ECE 515 Information Theory

Distortionless Source Coding 2

Huffman Coding

- The length of Huffman codewords has to be an integer number of symbols, while the selfinformation of the source symbols is almost always a non-integer.
- Thus the theoretical minimum message compression cannot always be achieved.
- For a binary source with $p(x_1) = 0.1$ and $p(x_2) = 0.9$
 - H(X) = .469 so the optimal average codeword length is .469 bits
 - Symbol x_1 should be encoded to $I_1 = -\log_2(0.1) = 3.32$ bits
 - Symbol x_2 should be encoded to $I_2 = -\log_2(0.9) = .152$ bits

Improving Huffman Coding

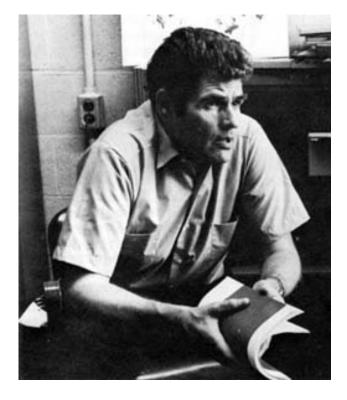
• One way to overcome the redundancy limitation is to encode blocks of several symbols.

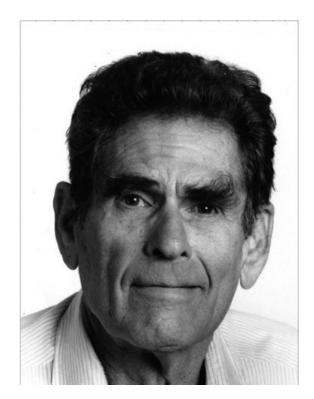
In this way the per-symbol inefficiency is spread over an entire block.

 $-N = 1: \zeta = 46.9\%$ $N = 2: \zeta = 72.7\%$ $N = 3: \zeta = 80.0\%$

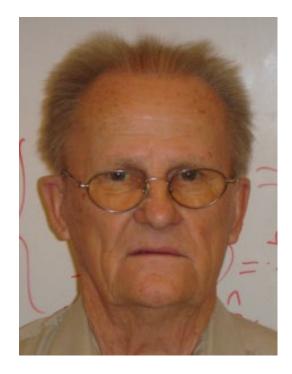
- However, using blocks is difficult to implement as there is a block for every possible combination of symbols, so the number of blocks (and thus codewords) increases exponentially with their length.
 - The probability of each block must be computed.

Peter Elias (1923 – 2001)





Jorma J. Rissanen (1932 – 2020)



- Arithmetic coding bypasses the idea of replacing a source symbol (or groups of symbols) with a specific codeword.
- Instead, a sequence of symbols is encoded to an interval in [0,1).
- Useful when dealing with sources with small alphabets, such as binary sources, and alphabets with highly skewed probabilities.

Arithmetic Coding Applications

• JPEG, MPEG-1, MPEG-2

Huffman and arithmetic coding

• JPEG2000, MPEG-4

Arithmetic coding only

• ZIP

- prediction by partial matching (PPMd) algorithm

• H.263, H.264

- Lexicographic ordering
- Cumulative probabilities

$$P_j = \sum_{i=1}^{j-1} \mathsf{p}(u_i)$$

$$\begin{array}{ccccccc} u_1 & x_1 x_1 \dots x_1 & P_1 \\ u_2 & x_1 x_1 \dots x_2 & P_2 \\ \vdots & \vdots & \vdots \end{array}$$

$$u_{K^N} \quad X_K X_K \dots X_K \quad P_{K^N}$$

• The interval P_j to P_{j+1} defines u_j

- K = 2 N = 3 $p(x_1) = 0.1$ $p(x_2) = 0.9$
 - $u_1 \quad x_1 x_1 x_1 \quad 0$
 - $u_2 \quad x_1 x_1 x_2 \quad .001$
 - $u_3 \quad x_1 x_2 x_1 \quad .010$
 - $u_4 \quad x_1 x_2 x_2 \quad .019$
 - $u_5 \quad x_2 x_1 x_1 \quad .100$
 - $u_6 \quad x_2 x_1 x_2 \quad .109$
 - $u_7 \quad x_2 x_2 x_1 \quad .190$
 - $u_8 \quad x_2 x_2 x_2 \quad .271 \qquad P_9 = 1$

- A sequence of source symbols is represented by an interval in [0,1).
- The probabilities of the source symbols are used to successively narrow the interval used to represent the sequence.
- As the interval becomes smaller, the number of bits needed to specify it grows.
- A high probability symbol narrows the interval less than a low probability symbol so that high probability symbols contribute fewer bits to the codeword.
- For a sequence *u* of *N* symbols, the codeword length should be approximately $I_u = \lceil -\log_2 p(u) \rceil$ bits

- The output of an arithmetic encoder is a stream of bits.
- However we can think that there is a prefix 0, and the stream represents a fractional binary number between 0 and 1

$01101010 \rightarrow 0.01101010$

• In the examples, decimal numbers will be used for convenience.

The initial intervals are based on the cumulative probabilities

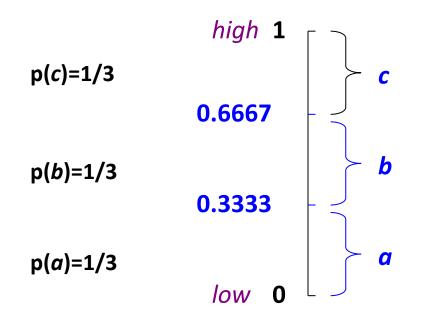
$$P_k = \sum_{i=1}^{k-1} p(x_i)$$

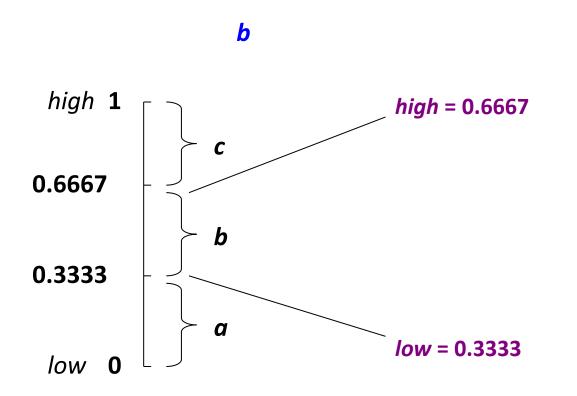
$$P_1 = 0$$
 and $P_{K+1} = 1$

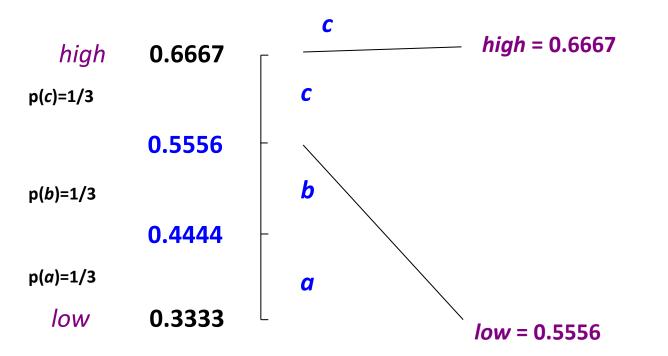
• Source symbol k is assigned the interval $[P_k, P_{k+1}]$

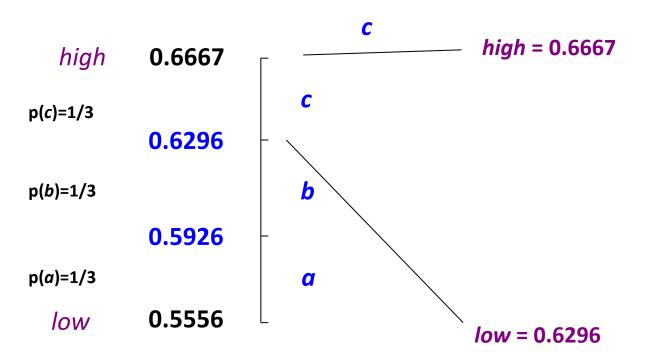
- Encode string *bccb* from the source X = {*a,b,c*}
- *K*=3
- p(a) = p(b) = p(c) = 1/3
- $P_1 = 0 P_2 = .3333 P_3 = .6667 P_4 = 1$
- The encoder maintains two numbers, *low* and *high*, which represent an interval [*low*,*high*) in [0,1)
- Initially *low* = 0 and *high* = 1

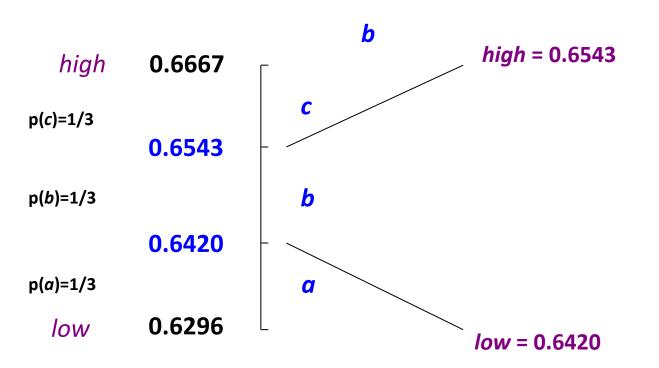
 The interval between *low* and *high* is divided among the symbols of the source alphabet according to their probabilities











Arithmetic Coding Algorithm

- Set low to 0
- Set high to 1
- While there are still input symbols Do
 - get next input symbol (x_i)
 - range = high low
 - high = low + range × symbol_high_interval (P_{i+1})
 - low = low + range × symbol_low_interval (P_i)

End While

output number between high and low

- Source X with K = 3 symbols $\{x_1, x_2, x_3\}$
- $p(x_1) = 0.5 p(x_2) = 0.3 p(x_3) = 0.2$
 - $-0 \le x_1 < 0.5$
 - $-0.5 \le x_2 < 0.8$
 - $-0.8 \le x_3 < 1$

$$-P_1 = 0, P_2 = .5, P_3 = .8, P_4 = 1$$

- The encoder maintains two numbers, *low* and *high*, which represent an interval [*low*,*high*) in [0,1)
- Initially *low* = 0 and *high* = 1

Arithmetic Coding Example 2

- $p(x_1) = 0.5, p(x_2) = 0.3, p(x_3) = 0.2$
- Symbol intervals: $0 \le x_1 < .5$ $.5 \le x_2 < .8$ $.8 \le x_3 < 1$
- $P_1 = 0, P_2 = .5, P_3 = .8, P_4 = 1$
- low = 0.0 high = 1.0
- Symbol sequence $x_1x_2x_3x_2$
- Iteration 1

 x_1 : range = 1.0 - 0.0 = 1.0 high = 0.0 + 1.0 × 0.5 = 0.5 low = 0.0 + 1.0 × 0.0 = 0.0

• Iteration 2

 x_2 : range = 0.5 - 0.0 = 0.5 high = 0.0 + 0.5 × 0.8 = 0.40 low = 0.0 + 0.5 × 0.5 = 0.25

• Iteration 3

 x_3 : range = 0.4 - 0.25 = 0.15 high = 0.25 + 0.15 × 1.0 = 0.40 low = 0.25 + 0.15 × 0.8 = 0.37

Arithmetic Coding Example 2

• Iteration 3

 x_3 : range = 0.4 - 0.25 = 0.15 high = 0.25 + 0.15 × 1.0 = 0.40 low = 0.25 + 0.15 × 0.8 = 0.37

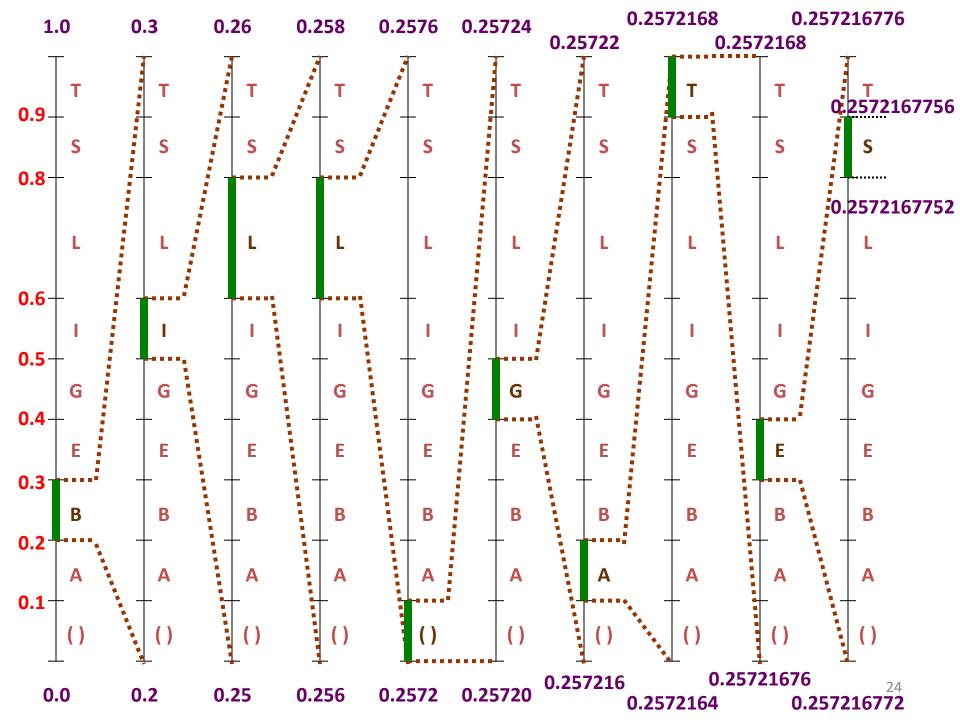
• Iteration 4

 x_2 : range = 0.4 - 0.37 = 0.03 high = 0.37 + 0.03 × 0.8 = 0.394 low = 0.37 + 0.03 × 0.5 = 0.385

- $0.385 \le x_1 x_2 x_3 x_2 < 0.394$ 0.385 = 0.0110001...0.394 = 0.0110010...
- The first 5 bits of the codeword are 01100
- If there are no additional symbols to be encoded the codeword is 011001

Arithmetic Coding Example 3 Suppose that we want to encode the message BILL GATES

Character	Probability	Interval
SPACE	1/10	$0.00 \le x_1 < 0.10$
А	1/10	$0.10 \le x_2 < 0.20$
В	1/10	$0.20 \le x_3 < 0.30$
E	1/10	$0.30 \le x_4 < 0.40$
G	1/10	$0.40 \le x_{5} < 0.50$
I	1/10	$0.50 \le x_6^{-1} < 0.60$
L	2/10	$0.60 \le x_7 < 0.80$
S	1/10	$0.80 \le x_8 < 0.90$
т	1/10	$0.90 \le x_9 < 1.00$



Arithmetic Coding Example 3

New Symbol	Low	High
	0.0	1.0
В	0.2	0.3
Ι	0.25	0.26
L	0.256	0.258
L	0.2572	0.2576
SPACE	0.25720	0.25724
G	0.257216	0.257220
А	0.2572164	0.2572168
Т	0.25721676	0.2572168
E	0.257216772	0.257216776
S	0.2572167752	0.2572167756

Binary Codeword

- 0.2572167752 in binary is
 0.01000001110110001111010101010101...
- 0.2572167756 in binary is
 0.010000011101100011110101010111...
- The codeword is then 01000001110110001111010101011
- 31 bits long

Decoding Algorithm

get encoded number (codeword)

Do

find the symbol whose interval contains the encoded number (x_i)

output the symbol

subtract symbol_low_interval (P_i) from the encoded number

divide by the probability of the output symbol $(p(x_i))$

Until termination

Decoding BILL GATES

Encoded Number	Output Symbol	Low	High	Probability
0.2572167752	В	0.2	0.3	0.1
0.572167752	Ι	0.5	0.6	0.1
0.72167752	L	0.6	0.8	0.2
0.6083876	L	0.6	0.8	0.2
0.041938	SPACE	0.0	0.1	0.1
0.41938	G	0.4	0.5	0.1
0.1938	А	0.2	0.3	0.1
0.938	Т	0.9	1.0	0.1
0.38	Е	0.3	0.4	0.1
0.8	S	0.8	0.9	0.1
0.0				

Finite Precision

Symbol	Probability (fraction)	Interval (8-bit precision) fraction	Interval (8-bit precision) binary	Interval boundaries in binary
а	1/3	[0,85/256)	[0.00000000, 0.01010101)	00000000 01010100
b	1/3	[85/256,171/256)	[0.01010101, 0.10101011)	01010101 10101010
С	1/3	[171/256,1)	[0.10101011, 1.00000000)	10101011 1111111

Renormalization

Symbol	Probability (fraction)	Interval boundaries	Digits that can be output	Boundaries after renormalization
а	1/3	0 0000000 0 1010100	0	0000000 0 1010100 1
b	1/3	01010101 10101010	none	01010101 10101010
С	1/3	1 0101011 1 1111111	1	0101011 0 1111111 1

Termination Symbol

Symbol	Probability (fraction)	Interval (8-bit precision) fraction	Interval (8-bit precision) binary	Interval boundaries in binary
а	1/3	[0,85/256)	[0.00000000, 0.01010101)	00000000 01010100
b	1/3	[85/256,170/256)	[0.01010101, 0.10101011)	01010101 10101001
С	1/3	[170/256,255/256)	[0.10101011 <i>,</i> 0.11111111)	10101010 11111110
term	1/256	[255/256,1)	[0.11111111, 1.00000000)	11111111

- $K = 4 X = \{a, b, c, d\}$
- p(a) = .5, p(b) = .25, p(c) = .125, p(d) = .125
- Huffman code
 - *a* 0
 - *b* 10
 - *c* 110
 - d 111

- $X = \{a, b, c, d\}$
- p(a) = .5, p(b) = .25, p(c) = .125, p(d) = .125
- $P_1 = 0, P_2 = .5, P_3 = .75, P_4 = .875, P_5 = 1$
- Arithmetic code intervals
 - *a* [0, .5)
 - *b* [.5, .75)
 - *c* [.75, .875)
 - d [.875, 1)

- encode *abcdc*
- Huffman codewords
 - 01011011110 12 bits
- Arithmetic code
 - low = $.01011011110_2$
 - high = .01011011111₂
 - codeword 01011011110 12 bits
 - $p(u) = (.5)(.25)(.125)^3 = 2^{-12}$

•
$$I_u = \left[-\log_2 p(u) \right] = 12$$
 bits

- $X = \{a, b, c, d\}$
- p(a) = .7, p(b) = .12, p(c) = .10, p(d) = .08
- Huffman code
 - *a* 0
 - *b* 10
 - *c* 110
 - d 111

- $X = \{a, b, c, d\}$
- p(a) = .7, p(b) = .12, p(c) = .10, p(d) = .08
- $P_1 = 0, P_2 = .7, P_3 = .82, P_4 = .92, P_5 = 1$
- Arithmetic code intervals
 - *a* [0, .7)
 - *b* [.7, .82)
 - *c* [.82, .92)
 - d [.92, 1)

Huffman vs Arithmetic Codes

- encode *aaab*
- Huffman codewords
 - 00010 5 bits
- Arithmetic code
 - low = $.00111101..._{2}$
 - high = $.01001000..._2$
 - codeword 01 2 bits
 - $p(u) = (.7)^3(.12) = .04116$

•
$$I_u = \left[-\log_2 p(u) \right] = \left[4.60 \right] = 5$$
 bits

Huffman vs Arithmetic Codes

- encode *abcdaaa*
- Huffman codewords
 - 010110111000 12 bits
- Arithmetic code
 - low = $.1001000100001101..._{2}$
 - high = .10010001000<mark>1</mark>1100...₂
 - codeword 100100010001 12 bits
 - $p(u) = (.7)^3(.12)(.10)(.08) = .0002305$

•
$$I_u = \left[-\log_2 p(u) \right] = \left[12.08 \right] = 13$$
 bits

Huffman vs Arithmetic Codes

- Huffman code L(C) = 1.480 bits
- H(X) = 1.351 bits
- Redundancy = L(C) H(X) = .129 bit
- Arithmetic code will achieve the theoretical performance H(X)
- For a file of size $N = 10^6$ symbols
 - Arithmetic code $N \times H(X) = 1.351 \times 10^6$ bits
 - Huffman code $N \times L(C) = 1.480 \times 10^6$ bits
 - Difference 1.29×10⁵ bits

Robustness of Huffman Codes and Universal Source Coding

Robustness of Huffman Codes

 $p_k = p(x_k)$ (actual) $q_k = p_k + \mathcal{E}_k$ (estimated) $\sum_{k=1}^{K} p_k = 1$ $\sum_{k=1}^{K} q_k = 1$

$$\therefore \sum_{k=1}^{n} \varepsilon_{k} = \mathbf{0}$$

Robustness of Huffman Codes

$$L(C) = \sum_{k=1}^{K} p_k I_k \qquad L(\hat{C}) = \sum_{k=1}^{K} p_k \hat{I}_k$$

$$\Delta \mathsf{L} = \mathsf{L}(\hat{\mathsf{C}}) - \mathsf{L}(\mathsf{C}) = \sum_{k=1}^{K} p_k \hat{l}_k - \sum_{k=1}^{K} p_k l_k$$
$$= \sum_{k=1}^{K} p_k \left(\hat{l}_k - l_k \right)$$

Upper and Lower Bounds

• p(X) actual distribution

$$L(C) = \sum_{k=1}^{K} p(x_k) I_k$$

• q(X) estimated distribution $L(\hat{C}) = \sum_{k=1}^{k} p(x_k) \hat{I}_k$

$$\frac{H(p(X))}{\log_b J} \leq L(C) < \frac{H(p(X))}{\log_b J} + 1$$

$$\frac{H(p(X)) + D(p(X) | |q(X))}{\log_b J} \le L(\hat{C}) < \frac{H(p(X)) + D(p(X) | |q(X))}{\log_b J} + 1$$

Upper and Lower Bounds

$$\frac{H(p(X)) + D(p(X) | |q(X))}{\log_b J} \le L(\hat{C}) < \frac{H(p(X)) + D(p(X) | |q(X))}{\log_b J} + 1$$

$$\frac{H(p,q)}{\log_b J} \le L(\hat{C}) < \frac{H(p,q)}{\log_b J} + 1$$

if $b = j \; H(p,q) \le L(\hat{C}) < H(p,q) + 1$

Gadsby by Ernest Vincent Wright

If youth, throughout all history, had had a champion to stand up for it; to show a doubting world that a child can think; and, possibly, do it practically; you wouldn't constantly run across folks today who claim that "a child don't know anything." A child's brain starts functioning at birth; and has, amongst its many infant convolutions, thousands of dormant atoms, into which God has put a mystic possibility for noticing an adult's act, and figuring out its purport.

Up to about its primary school days a child thinks, naturally, only of play. But many a form of play contains disciplinary factors. "You can't do this," or "that puts you out," shows a child that it must think, practically or fail. Now, if, throughout childhood, a brain has no opposition, it is plain that it will attain a position of "status quo," as with our ordinary animals. Man knows not why a cow, dog or lion was not born with a brain on a par with ours; why such animals cannot add, subtract, or obtain from books and schooling, that paramount position which Man holds today.

Lossless Compression Techniques

1 Model and code

The source is modelled as a random variable. The probabilities (statistics) are given or acquired.

2 Dictionary-based

There is no explicit model and no explicit statistics gathering. Instead, a codebook (or dictionary) is used to map sourcewords into codewords.

Model and Code

- Huffman code
- Tunstall code
- Fano code
- Shannon code
- Arithmetic code

Dictionary-based Techniques

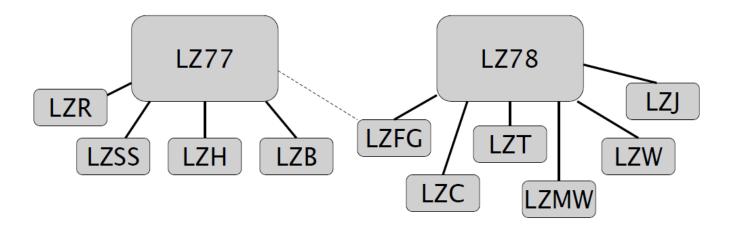
- Lempel-Ziv
 - LZ77 sliding window
 - LZ78 explicit dictionary
- Adaptive Huffman coding

• Due to patents, LZ77 and LZ78 have many variants

LZ77 Variants	LZR	LZSS	DEFLATE	LZH		
LZ78 Variants	LZW	LZC	LZT	LZMW	LZJ	LZFG

- Zip methods use LZH and LZR among other techniques
- UNIX compress uses LZC (a variant of LZW)

Lempel-Ziv Coding



Applications:

- zip
- gzip
- Stacker
- ...

Applications:

- GIF
- V.42
- compress
- ...

Lempel-Ziv Coding

- Source symbol sequences are replaced by codewords that are dynamically determined.
- The code table is encoded into the compressed data so it can be reconstructed during decoding.

Lempel-Ziv Example

Let X be a source of information for which we do not know the distribution \mathbf{p} . Suppose that we want to *source encode* the following sequence S generated by the source X:

$S = 001000101110000011011010111101\ldots$

$$\begin{split} S &= \underbrace{00}_{S_3=00} 1000101110000011011010111101\dots}_{S_4=10} \\ S &= 00 \underbrace{10}_{S_4=10} 00101110000011011010111101\dots}_{S_5=001} \\ S &= 0010 \underbrace{001}_{S_5=001} 01110000011011010111101\dots}_{S_5=001} \\ S &= 001000101 \underbrace{11}_{S_6=01} 0000011011010111101\dots}_{S_7=11} \\ S &= 00100010111 \underbrace{000}_{S_8=000} 0011011010111101\dots}_{S_8=000} \\ S &= 00100010111000 \underbrace{0011}_{S_9=0011} 011010111101\dots}_{S_{10}=011} \\ S &= 00100010111000001101110101 \underbrace{111}_{S_{11}=010} 101\dots}_{S_{12}=111} \\ S &= 001000101110000011011010111101\dots}_{S_{12}=111} \\ S &= 001000101110000011011010111101\dots}_{S_{12}=111} 011\dots_{S_{13}=101} \\ \end{split}$$

Table 2.4: Example of a Lempel-Ziv code.

position	subsequence		numerical	binary	
	$\dot{S_n}$		representation	codeword	
1	S_1	0			
2	S_2	1			
3	S_3	00	1 1	$001 \ 0$	
4	S_4	10	21	$010 \ 0$	
5	S_5	001	$3\ 2$	$011 \ 1$	
6	S_6	01	$1 \ 2$	001 1	
7	S_7	11	2 2	$010 \ 1$	
8	S_8	000	$3 \ 1$	$011 \ 0$	
9	S_9	0011	$5\ 2$	$101 \ 1$	
10	S_{10}	011	$6\ 2$	$110 \ 1$	
11	S_{11}	010	$6\ 1$	$110 \ 0$	
12	S_{12}	111	$7\ 2$	111 1	
13	S_{13}	101	42	100 1	

Lempel-Ziv Codeword

 $S_C = 0010 \ 0100 \ 0111 \ 0011 \ 0101 \ 0110 \ 1011 \ 1101 \ 1100 \ 1111 \ 1001$

Compression Comparison

Compression as a percentage of the original file size

File Type	UNIX Compact Adaptive Huffman	UNIX Compress Lempel-Ziv-Welch
ASCII File	66%	44%
Speech File	65%	64%
Image File	94%	88%

Compression Comparison

Compressed to (percentage):	Lempel-Ziv (unix gzip)	Huffman (unix pack)
html (25k) Token based ascii file	20%	65%
pdf (690k) Binary file	75%	95%
ABCD (1.5k) Random ascii file	33%	28.2%
ABCD(500k) Random ascii file	29%	28.1%

ABCD – $\{p_A = 0.5, p_B = 0.25, p_C = 0.125, p_D = 0.125\}$

Lempel-Ziv is asymptotically optimal