ECE 515 Information Theory

- Consider a binary discrete memoryless source (DMS) X = {0,1} with symbol probabilities p(1) = 1/4 p(0) = 3/4
- Sequences of *N* = 20 symbols

 - 2. 1,0,1,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1

Tchebycheff Inequality

$$\eta_X \equiv E[X] = \sum_{k=1}^K p(x_k) \times x_k$$

$$\sigma_X^2 \equiv E[(X - \eta_X)^2] = \sum_{k=1}^K p(x_k) \times (x_k - \eta_X)^2$$

$$Pr\{|X - \eta_X| \ge \delta\} \le \frac{\sigma_X^2}{\delta^2}$$

Weak Law of Large Numbers

• Sequence of *N* i.i.d. RVs

$$\overline{X} = X_1, \dots, X_n, \dots, X_N$$

• Define a new RV

$$Y_N \equiv \frac{1}{N} \sum_{n=1}^N X_n$$

$$\eta_{Y_N} = \eta_X \quad \sigma_{Y_N}^2 = \frac{\sigma_X^2}{N}$$

Weak Law of Large Numbers

$$\lim_{N \to \infty} \Pr\left\{ \left| \left[\frac{1}{N} \sum_{n=1}^{N} X_n \right] - \eta_X \right| \ge \delta \right\} = 0$$

$$\lim_{N \to \infty} \Pr\left\{ \left| \left[\frac{1}{N} \sum_{n=1}^{N} X_n \right] - \eta_X \right| < \delta \right\} = 1$$

The sample average approaches the statistical mean

Asymptotic Equipartition Property

• *N* i.i.d. random variables X₁, ..., X_N

$$p(X_1, X_2, ..., X_N) = p(X_1)p(X_2)...p(X_N)$$

$$-\frac{1}{N}\log p(X_1, X_2, \dots, X_N) = -\frac{1}{N} \sum_{n=1}^N \log p(X_n) \to -E[\log p(X)] = H(X)$$

as $N \to \infty$

- RV X where $p(x_k) = p_k$
- Consider a sequence x of length N where x_k appears approximately Np_k times

$$p(\mathbf{x}) \approx p_1^{Np_1} p_2^{Np_2} \cdots p_k^{Np_k}$$

= $\prod_{k=1}^{K} p_k^{Np_k} = \prod_{k=1}^{K} ((2^{\log_2 p_k})^{Np_k})$
= $\prod_{k=1}^{K} 2^{Np_k \log_2 p_k} = 2^{N \sum_{k=1}^{K} p_k \log_2 p_k}$
= $2^{-NH(X)}$

- Binary RV X where $p(x_1) = p$ and $p(x_2) = 1-p$
- The number of sequences **x** of length N with $Np x_1$'s is $\binom{N}{Np} = \frac{N!}{(Np)!(N(1-p))!}$
- Stirling's approximation

$$n! \approx \sqrt{2\pi n} n^n e^{-n}$$

$$\binom{N}{Np} \approx \frac{N^{N} e^{-N}}{(Np)^{Np} e^{-Np} (N(1-p))^{N(1-p)} e^{-N(1-p)}}$$

$$= \frac{1}{p^{Np} (1-p)^{N(1-p)}}$$

$$= p^{-Np} (1-p)^{-N(1-p)}$$

$$= 2^{-Np \log p - N(1-p) \log(1-p)}$$

$$= 2^{N(-p \log p - (1-p) \log(1-p))}$$

$$= 2^{NH(X)}$$

- Consider a binary discrete memoryless source (DMS) X = {0,1} with symbol probabilities p(1) = 1/4 p(0) = 3/4
- H(X) = 0.811 bit
- Sequences of *N* = 20 symbols
- $2^{-NH(X)} = 1.3050 \times 10^{-5}$
- $2^{NH(X)} = 76627$

Summary

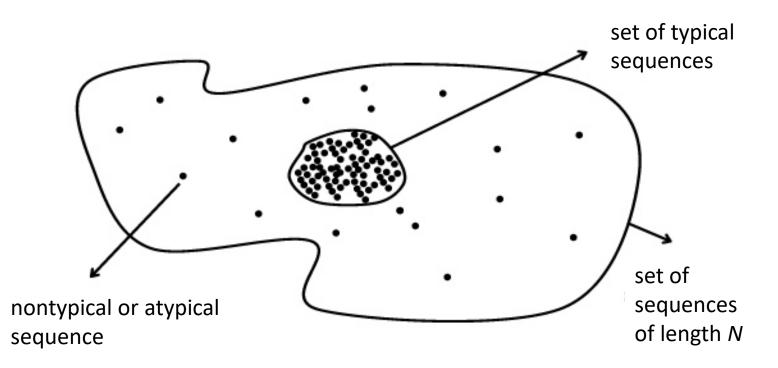
• The Tchebycheff inequality was used to prove the weak law of large numbers (WLLN)

– the sample average approaches the statistical mean as $N \rightarrow \infty$

- The WLLN was used to prove the AEP $-\frac{1}{N}\sum_{n=1}^{N} \log p(X_n) \rightarrow H(X) \text{ as } N \rightarrow \infty$
- A typical sequence has probability $p(\mathbf{x}) \approx 2^{-NH(X)}$
- There are about $2^{NH(X)}$ typical sequences of length N

$$\mathcal{T}_X(\delta) \equiv \{\mathbf{x} \colon |-\frac{1}{N}\log_b p(\mathbf{x}) - H(X)| < \delta\}$$

$$\mathcal{T}_X^c(\delta) \equiv \{\mathbf{x} : \left| -\frac{1}{N} \log_b p(\mathbf{x}) - H(X) \right| \ge \delta \}$$



Interpretation

- Although there are very many results that may be produced by a random process, the one actually produced is most probably from a set of outcomes that all have approximately the same chance of being the one actually realized.
- Although there are individual outcomes which may have a higher probability than outcomes in this set, the vast number of outcomes in the set almost guarantees that the outcome will come from the set.
- ``Almost all events are almost equally surprising" Cover and Thomas

• From the definition, the probability of occurrence of a typical sequence p(**x**) is

$$b^{-N[H(X)+\delta]} < p(\mathbf{x}) < b^{-N[H(X)-\delta]}$$

- $p(x_1) = p(1) = 1/4$ $p(x_2) = p(0) = 3/4$
- H(X) = 0.811 bit
- *N* = 3
- $p(x_1, x_1, x_1) = 1/64$
- $p(x_1, x_1, x_2) = p(x_1, x_2, x_1) = p(x_2, x_1, x_1) = 3/64$
- $p(x_1, x_2, x_2) = p(x_2, x_2, x_1) = p(x_2, x_1, x_2) = 9/64$
- $p(x_2, x_2, x_2) = 27/64$

• $H(X) = 0.811 \text{ bit } N = 3 \quad b = 2$

$$2^{-3[.811+\delta]} < p(x_1, x_2, x_3) < 2^{-3[.811-\delta]}$$

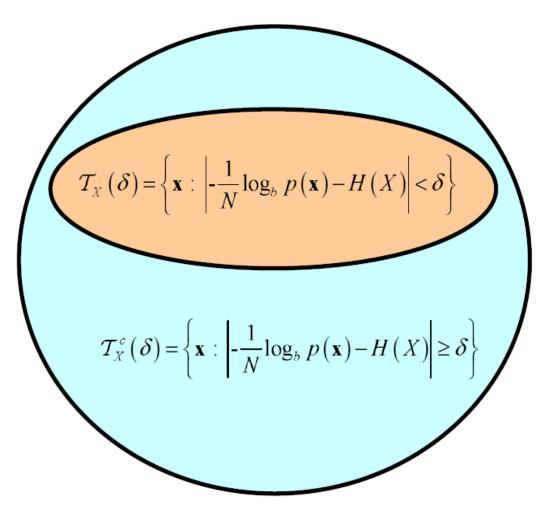
- x_1, x_1, x_1 1/64 = 2^{-3[.811+1.199]}
- x_1, x_1, x_2 3/64 = 2^{-3[.811+0.661]}
- x_1, x_2, x_2 9/64 = 2^{-3[.811+0.132]}
- x_2, x_2, x_2 27/64 = 2^{-3[.811-0.395]}

• If $\delta = 0.2$ the typical sequences are

 $-(x_1, x_2, x_2), (x_2, x_1, x_2), (x_2, x_2, x_1)$ with probability 0.422 (1,0,0), (0,1,0), (0,0,1)

- If $\delta = 0.4$ the typical sequences are
 - $-(x_1, x_2, x_2), (x_2, x_1, x_2), (x_2, x_2, x_1), (x_2, x_2, x_2)$ with probability 0.844 (1,0,0), (0,1,0), (0,0,1), (0,0,0)

$ Occurrences of x_1 n $	Number of sequences $\binom{N}{n}$	Probability of each sequence $p(x_1)^n \ p(x_2)^{N-n}$		Probability of all sequences $\binom{N}{n} p(x_1)^n p(x_2)^{N-n}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1\\ 20\\ 190\\ 1140\\ 4845\\ 15504\\ 38760\\ 77520\\ 125970\\ 167960\\ 184756\\ 167960\\ 125970\\ 77520\\ 38760\\ 125970\\ 77520\\ 38760\\ 15504\\ 4845\\ 1140\\ 190\end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$2^{-20\times0,415}$ $2^{-20\times0,494}$ $2^{-20\times0,574}$ $2^{-20\times0,574}$ $2^{-20\times0,653}$ $2^{-20\times0,732}$ $2^{-20\times0,811}$ $2^{-20\times0,970}$ $2^{-20\times1,049}$ $2^{-20\times1,128}$ $2^{-20\times1,287}$ $2^{-20\times1,287}$ $2^{-20\times1,366}$ $2^{-20\times1,445}$ $2^{-20\times1,604}$ $2^{-20\times1,604}$ $2^{-20\times1,663}$ $2^{-20\times1,762}$ $2^{-20\times1,842}$	0,003171 0,021141 0,066948 0,133896 0,189685 0,202331 0,168609 0,112406 0,060887 0,027061 0,009922 0,003007 0,000752 0,000752 0,000154 0,000026 0,000003 0,000000 0,000000 0,000000
19 20	20 1	$\begin{array}{rcl} 2,728\times 10^{-12} & = \\ 9,095\times 10^{-13} & = \end{array}$	$2^{-20\times1,921} \\ 2^{-20\times2,000}$	0,000000 0,000000



- Random variable X
- Alphabet size K
- Entropy H(X)
- Arbitrary number δ >0
- Sequences x of blocklength N≥N₀ and probability p(x)

•
$$\left\| \mathsf{T}_{X}(\partial) \right\| + \left\| \mathsf{T}_{X}^{c}(\partial) \right\| = K^{N}$$

Shannon-McMillan Theorem

a) The probability that a particular sequence \mathbf{x} of blocklength N belongs to the set of atypical sequences $\mathcal{T}_X^c(\delta)$ is upperbounded as:

$$Pr[\mathbf{x} \in \mathcal{T}_X^c(\delta)] < \epsilon$$

b) If a sequence \mathbf{x} is in the set of typical sequences $\mathcal{T}_X(\delta)$ then its probability of occurrence $p(\mathbf{x})$ is approximately equal to $b^{-NH(X)}$, that is:

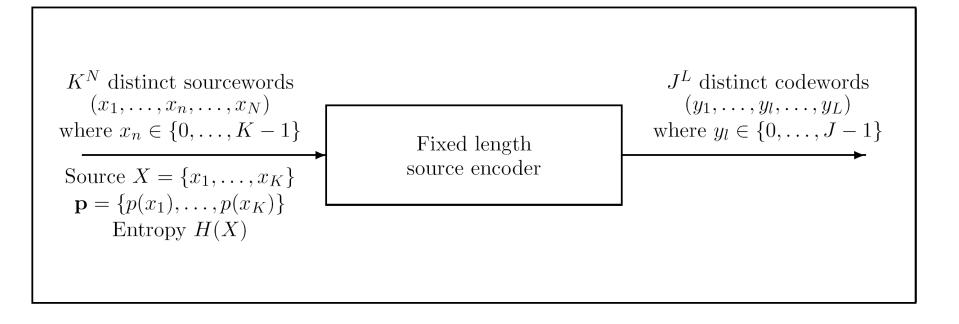
$$b^{-N[H(X)+\delta]} < p(\mathbf{x}) < b^{-N[H(X)-\delta]}$$

c) The number of typical, or likely, sequences $\|\mathcal{T}_X(\delta)\|$ is bounded by:

$$(1-\epsilon)b^{N[H(X)-\delta]} < \|\mathcal{T}_X(\delta)\| < b^{N[H(X)+\delta]}$$

- The essence of source coding or data compression is that as N→∞, atypical sequences almost never appear as the output of the source.
- Therefore, one can focus on representing typical sequences with codewords and ignore atypical sequences.
- Since there are only about 2^{NH(X)} typical sequences of length N, and they are approximately equiprobable, it takes about NH(X) bits to represent them.
- On average it takes H(X) bits to represent a source symbol.

Fixed Length Source Compaction Codes



Fixed Length Source Compaction Codes

- If J^L < K^N we cannot uniquely encode all source words with length L codewords
- Two questions
 - 1. How small can J^{L} be such that performance is acceptable?
 - 2. How should sourcewords be encoded to length *L* codewords for unique decodability?

The number of typical sequences satisfies

$$\left\|T_{X}(\delta)\right\| < b^{N[H(X)+\delta]}$$

so encoding all typical sequences with length *L* codewords requires that

$$J^{L} \geq b^{N[H(X)+\delta]}$$

 Although the set of atypical sequences may be large, the Shannon-McMillan Theorem ensures that

 $Pr[\mathbf{x} \in \mathcal{T}_X^c(\delta)] < \epsilon$

- Thus it is possible to encode sourcewords with an arbitrarily small block decoding failure probability P_e provided that
 - $-L\log_{b}J > NH(X)$
 - N is sufficiently large

- K = J = 2
- $p(x_1) = 0.1$ $p(x_2) = 0.9$ H(X) = 0.469 bit
- Choose *N* = 4, *L* = 3

$$R = \frac{L}{N} = \frac{3}{4} > H(X)$$

Partition the 16 sourcewords into 7 typical sequences and 9 atypical sequences

$$p(x_1)^4 = 0.0001 \qquad \binom{4}{4} = 1 \text{ sourceword}$$

$$p(x_1)^3 p(x_2) = 0.0009 \qquad \binom{4}{3} = 4 \text{ sourcewords}$$

$$p(x_1)^2 p(x_2)^2 = 0.0081 \qquad \binom{4}{2} = 6 \text{ sourcewords}$$

$$p(x_1) p(x_2)^3 = 0.0729 \qquad \binom{4}{1} = 4 \text{ sourcewords}$$

$$p(x_2)^4 = 0.6561 \qquad \binom{4}{0} = 1 \text{ sourceword}$$

The Code

Typical	
Sequence	Codeword
$x_{2}x_{2}x_{2}x_{2}x_{2}$	000
$x_1 x_2 x_2 x_2$	100
$x_2 x_1 x_2 x_2$	010
$x_2 x_2 x_1 x_2$	001
$x_{2}x_{2}x_{2}x_{1}$	110
$x_1 x_1 x_2 x_2$	101
$x_1 x_2 x_1 x_2$	011

The Code

Atypical Sequence $x_1 x_2 x_2 x_1$ $x_2 x_1 x_1 x_2$ $x_2 x_1 x_2 x_1$ $x_2 x_2 x_1 x_1$ $X_1 X_1 X_1 X_2$ $x_1 x_1 x_2 x_1$ $X_1 X_2 X_1 X_1$ $x_2 x_1 x_1 x_1$ $X_1 X_1 X_1 X_1$

Codeword	or	Codeword
111 0000		111 000 000
111 1000		111 001 000
111 0100		111 010 000
111 0010		111 011 000
111 0001		111 100 000
111 1100		111 101 000
111 1010		111 110 000
111 1001		111 111 000
111 0110		111 111 001

Code Rate

• The actual code rate is

$$R = \frac{.9639 \times 3 + .0361 \times 7}{4} = \frac{3}{4} + .0361 = .7861$$

- K = J = 2
- $p(x_1) = 0.1$ $p(x_2) = 0.9$ H(X) = 0.469 bit
- Choose *N* = 8, *L* = 6

$$R = \frac{L}{N} = \frac{6}{8} = \frac{3}{4} > H(X)$$

Partition the 256 sourcewords into 63 typical sequences and 193 atypical sequences

$$p(x_1)^8 = 1.0000 \times 10^{-8}$$

$$p(x_1)^7 p(x_2) = 9.0000 \times 10^{-8}$$

$$p(x_1)^6 p(x_2)^2 = 8.1000 \times 10^{-7}$$

$$p(x_1)^5 p(x_2)^3 = 7.2900 \times 10^{-6}$$

$$p(x_1)^4 p(x_2)^4 = 6.5610 \times 10^{-5}$$

$$p(x_1)^3 p(x_2)^5 = 5.9049 \times 10^{-4}$$

$$p(x_1)^2 p(x_2)^6 = 5.3144 \times 10^{-3}$$

$$p(x_1) p(x_2)^7 = 4.7830 \times 10^{-2}$$

$$p(x_2)^8 = 4.3047 \times 10^{-1}$$

 $\binom{8}{8} = 1$ sourceword $\binom{8}{7} = 8$ sourcewords $\binom{8}{6} = 28$ sourcewords $\binom{8}{5} = 56$ sourcewords $\binom{8}{4} = 70$ sourcewords $\binom{8}{3} = 56$ sourcewords $\binom{8}{2} = 28$ sourcewords $\binom{8}{1} = 8$ sourcewords $\binom{8}{0} = 1$ sourceword

Code Rate

• For *N* = 8, *L* = 6 the actual code rate is

$$R = \frac{.9773 \times 6 + .0227 \times 14}{8} = \frac{3}{4} + .0227 = .7727$$

Theorem (Converse of the Source Coding Theorem)

Let $\epsilon > 0$. Given a memoryless source X of entropy H(X), a codeword alphabet size J and a codeword length L, if:

- a) $L \log_b J < NH(X)$ and
- b) $N \ge N_0$

then the probability of decoding failure P_e is lower bounded by:

 $P_e > 1 - \epsilon$

- K = J = 2
- $p(x_1) = 0.3$ $p(x_2) = 0.7$ H(X) = 0.881 bit
- Choose *N* = 4, *L* = 3

$$R = \frac{L}{N} = \frac{3}{4} < H(X)$$

Partition the 16 sourcewords into 7 typical sequences and 9 atypical sequences

$$p(x_1)^4 = 2.4010 \times 10^{-1} \qquad \binom{4}{4} = 1 \text{ sourceword}$$

$$p(x_1)^3 p(x_2) = 1.0290 \times 10^{-1} \qquad \binom{4}{3} = 4 \text{ sourcewords}$$

$$p(x_1)^2 p(x_2)^2 = 4.4100 \times 10^{-2} \qquad \binom{4}{2} = 6 \text{ sourcewords}$$

$$p(x_1) p(x_2)^3 = 1.8900 \times 10^{-2} \qquad \binom{4}{1} = 4 \text{ sourcewords}$$

$$p(x_2)^4 = 8.1000 \times 10^{-3} \qquad \binom{4}{0} = 1 \text{ sourcewords}$$

- K = J = 2
- $p(x_1) = 0.3$ $p(x_2) = 0.7$ H(X) = 0.881 bit
- Choose *N* = 8, *L* = 6

$$R = \frac{L}{N} = \frac{6}{8} = \frac{3}{4} < H(X)$$

Partition the 256 sourcewords into 63 typical sequences and 193 atypical sequences

$$p(x_1)^8 = 6.5610 \times 10^{-5}$$

$$p(x_1)^7 p(x_2) = 1.5309 \times 10^{-4}$$

$$p(x_1)^6 p(x_2)^2 = 3.5721 \times 10^{-4}$$

$$p(x_1)^5 p(x_2)^3 = 8.3349 \times 10^{-4}$$

$$p(x_1)^4 p(x_2)^4 = 1.9448 \times 10^{-3}$$

$$p(x_1)^3 p(x_2)^5 = 4.5379 \times 10^{-3}$$

$$p(x_1)^2 p(x_2)^6 = 1.0588 \times 10^{-2}$$

$$p(x_1) p(x_2)^7 = 2.4706 \times 10^{-2}$$

$$p(x_2)^8 = 5.7648 \times 10^{-2}$$

 $\binom{8}{8} = 1$ sourceword $\binom{8}{7} = 8$ sourcewords $\binom{8}{6} = 28$ sourcewords $\binom{8}{5} = 56$ sourcewords $\binom{8}{4} = 70$ sourcewords $\binom{8}{3} = 56$ sourcewords $\binom{8}{2} = 28$ sourcewords $\binom{8}{1} = 8$ sourcewords $\binom{8}{0} = 1$ sourceword

Fixed Length Source Compaction Codes

- If R > H(X), as $N \rightarrow \infty P_e \rightarrow 0$
- If R < H(X), as $N \rightarrow \infty P_e \rightarrow 1$