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Abstract. The perceptron predictor is a highly accurate branch pre-
dictor. Unfortunately this high accuracy comes with high complexity.
The high complexity is the result of the large number of computations
required to speculate each branch outcome.

In this work we aim at reducing the computational complexity for
the perceptron predictor. We show that by eliminating unnecessary data
from computations, we can reduce both predictor’s power dissipation
and delay. We show that by applying our technique, predictor’s dynamic
and static power dissipation can be reduced by up to 52% and 44%
respectively. Meantime we improve performance by up to 16% as we
make faster prediction possible.

1 Introduction

The perceptron branch predictor is highly accurate. The high accuracy is the
result of exploiting long history lengths [1] and is achieved at the expense of high
complexity.

Perceptron relies on exploiting behavior correlations among branch instruc-
tions. To collect and store as much information as possible, perceptron uses sev-
eral counters per branch instruction. Such counters use multiple bits and record
how each branch correlates to previously encountered branch instructions. The
predictor uses the counters and performs many steps before making the pre-
diction. These steps include reading the counters and the outcome history of
previously encountered branches and calculating the vector product of the two.

In this study we introduce power optimizations for perceptron. We show that
while the conventional scheme provides high prediction accuracy, it is not effi-
cient from the energy point of view. This is mainly due to the observation that
not all the computations performed by perceptron are necessary. In particular,
computations performed on counter lower bits are often unnecessary as they
do not impact the prediction outcome. We exploit this phenomenon and reduce
power dissipation by excluding less important bits from the computations.

We rely on the above observation and suggest eliminating the unnecessary
bits from the computation process. We propose an efficient scheme to reduce
the number of computations and suggest possible circuit and system level im-
plementations.
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Power optimization techniques often trade performance for power. In this
work, however, we not only reduce power but also improve processor perfor-
mance. Performance improvement is possible since eliminating unnecessary com-
putations results in faster and yet highly accurate prediction. We reduce the
dynamic and static power dissipation associated with predictor computations
by 52% and 44% respectively while improving performance up to 16%.

The rest of the paper is organized as follows. In Section 2 we discuss per-
ceptron background. In Section 3 we discuss the motivation. In Sections 4 we
introduce our optimization. In Section 5 we explain our simulations methodology
and report results. In Section 6 we discuss related work. In Section 7 we offer
concluding remarks.

2 Background

The perceptron branch predictor [1] uses multiple weights to store correlations
among branch instructions. For each branch instruction, perceptron uses a weight
vector which stores the correlation between the branch and previously encoun-
tered branch instructions.

As presented in Figure 1, the perceptron predictor takes the following steps
to make a prediction. First, the predictor loads the weight vector correspond-
ing to the current branch instruction. Second, each weight is multiplied by the
corresponding outcome history from the history vector. Third, an adder tree
computes the sum of all the counters. Fourth, the predictor makes prediction
based on the sum’s sign. For positive summations, the predictor assumes a taken
branch otherwise the predictor assumes a not taken branch.

The outcome history is essentially a bit array, in which “0”s and “1”s repre-
sent not taken and taken outcomes respectively. However, in the multiplication
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Fig. 1. The perceptron branch predictor using weight vector and history vector. The
dot product of the two vectors is used to make the prediction.
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process, “0”s are treated as “-1”, meaning that the corresponding weight must
be negated.

At the update time, the behavioral correlation among branch instructions is
recorded. The predictor updates the weights vector using the actual outcome of
the branch instruction. Each weight is incremented if branch’s outcome conforms
to the corresponding outcome history. Otherwise the weight is decremented.

3 Motivation

As presented in Figure 1, the perceptron predictor uses two vectors per branch
instruction. For every direction prediction, the predictor computes the dot prod-
uct of the two vectors.

The complexity of the computations involved in the dot product calculation
makes it a slow and energy hungry one. This process requires an adder tree,
with a size and complexity proportional to the size of the vectors and weights’
widths. The wider the weights are, the more complex the summation process
will be. Note that the perceptron predictor proposed in [1] uses 8-bit counters to
achieve the best accuracy. Furthermore, in order to achieve high accuracy, long
history lengths, resulting in long vectors, are required [1]. This also substantially
increases adder tree’s size and complexity.

In this study we show that the conventional perceptron predictor is not effi-
cient from the energy point of view. This is the result of the fact that not all
counter bits are equally important in making accurate predictions. Accordingly,
higher order bits of the weights play a more important role in deciding the final
outcome compared to lower order bits. In Figure 2 we present an example to
provide better understanding.

×

Fig. 2. The first calculation uses all bits and predicts the branch outcome as “not
taken”. The second one uses only higher bits (underlined) and results in the same
direction.

To investigate this further, in Figure 3 we report how often excluding the lower
n bits of each counter impacts prediction outcome. As reported, on average,
0.3%, 1.0%, 4.0%, 13.7%, and 25.8% of time eliminating the lower one to five
bits results in a different outcome respectively. This difference is worst (45%)
when the lower five bits are excluded for bzip2 (see Section 5 for methodology).
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Fig. 3. How often removing the lower n bits from the computations results in a different
outcome compared to the scenario where all bits are considered. Bars from left to right
report for scenarios where one, two, three, four or five lower bits are excluded.

We conclude from Figure 3 that eliminating lower order bits (referred to as
LOBs) of the weights from the prediction process and using only higher order
bits (referred to as HOBs) would not significantly affect predictor’s accuracy.
We use this observation and reduce predictor’s latency and power dissipation.

4 LOB Elimination

Considering the data presented in Section 3, we suggest eliminating the LOBs
of the weights from the lookup and summation process. We modify the adder
tree to bypass the LOBs of the weights, and perform the summation only over
HOBs.

Excluding LOBs from the summation process reduces the size and complexity
of the adder tree required. Therefore, a smaller and faster adder can be used.
This will result in a faster and more power efficient lookup process.

As we show in this work, LOBs have very little impact on the prediction
outcome at the lookup stage. However, it is important to maintain all bits,
including LOBs, at the update stage. This is necessary to assure recording as
much correlation information as possible. Therefore, we do not exclude LOBs
at the update stage and increment/decrement weights taking into account all
counter bits.

In Figure 4 we present the modified prediction scheme. The adder tree does
not load or use all counter bits. Instead, the adder tree bypasses the LOBs of the
weights, and performs the summation process only on the HOBs. Eliminating
LOBs reduces power but can, in principle, impact accuracy and performance.

4.1 Accuracy vs. Delay

By eliminating LOBs from the lookup process, we reduce the prediction latency
at the cost of accuracy loss. However, a previous study on branch prediction
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Fig. 4. The optimized adder tree bypasses LOBs of the elements and performs the
addition only on the HOBs. Eliminating LOBs results in a smaller and faster adder
tree.

delay shows that a relatively accurate single-cycle latency predictor outperforms
a 100% accurate predictor with two cycles of latency [2].

To investigate whether the same general trade-off is true for perceptron, we
study if the prediction speedup obtained by eliminating LOBs is worth the ac-
curacy cost. In Section 5 we show that for the benchmarks used in this work
the performance improvements achieved by faster prediction outweigh the cost
associated with the extra mispredictions.

4.2 Power

By eliminating LOBs from the lookup process, we reduce both the dynamic and
the static power dissipated by the predictor. First, fewer bits are involved in the
computations, reducing the overall activity and dynamic power. Second, as we
reduce the adder tree’s size, we exploit fewer gates, reducing the overall static
power.

As we eliminate LOBs from the computations necessary at the prediction time,
reading all bit lines of the weight vector is no longer necessary. One straightfor-
ward mechanism to implement this is to decouple LOBs and HOBs. To this end,
we store LOBs and HOBs in two separate tables.

As presented in Figure 5, at the prediction time, the predictor accesses only
the tables storing HOBs, saving the power dissipated for accessing LOBs in the
conventional perceptron predictor. Note that while we save the energy spent
on wordline, bitline and sense amplifiers, we do not reduce the decoder power
dissipation as we do not reduce the number of table entries.
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Fig. 5. Predictor table is divided to HOB and LOB tables. Only the HOB table is
accessed at the prediction time.

5 Methodology and Results

For our simulations, we modify the SimpleScalar tool set [3] to include the con-
ventional perceptron branch predictor and our proposed optimization. We use
Simpoint [4] to identify representative 500 million instruction regions of the
benchmarks. We use a subset of SPEC2K-INT benchmarks for our simulations.

Table 1 reports the baseline processor used in our study. For predictor con-
figuration, we use the 64Kb budget global perceptron predictor proposed in [1].

For predictor power and timing reports, we use Synopsys Design Compiler
synthesis tool assuming the 180 nm technology. We use the high effort opti-
mization option of the Design Compiler, and optimize the circuit for delay. We
simulated both the conventional and the optimized perceptron predictors.

Since we assume that table read time remains intact, for timing reports, we
only measure the time the adder tree requires.

For our simulations, we assume the processor has a 1GHz frequency.
For simplicity, we use the notation of PER-n to refer to a perceptron predictor

modified to eliminate the lower n bits from the computations.

Table 1. Processor Microarchitectural Configurations

Fetch/Decode/Commit 6
BTB 512

L1 I-Cache 32 KB, 32B blk, 2 way
L1 D-Cache 32 KB, 32B blk, 4 way

L2 Unified-Cache 512 KB, 64B blk, 2 way
L2 Hit Latency 6
L2 Miss Latency 100
Predictor Budget 64Kbits
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Fig. 6. Time/cycle required to compute the dot product

Fig. 7. Power reduction for the adder tree compared to the conventional perceptron.
Results are shown for PER-1, PER-2, PER-3, PER-4 and PER-5.

5.1 Timing

Figure 6 reports time (in nanoseconds) and the number of cycles required to
compute the predictor computation result. We report results for the original
perceptron predictor and five optimized versions. As reported, the original pre-
dictor takes 7 clock cycles to compute the result. By eliminating one bit from
the computation process no clock cycle is saved. However, removing two, three
or four bits saves one clock cycle and removing five bits saves two clock cycles.
We use these timings in our simulations to evaluate the optimized predictors.

5.2 Power Dissipation

Figure 7 reports the reduction in both static and dynamic power dissipation
for the predictor’s adder tree. Results are obtained by gate level synthesis of the
circuit. Eliminating one to five bits saves from 13% to 52% of the dynamic power
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Fig. 8. Prediction accuracy for the conventional perceptron predictor and five opti-
mized versions, PER-1, PER-2, PER-3, PER-4 and PER-5. The accuracy loss is neg-
ligible except for PER-5.
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Fig. 9. Performance improvement compared to a processor using the conventional per-
ceptron predictor. Results are shown for processors using PER-1, PER-2, PER-3, PER-
4 and PER-5 predictors.

and 8% to 44% of the static power dissipation. This is the result of exploiting
smaller adders.

5.3 Prediction Accuracy

As we use fewer bits to make predictions, we can potentially harm accuracy.
To investigate this further in Figure 8 we compare prediction accuracy for six
different predictors: The original perceptron predictor, PER-1, PER-2, PER-3,
PER-4 and PER-5. As reported, average misprediction is 4.80% 4.81% 4.82%
4.85% 5.04% 5.48% for perceptron, PER-1, PER-2, PER-3, PER-4 and PER-5
respectively.
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5.4 Performance

Figure 9 reports processor’s overall performance compared to a processor using
the original perceptron predictor. We report for five different processors using
PER-1, PER-2, PER-3, PER-4 and PER-5 branch predictors. As reported, aver-
age IPCs are 1.15 1.15 1.25 1.25 1.35 1.43 for Perceptron, PER-1, PER-2, PER-3,
PER-4 and PER-5 respectively.

Although the optimized perceptron predictor achieves slightly lower accuracy
compared to the original one, the overall processor performance is higher. As
explained earlier, this is the result of achieving faster prediction by eliminating
LOBs.

6 Related Work

Vintan and Iridon [5] suggested Learning vector quantization (LVQ), a neural
method for branch prediction. LVQ prediction is about as accurate as a table-
based branch predictor. However, LVQ comes with implementation difficulties.

Aasaraai and Baniasadi [6] used the same technique used in this work on
the O-GEHL branch predictor. They showed that power savings are possible
by eliminating lower order bits from computations involved in the O-GEHL
branch predictor. They also use disabling technique in [7] to improve the power
efficiency of the perceptron branch predictor. They reduced perceptron power
dissipation by utilizing as much resources as needed according to the branch
behavior, effectively reducing overall number of computations.

Loh and Jimenez [8] introduced two optimization techniques for perceptron.
They proposed a modulo path-history mechanism to decouple the branch out-
come history length from the path length. They also suggested bias-based fil-
tering exploiting the fact that neural predictors can easily track strongly biased
branches whose frequencies are high. Therefore, the number of accesses to the
predictor tables is reduced due to the fact that only bias weight is used for
prediction.

Parikh et al. explored how branch predictor impacts processor power dissipa-
tion. They introduced banking to reduce the active portion of the predictor. They
also introduced prediction probe detector (PPD) to identify when a cache line
has no branches so that a lookup in the predictor buffer/BTB can be avoided [9].

Baniasadi and Moshovos introduced Branch Predictor Prediction (BPP) [10].
They stored information regarding the sub-predictors accessed by the most re-
cent branch instructions executed and avoided accessing underlying structures.
They also introduced Selective Predictor Access (SEPAS) [11] which selectively
accessed a small filter to avoid unnecessary lookups or updates to the branch
predictor.

Huang et al. used profiling to reduce branch predictor’s power dissipation [12].
They disabled tables that do not improve accuracy and reduced BTB size for
applications with low number of static branches.
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Our work is different from all the above studies as it eliminates unnecessary
and redundant computations for the perceptron predictor to reduce power. Un-
like many previously suggested techniques, our optimizations do not come with
any timing or power overhead as we do not perform any extra computation or
use any additional storage.

7 Conclusion

In this work we presented an alternative power-aware perceptron branch predic-
tor. We showed that perceptron uses unnecessary information at the prediction
time to perform branch direction prediction. We also showed that eliminating
such unnecessary information from the prediction procedure does not impose
substantial accuracy loss. We reduced the amount of information used at the
prediction time, and showed that it is possible to simplfiy the predictor struc-
ture, reducing both static and dynamic power dissipation of the predictor.

Moreover, we showed that by avoiding such computations it is possible to
achieve faster branch prediction. Consequently, we improved the overall proces-
sor performance despite the slightly lower prediction accuracy.
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