
ABSTRACT
 Intel�s XScale which has powered many multimedia applica-

tions uses scoreboard to execute instructions. Scoreboard stalls the
pipeline whenever a source operand or functional unit is needed
but not available. While waiting for the availability of the
resources, the processor accesses the scoreboard every cycle. Such
accesses consume energy without contributing to performance.

We address this inefficiency by investigating stall behavior
and introducing heuristics to avoid regular access to the score-
board during stall periods.

Our study shows that by using our technique and for the rep-
resentative subset of MiBench benchmark suite studied here, it is
possible to eliminate up to 85% of the useless accesses while main-
taining performance cost within 0.5%.

1. INTRODUCTION
The Intel XScale processor has powered multimedia cell

phones, handheld computers, in-vehicle (telematics) systems and
other wireless Internet products.

Examples of the Intel XScale applications include HP’s iPAQ
pocket PC H3900 series [1], handheld devices from Fujitsu,
Toshiba and Casio Computer [2], Dell Axim X5 handheld [3], and
Intergrity RTOS that uses the Intel XScale to deliver high reliabil-
ity [4].

The complexity associated with detecting, and dealing with
data dependencies has become a deciding factor in processor
design. With increases in execution bandwidth, processor fre-
quency and the necessity for maintaining power within practical
limits, it has become very difficult to accommodate complex algo-
rithms in any superpipelined processor including the Intel XScale.
Accordingly, Intel XScale uses a stall-based scoreboard to reduce
the complexity associated with detecting data hazards.

XScale uses scoreboard to control the bypass logic and to
direct instruction issuing [5]. XScale checks the availability of
source operands and functional units at the RF (registerfile/shifter)
stage. If either of them is not available, the scoreboard stalls the
pipeline. Quite often, the pipeline may stall for several consecutive
cycles as it may take sometime before the required data or func-
tional unit becomes available. For example, a cache miss, may
result in a long latency memory access which can take several
cycles. During this waiting period the scoreboard is accessed fre-
quently and regularly without contributing to performance. This is
inefficient as it results in extra power dissipation.

In this work we study stall cycle distribution and use our find-
ings to introduce energy optimization techniques for scoreboard.

Our technique relies on the observation that instructions that
stall the pipeline in a scoreboard-based processor tend to repeat
their behavior. We use this to predict when an instruction will stall
the pipeline and avoid accessing the scoreboard during the stall
period.

We show that by using a very small filter referred to as the
Scoreboard Access Filter (SAF) we can eliminate a considerable
number of useless scoreboard accesses while maintaining perfor-
mance.

To the best of our knowledge this is the first work to introduce
power optimization techniques for scoreboard.

The rest of the paper is organized as follows. In Section 2 we
discuss stall cycle distribution in more detail. In Section 3 we
introduce stall prediction. In Section 4 we present our experimental
evaluation. Finally, in Section 5, we summarize our findings.

2. Stall Cycle Accounting
Our goal is to avoid unnecessary scoreboard accesses. These

are accesses made while the processor is waiting for a source oper-
and or a resource to become available. We refer to scoreboard
accesses occurring during waiting periods as extra accesses or
EAs.

The amount of energy lost due to EAs depends on how often
they occur. To investigate this further in Figure 1 we report EA fre-
quency for different benchmarks studied in this work. As pre-
sented, EA frequency can be as high as 33%.

EAs can occur both due to the unavailability of data or func-
tional units. Our study shows that, for the applications studied
here, the majority (i.e., more than 95%) of stalls are due to source
operand unavailability rather than a shortage in execution
resources.

If we had an oracle and we knew in advance when a source
operand or functional unit becomes ready we could have waited for
the moment and avoided all the waisted accesses. Of course, we
cannot have such an oracle and do not know when the source oper-
and or execution unit would be ready. An alternative, therefore, is
to speculate or predict the availability time.

3. Stall Prediction
We have observed that instructions stalling the scoreboard

show a repeating behavior.
In Figure 2 we report stall predictability as measured by an

infinite size predictor. Figure 2 reports how often an instruction
stalling the scoreboard stalls the scoreboard next time encountered.
Minimum predictably is 76% while maximum predictability is

Power-Aware Scoreboard for Multimedia Processors

Amirali Baniasadi Babak Salamat
 ECE Department, University of Victoria Information and Computer Science Department
 Victoria, Canada University of California, Irvine
 amirali@ece.uvic.ca bsalamat@uci.edu

more than 99%. As presented there is an average chance of 97%
that an instruction stalling the pipeline last time will do so again.

We conclude from Figure 2 that there is an opportunity to pre-
dict EAs.

To predict the stalls, we use a small PC-indexed table where a
saturating counter is associated with every table entry. We refer to
this table as the scoreboard access filter or SAF. Figure 3 shows the
schematic of SAF-enhanced pipeline. When an instruction causes a
pipeline stall, we update SAF by incrementing the corresponding
counter; otherwise, we decrement the counter. We use saturating
counters to detect the most common behavior rather than following
the last behavior as our study shows that this maintains perfor-
mance more effectively.

We probe SAF prior to accessing the scoreboard. We do not
allow the instruction to access the scoreboard (and to check

resource and data availability) if the corresponding SAF counter
entry has a counter saturated to the maximum. We refer to this as
gating scoreboard access. Once an instruction is predicted to stall
the pipeline we avoid accessing the scoreboard for a pre-decided
number of cycles. We refer to this parameter as the gating period.
Once the gating period is over we decrement the counter and
restart regular scoreboard access.

The timing overhead associated with SAF would not impact
the critical path. SAF is accessed using instruction PC which is
available as early as fetch and at least two cycles before scoreboard
has to be accessed.

Figure 1: Stall frequency

0%
5%

10%
15%
20%
25%
30%
35%

ad
pcm

_c

blowfis
h-dec

od
e

blowfis
h-en

cod
e crc

dijk
stra fft

ghosts
cri

pt

isp
ell

jpeg
_c

lam
e

patr
ici

a
qso

rt

rijn
dae

l_e

str
ingse

arc
h

su
sa

n_e
dges

su
sa

n_s
moothing

tiff
2rg

ba

tiff
med

ian

Avera
ge

St
al

l F
re

qu
en

cy

Figure 2: Scoreboard stall predictability

50%
55%
60%
65%
70%
75%
80%
85%
90%
95%
100%

ad
pc
m_
c

blo
wf
ish
-de
co
de

blo
wf
ish
-en
co
de crc

dij
ks
tra fft

gh
os
tsc
rip
t
isp
ell

jpe
g_
c
lam
e

pa
tric
ia
qs
ort

rijn
da
el_
e

str
ing
se
arc
h

su
sa
n_
ed
ge
s

su
sa
n_
sm
oo
thi
ng

tiff
2rg
ba

tiff
me
dia
n

Av
era
ge

Pr
ed

ic
ta

bi
lit

y

4. Methodology and Results
To evaluate SAF we measure both accuracy (i.e., how often an

access predicted as an EA turns out to be one) and coverage (i.e.,
what percentage of EAs are identified by SAF).

To measure SAF accuracy and coverage we used a subset of
MiBench benchmark suite compiled for ARM instruction set. All
benchmarks were run for 100M instructions. We performed all
simulations on a modified version of the Xtrem v1.0 tool which is
an XScale simulator [6]. The configuration used for simulation is
shown in Table 1.

4.1. Accuracy and Coverage
In Figure 4 we report accuracy for 1-, 4- and 8-entry filters.

Here we assume that SAF-filter uses a gating period of one, i.e., it

gates scoreboard accesses for one cycle upon predicting a stall.
Later we report how gating scoreboard accesses for longer periods
impacts results. As presented, by using a small predictor we are
able to detect stalling instruction with a very high accuracy (i.e.,
more than 99% on average). Also note that variations in the filter
size do not impact our results. This is explained by the small foot-
print of scoreboard stalling instructions and the in-order execution
process.

In Figure 5 we report coverage for 1-, 4- and 8-entry predic-
tors. As presented coverage may vary from one application to
another. While we detect about half of the EAs for ispell, we
hardly detect any EAs for some (e.g., adpcm_c). On average we
detect more than 20% of the EAs.

As reported, a single entry table can perform as well as 4 and
8-entry filters. Therefore, in the rest of this study, we focus on a
single entry predictor as it comes with minimum area and power
overhead.

4.2. Sensitivity to Gating Period
One way to improve the coverage is to increase the gating

period. To investigate this further, in this section we report how
changing the gating period impacts coverage. In Figure 6 we report

Figure 3: SAF-enhanced Pipeline

Fetch Decode Execute Complete Commit

SAF

Sc
or

eb
oa

rd

Table 1: Configuration used for simulation

Issue In-order

Functional Units 1 I-ALU, 1 F-ALU, 1 I-
MUL/DIV, 1 F-MUL/DIV

BTB 128 entries

Main Memory Infinite 22 cycles

Inst/Data TLB 32 entries, fully associa-
tive

L1 - Instruction/Data Caches 32K, 32-way SA, 32-byte
blocks, 1 cycle

L2 Cache None

Figure 4: Accuracy of 1-, 4- and 8-entry scoreboard filters

97.0%

97.5%

98.0%

98.5%

99.0%

99.5%

100.0%

ad
pcm

_c

blowfis
h-dec

od
e

blowfis
h-en

cod
e

crc

dijk
stra fft

ghosts
cri

pt

isp
ell

jpeg
_c

lam
e

patr
ici

a
qso

rt

rijn
dae

l_e

str
ingse

arc
h

su
sa

n_e
dges

su
sa

n_s
moothing

tiff
2rg

ba

tiff
med

ian

Avera
ge

A
cc

ur
ac

y

1 entry 4 entry 8 entry

coverage when gating period is increased to two, four, eight and 16
cycles. As presented by increasing the gating period coverage is
also improved. Average EA coverage is 28%, 35%, 39% and 41%
for gating periods of two, four, eight and 16 cycles respectively.
Coverage reaches the maximum of 87% for ispell and for a gating
period of 16.

Increasing the gating period could result in imposing addi-
tional delay when the required data or resources become available
within a gating period. This, in principle, can negatively impact
performance.

To investigate this further, in Figure 7 we report performance
loss for different gating periods. Average performance loss is less

than 0.5% for all gating periods. Maximum performance loss is
0.1%, 0.3%, 0.5% and 1.5% for gating periods of two, four, eight
and 16 cycles respectively. Our study shows that increasing the
gating period to more than 16 cycles does not improve coverage
considerably but results in much higher performance loss.

The scoreboard access reduction achieved by SAF should be
viewed as an implementation-independent but indirect measure-
ment of potential energy and power savings. Currently and as a
part of our ongoing research we are investigating energy and power
savings possible by using SAF by using a combination of circuit
and microarchitectural simulations.

Figure 5: Coverage of 1-, 4- and 8-entry scoreboard filters

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

ad
pcm

_c

blowfis
h-d

ecod
e

blowfis
h-encod

e
crc

dijk
stra fft

ghosts
cr

ip
t

ispell

jpeg
_c

lam
e

patri
cia qso

rt

rij
ndae

l_e

st
rin

gsear
ch

susan_ed
ges

susa
n_sm

ooth
ing

tif
f2

rg
ba

tif
fm

ed
ian

Averag
e

C
ov

er
ag

e

1 e ntry 4 entry 8 entry

Figure 6: Coverage for gating periods of 2, 4, 8 and 16 cycles.

0%

10%
20%
30%

40%
50%

60%
70%
80%

90%

ad
pcm

_c

blowfis
h-d

ec
od

e

blowfis
h-en

cod
e

cr
c

dijk
stra fft

ghosts
cr

ipt

isp
ell

jp
eg

_c
lam

e

patr
ici

a
qso

rt

rijn
dae

l_e

str
ingse

arc
h

su
sa

n_e
dges

su
sa

n_s
m

oothing

tiff
2rg

ba

tiff
med

ian

Avera
ge

C
ov

er
ag

e

2 cycles 4 cycles 8 cycles 16 cycles

We conclude from Figure 6 and Figure 7 that it is possible to
achieve higher coverage by increasing the gating period. We also
conclude that an 8-cycle gating period provides the best balance
between coverage and performance loss.

5. Conclusion
In this work we presented a simple mechanism to eliminate

unnecessary scoreboard accesses in Intel’s XScale embedded pro-
cessor.

We showed that a considerable number of scoreboard accesses
are unnecessary as they do not contribute to performance. We stud-
ied such stalls and observed that they are mostly due to instruction
source operand unavailability rather than resource shortage. We
showed that instructions that stall the processor have a highly pre-
dictable behavior.

We use stall predictability to identify the stall periods and to
avoid accessing the scoreboard during such periods. By doing so,
on average, we remove about 40% (max: 85%) of extra scoreboard
accesses while maintaining performance.

ACKNOWLEDGMENTS
This work was supported by the Natural Sciences and Engi-

neering Research Council of Canada, Discovery Grants Program,

Canada Foundation of Innovation, New Opportunities Fund and
the University of Victoria Fellowship.

REFERENCES

[1] allnetDevices, http://www.allnetdevices.com/wireless/news/
2002/06/24/hps_ipaq.html.

[2] PC WORLD, http://www.pcworld.com/news/
article0,aid,83923,00.asp.

[3]Dell Axim X5, http://www.dell.com/us/en/gen/topics/
segtopic_axim.htm.

[4]INTEGRITY RTOS, http://www.ghs.com/download/
whitepapers/integrity-rtos-xscale.pdf.

[5]S.K. Srinivasan, and M.N. Velev, Formal Verification of an Intel
XScale Processor Model with Scoreboarding, Specialized
Execution Pipelines, and Imprecise Data-Memory Exceptions,
Formal Methods and Models for Codesign (MEMOCODE
'03), June 2003, pp. 65-74

[6]Gilberto Contreras, Margaret Martonosi, Jinzhan Peng, Roy Ju,
Guei-Yuan Lueh: XTREM: a power simulator for the Intel
XScale® core. LCTES 2004: 115-125

Figure 7: Relative performance for a SAF-enhanced processor for gating periods of 2, 4, 8 and 16 cycles.

97.5%

98.0%

98.5%

99.0%

99.5%

100.0%

ad
pcm

_c

blowfis
h-dec

od
e

blowfis
h-en

cod
e crc

dijk
stra fft

ghosts
cri

pt

isp
ell

jpeg
_c

lam
e

patr
ici

a
qso

rt

rijn
dae

l_e

str
ingse

arc
h

su
sa

n_e
dges

su
sa

n_s
moothing

tiff
2rg

ba

tiff
med

ian

Avera
ge

Pe
rfo

rm
an

ce

2 Cycles 4 Cycles 8 Cycles 16 Cycles

