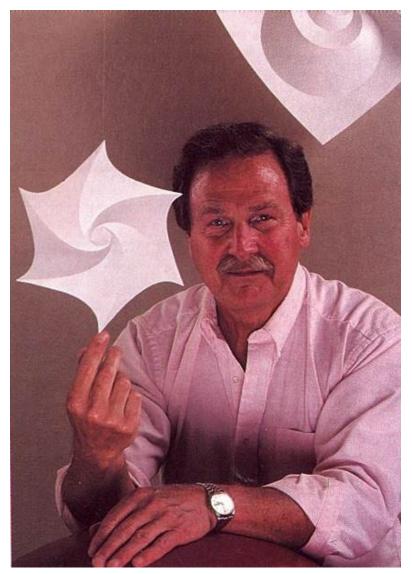
$$L(C) \leq \frac{H(X)}{\log_b J} + 1 - p_{\min}$$

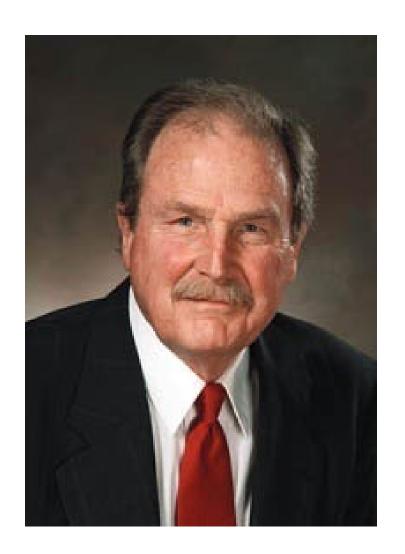
where p_{min} is the smallest nonzero symbol probability

if
$$b = J$$

$$L(C) \le H(X) + 1 - p_{min}$$

David A. Huffman (1925-1999)





- "It was the most singular moment in my life.
 There was the absolute lightning of sudden realization."
 - David Huffman

- ``Is that all there is to it!"
 - Robert Fano

Midterm Test

- Wednesday, October 23, 2024
- During class time (10:30 11:20)
- Counts for 20% of the final mark
- Aids allowed
 - One page of notes on 8.5" × 11.5" paper (both sides)
 - Calculator
- Cellphones, tablets, laptops, or any other electronic devices are NOT ALLOWED

The Binary Huffman Algorithm

- Arrange the K symbols of the source X in order of decreasing probability.
- 2. Assign a 1 to the last digit of the Kth codeword c_K and a 0 to the last digit of the (K-1)th codeword c_{K-1} . Note that this assignment is arbitrary.
- 3. Form a new source X' with $x'_{k} = x_{k}$, k = 1, ..., K-2, and $x'_{K-1} = x_{K-1} \cup x_{K} \quad p(x'_{K-1}) = p(x_{K-1}) + p(x_{K})$
- 4. Set K = K-1.
- Repeat Steps 1 to 4 until all symbols have been combined.

To obtain the codewords, trace back to the original symbols.

Five Symbol Source

• $p(x_1)=.35$ $p(x_2)=.22$ $p(x_3)=.18$ $p(x_4)=.15$ $p(x_5)=.10$

• H(X) = 2.2 bits

Symbol x_k	Probability $p(x_k)$	Codeword $\mathbf{c}_k = (c_{k,1}, \cdots, c_{k,l_k})$	
$egin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{array}$	$p(x_1) = 0.35$ $p(x_2) = 0.22$ $p(x_3) = 0.18$ $p(x_4) = 0.15$ $p(x_5) = 0.10$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 2 3 3

$$L(C) = 2.25 \text{ bits}$$

$$\zeta = 97.8\%$$

Shannon and Fano Codes

- $p(x_1)=.35$ $p(x_2)=.22$ $p(x_3)=.18$ $p(x_4)=.15$ $p(x_5)=.10$
- H(X) = 2.2 bits

\sim 1		\sim 1
\ na	nnon	
Jua	nnon	COUC

 $x_1 = 00$

 $x_2 = 010$

 x_3 100

*x*₄ 110

 x_5 1110

L(C) = 2.75 bits

 $\zeta = 80.4\%$

Fano Code

 $x_1 = 00$

 $x_2 = 01$

 $x_3 = 10$

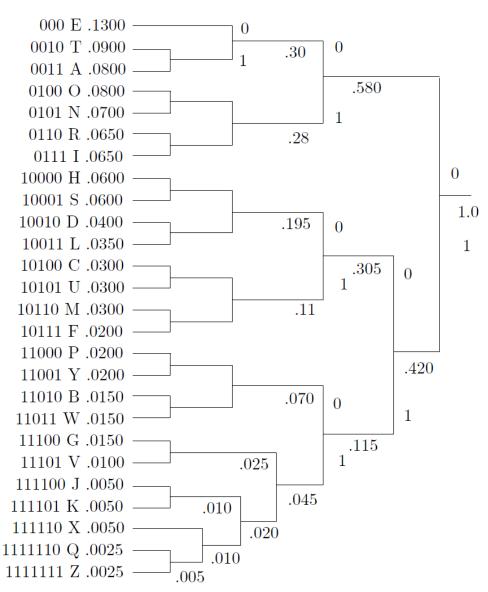
 x_4 110

 x_5 111

L(C) = 2.25 bits

 $\zeta = 97.8\%$

Huffman Code for the English Alphabet



Six Symbol Source

- $p(x_1)=.4$ $p(x_2)=.3$ $p(x_3)=.1$ $p(x_4)=.1$ $p(x_5)=.06$ $p(x_6)=.04$
- H(X) = 2.144 bits

_	•		•
\vdash 1	ırct	Co	Δ
	II S L		uC

 x_1 1

 $x_2 = 00$

 x_3 0100

 x_4 0101

 x_5 0110

 x_6 0111

Second Code

 x_1 1

 $x_2 = 00$

 x_3 010

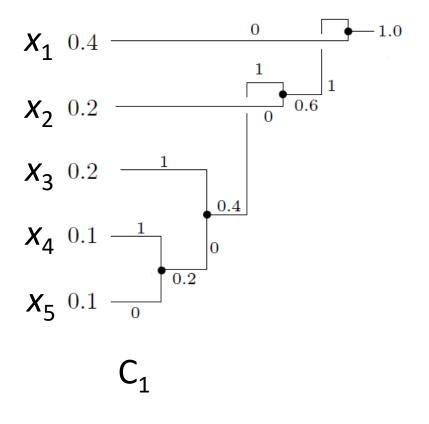
 x_4 0110

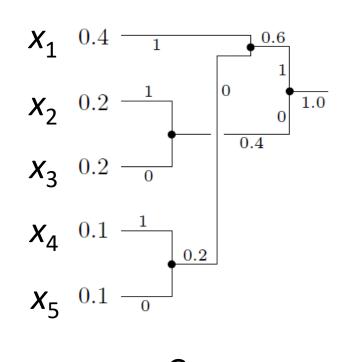
 x_5 01110

 x_6 01111

Second Five Symbol Source

• $p(x_1)=.4$ $p(x_2)=.2$ $p(x_3)=.2$ $p(x_4)=.1$ $p(x_5)=.1$





Second Five Symbol Source

```
• p(x_1)=.4 p(x_2)=.2 p(x_3)=.2 p(x_4)=.1 p(x_5)=.1
```

•
$$H(X) = 2.233 \text{ bits}$$
 $L(C) = 2.2 \text{ bits}$

$$C_1$$
 C_2
 X_1 0 11
 X_2 10 01
 X_3 111 00
 X_4 1101 101
 X_5 1100 100

Which code is preferable?

Second Five Symbol Source

- $p(x_1)=.4$ $p(x_2)=.2$ $p(x_3)=.2$ $p(x_4)=.1$ $p(x_5)=.1$
- H(X) = 2.122 bits L(C) = 2.2 bits

- variance of code C_1 $\sigma_1^2 = 0.4(1-2.2)^2 + 0.2(2-2.2)^2 + 0.2(3-2.2)^2 + 0.2(4-2.2)^2 = 1.36$
- variance of code C_2 $\sigma_2^2 = 0.8(2-2.2)^2 + 0.2(3-2.2)^2 = 0.16$

Nonbinary Example

• *J*=3 *K*=6

• $p(x_1)=1/3$ $p(x_2)=1/6$ $p(x_3)=1/6$ $p(x_4)=1/9$ $p(x_5)=1/9$ $p(x_6)=1/9$

• H(X) = 1.544 trits

Nonbinary Example

• *J*=3 *K*=6

•
$$c = \left\lceil \frac{K - J}{J - 1} \right\rceil = 2 \text{ so } K' = J + c(J - 1) = 3 + 2(2) = 7$$

• Add an extra symbol x_7 with $p(x_7)=0$

• $p(x_1)=1/3$ $p(x_2)=1/6$ $p(x_3)=1/6$ $p(x_4)=1/9$ $p(x_5)=1/9$ $p(x_6)=1/9$ $p(x_7)=0$

Nonbinary Example with an Extra Symbol

```
    \begin{array}{ccc}
      x_1 & 1 \\
      x_2 & 00 \\
      x_3 & 01 \\
      x_4 & 02 \\
      x_5 & 20 \\
      x_6 & 21 \\
      x_7 & 22
    \end{array}
```

$$L(C) = 1.667 \text{ trits}$$

$$H(X) = 1.544 \text{ trits}$$

$$\zeta = 92.6\%$$

Nonbinary Example with no Extra Symbol

$$\begin{array}{ccc}
 x_1 & 1 \\
 x_2 & 01 \\
 x_3 & 02 \\
 x_4 & 000 \\
 x_5 & 001 \\
 x_6 & 002 \\
 \end{array}$$

$$L(C) = 2.0 \text{ trits}$$

$$H(X) = 1.544 \text{ trits}$$

$$\zeta = 77.2\%$$

• *K*=13

•
$$p(x_1)=1/4$$
 $p(x_2)=1/4$
 $p(x_3)=1/16$ $p(x_4)=1/16$ $p(x_5)=1/16$ $p(x_6)=1/16$
 $p(x_7)=1/16$ $p(x_8)=1/16$ $p(x_9)=1/16$
 $p(x_{10})=1/64$ $p(x_{11})=1/64$ $p(x_{12})=1/64$ $p(x_{13})=1/64$

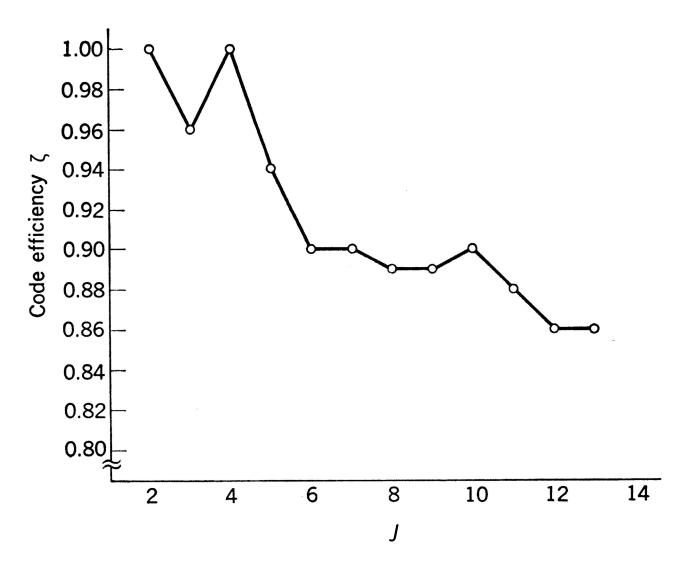
• *J*=2 to 13

							J						
p(x _i)	x _i	13	12	11	10	9	8	7	6	5	4	3	2
$ \begin{array}{c} \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{16} \\ \frac{1}{16} \\ \frac{1}{16} \\ \frac{1}{16} \\ \frac{1}{16} \\ \frac{1}{64} \\ \frac{1}{64} \\ \frac{1}{64} \\ \frac{1}{64} \end{array} $	x_1	0	0	0	0	0	0	0	0	0	0	0	00
$\frac{1}{4}$	x_2	1	1	1	1	1	1	1	1	1	1	1	01
$\frac{1}{16}$	X_3	2	2	2	2	2	2	2	2	2	20	200	1000
$\frac{1}{16}$	X_4	3	3	3	3	3	3	3	3	30	21	201	1001
$\frac{1}{16}$	X_5	4	4	4	4	4	4	4	4	31	22	202	1010
$\frac{1}{16}$	\mathbf{x}_{6}	5	5	5	5	5	5	5	5 0	32	23	210	1011
$\frac{1}{16}$	X ₇	6	6	6	6	6	6	60	51	33	30	211	1100
$\frac{1}{16}$	x_8	7	7	7	7	7	70	61	52	34	31	212	1101
$\frac{1}{16}$	x_9	8	8	8	8	80	71	62	5 3	40	32	220	1110
$\frac{1}{64}$	X_{10}	9	9	9	90	81	7 2	63	54	41	330	221	111100
$\frac{1}{64}$	X_{11}	\mathbf{A}	\mathbf{A}	$\mathbf{A0}$	91	82	73	64	55 0	42	331	2220	111101
$\frac{1}{64}$	X_{12}	\mathbf{B}	B0	A1	92	83	74	65	551	43	332	2221	111110
$\frac{1}{64}$	X ₁₃	\mathbf{C}	B 1	$\mathbf{A2}$	93	84	75	66	552	44	333	2222	111111
Average													
length	L(C)	1	$\frac{33}{32}$	$\frac{67}{64}$	$\frac{17}{16}$	9 8	$\frac{19}{16}$	<u>5</u>	87 64	$\frac{23}{16}$	$\frac{25}{16}$	$\frac{131}{64}$	<u>25</u> 8

```
L(C)
        3.125
3
        2.047
4
        1.563
5
        1.438
        1.359
        1.250
8
        1.188
9
        1.125
        1.063
10
11
        1.047
12
        1.031
        1.000
13
```

J	L(C)	ζ
2	3.125	1.000
3	2.047	0.963
4	1.563	1.000
5	1.438	0.936
6	1.359	0.889
7	1.250	0.891
8	1.188	0.877
9	1.125	0.876
10	1.063	0.885
11	1.047	0.863
12	1.031	0.845
13	1.000	0.844

Code Efficiency



Binary and Quaternary Codes

<i>X</i> ₁	00	0
<i>X</i> ₂	01	1
<i>X</i> ₃	1000	20
<i>X</i> ₄	1001	21
<i>X</i> ₅	1010	22
<i>X</i> ₆	1011	23
<i>X</i> ₇	1100	30
<i>X</i> ₈	1101	31
X ₉	1110	32
<i>X</i> ₁₀	111100	330
<i>X</i> ₁₁	111101	331
<i>X</i> ₁₂	111110	332
<i>X</i> ₁₃	111111	333

Huffman Codes

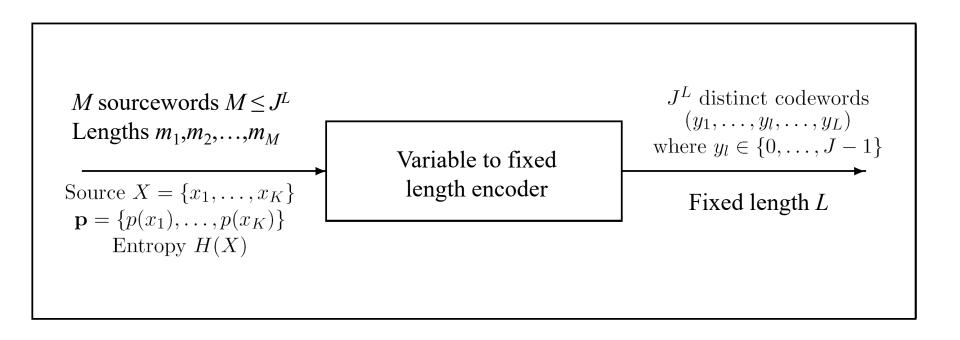
- Symbol probabilities must be known a priori
- The redundancy of the code

$$L(C)-H(X)$$
 (for $J=b$)

is typically nonzero

- Error propagation can occur
- Codewords have variable length

Variable to Fixed Length Codes



Variable to Fixed Length Codes

- Two questions:
 - 1. What is the best mapping from sourcewords to codewords?
 - 2. How to ensure unique encodability?

Average Bit Rate

$$ABR = \frac{average\ codeword\ length}{average\ sourceword\ length}$$

$$=\frac{L}{L(S)}$$

$$L(S) = \sum_{i=1}^{M} p(s_i) m_i$$

M - number of sourcewords

 s_i - sourceword i

*m*_i - length of sourceword *i*

 $p(s_i)$ - probability of sourceword i

Average Bit Rate

For fixed to variable length codes

ABR =
$$\frac{\text{average codeword length}}{\text{average sourceword length}}$$
$$= \frac{L(C)}{1} \text{ or } \frac{L_N(C)}{N}$$

- Design criterion: minimize L(C) or L_N(C)
 - minimize the ABR

Variable to Fixed Length Codes

Design criterion: minimize the Average Bit Rate

$$ABR = \frac{L}{L(S)}$$

- ABR ≥ H(X) (L(C) ≥ H(X) for fixed to variable length codes)
- L(S) should be as large as possible so that the ABR is close to H(X)

Code Efficiency

Fixed to variable length codes

$$\zeta = \frac{H(X)}{L(C)} \le 1$$

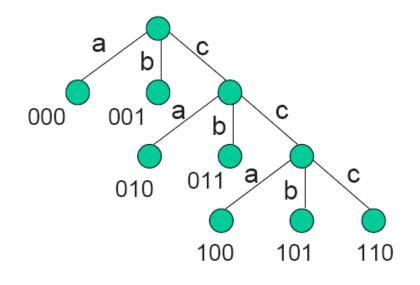
Variable to fixed length codes

$$\zeta = \frac{H(X)}{ABR} \le 1$$

Binary Tunstall Code *K*=3, *L*=3

Source $X = \{a, b, c\}$

а	000
b	001
ca	010
cb	011
сса	100
ccb	101
CCC	110



Unused codeword is 111

Tunstall Codes

Tunstall codes must satisfy the Kraft inequality

$$\sum_{i=1}^{M} K^{-m_i} \leq 1$$

M - number of sourcewords

K - source alphabet size

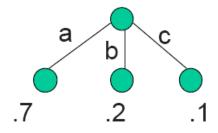
 m_i - length of sourceword i

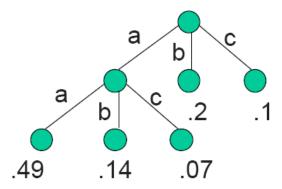
Binary Tunstall Code Construction

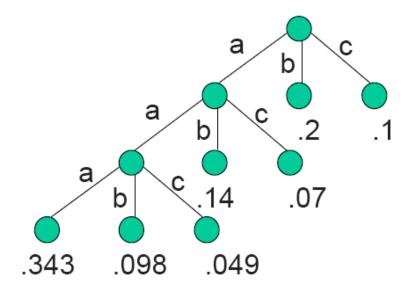
- Source X with K symbols
- Choose a codeword length L where $2^L > K$
- 1. Form a tree with a root and *K* branches labelled with the symbols
- 2. If the number of leaves is greater than 2^{L} (K-1), go to Step 4
- Find the leaf with the highest probability and extend it to have K branches, go to Step 2
- 4. Assign codewords to the leaves

$$K=3, L=3$$

p(a) = .7, p(b) = .2, p(c) = .1







ABR =
$$3/[3(.343+.098+.049)+2(.14+.07)+.2+.1]$$

= 1.37 bits
H(X) = 1.16 bits
 $\zeta = H(X)/ABR = 84.7\%$

The Codewords

aaa 000

aab 001

aac 010

ab 011

ac 100

b 101

c 110

- What if a or aa is left at the end of the sequence of source symbols?
 - there are no corresponding codewords
- Solution: use the unused codeword 111
 - a 1110 or 111 000
 - aa 1111 or 111 001

Tunstall Codes for a Binary Source

•
$$L = 3$$
, $K = 2$, $J = 2$, $p(x_1) = 0.7$, $p(x_2) = 0.3$

•
$$J^L = 8$$

Seven sourcewords	Eight sourcewords	Codewords
$X_1X_1X_1X_1X_1$	$X_1X_1X_1X_1X_1$	000
$X_1X_1X_1X_1X_2$	$X_1X_1X_1X_1X_2$	001
$X_1X_1X_1X_2$	$X_1X_1X_1X_2$	010
$X_1X_1X_2$	$X_1X_1X_2$	011
X_1X_2	$X_1X_2X_1$	100
X_2X_1	$X_1X_2X_2$	101
X_2X_2	x_2x_1	110
	x_2x_2	111

 The end of the sequence of source symbols can be

$$X_1, X_2, X_1X_1, X_1X_1X_1$$
, or $X_1X_1X_1X_1$

 With M=7 sourcewords the codeword 111 is unused so they can be assigned as follows

```
-x_1 111 000
```

$$-x_2$$
 111 001

$$-x_1x_1$$
 111 010

$$-x_1x_1x_1$$
 111 011

$$-x_1x_1x_1x_1$$
 111 100

Huffman Code for a Binary Source

- N = 3, K = 2, $p(x_1) = 0.7$, $p(x_2) = 0.3$
- Eight sourcewords
- $A = x_1 x_1 x_1$ p(A) = .343 00
- B = $x_1x_1x_2$ p(B) = .147 11
- $C = x_1 x_2 x_1$ p(C) = .147 010
- $D = x_2 x_1 x_1$ p(D) = .147 011
- $E = x_2 x_2 x_1$ p(E) = .063 1000
- $F = x_2 x_1 x_2$ p(F) = .063 1001
- $G = x_1 x_2 x_2$ p(G) = .063 1010
- $H = x_2 x_2 x_2$ p(H) = .027 1011

Code Comparison

- H(X) = .8813
- Tunstall Code L=3 (7 codewords)

ABR =
$$.9762$$
 $\zeta = 90.3\%$

$$\zeta = 90.3\%$$

Tunstall Code L=3 (8 codewords)

ABR = .9138
$$\zeta = 96.4\%$$

$$\zeta = 96.4\%$$

Huffman Code N=1 (2 codewords)

$$L(C) = 1.0$$
 $\zeta = 88.1\%$

$$\zeta = 88.1\%$$

Huffman Code N=3 (8 codewords)

$$L_3(C)/3 = .9087$$
 $\zeta = 97.0\%$

Error Propagation

Received Huffman codeword sequence
 00 11 00 11 00 11 ...

A B A B A B ...

Sequence with one bit error

011 1001 1001 1 ...

D F F ...

Error Propagation

The corresponding Tunstall codeword sequence

000 110 001 000 110 001 ...

Sequence with one bit error

010 110 001 000 110 001 ...

$$X_1X_1X_1X_2 X_2X_1 X_1X_1X_1X_1X_2 \dots$$