
ABSTRACT
 We study the energy efficiency benefits of bypass-

ing trivial computations in high-performance proces-
sors. Trivial computations are those computations
whose output can be determined without performing the
computation. We show that bypassing trivial instruc-
tions reduces energy consumption while improving per-
formance. Our study shows that by bypassing trivial
instructions and for the subset of SPEC’2K benchmarks
studied here, on average, it is possible to improve
energy and energy-delay by up to 4.5% and 11.8% over
a conventional processor. 

1. INTRODUCTION

In this work we improve energy-efficiency in high-
performance processors by bypassing trivial instruc-
tions. A trivial instruction is an instruction whose out-
put can be determined without performing the actual
computation. For such instructions, we can determine
the results immediately based on the value of one or
both of the source operands. Examples are multiply or
add instructions where one of the input operands is
zero. 

Determining the trivial instruction result without
performing the computation will improve energy-effi-
ciency in two ways: First, it will result in faster instruc-
tion execution. This, consequently, could result in
earlier execution of those instructions depending on the
trivial instruction output. This results in shorter pro-
gram runtime which in turn reduces energy consump-
tion. Second, by bypassing trivial instructions we no
longer spend energy on executing them. As such, we
reduce total energy consumption.

 We assume a typical load/store ISA where each
instruction may have up to two source operands. We
refer to the operand which trivializes the operation as
the trivializing operand (TO). Examples of TOs are the
operand equal to zero in an add operation or the oper-
and equal to one in a multiplication. 

Previous study shows that a) an optimizing compiler
is often unable to remove trivial operations since trivial

values are not known at compile time and b) the amount
of trivial computations does not heavily depend on pro-
gram specific inputs [2].

Identifying trivial instructions dynamically is possi-
ble as soon as the TO and the instruction opcode are
known. However, computing the result may not always
require knowledge of both source operands. In some
cases, e.g., multiplying by zero, we do not need both
operands to compute the result. Under such circum-
stances, the result does not depend on the other operand
value. In other cases, e.g., addition to zero, both oper-
ands are needed. We refer to those trivial instructions
whose output could be calculated knowing only one of
the operands as fully-trivial instructions. We refer to
those trivial instructions whose result could be com-
puted only after knowing both operands as semi-trivial
instructions. Our study shows that semi-trivial instruc-
tions account for the majority of trivial instructions.
However, bypassing a fully-trivial instruction can
impact performance and energy more than bypassing a
semi-trivial instruction. This is due to the fact that fully-
trivial instructions can be bypassed earlier and save
more energy as they make reading both operands
unnecessary. 

Table 1 reports the fully-trivial and semi-trivial com-
putations studied in this work. We report both the oper-
ation and the particular source operand value that
trivializes the operation. It is possible to extend our
study further to include other instruction types (e.g.,
ABS). However, this will not impact our results as such
instructions are very infrequent.

Generally, power-aware techniques save energy at
the expense of performance. Bypassing trivial instruc-
tions, however, reduces energy consumption while
improving performance. Note that computing trivial
instruction results, while unnecessary, results in extra
latency and additional energy consumption. Therefore,
bypassing the computation and obtaining the result
without performing the computation will improve both
performance and energy simultaneously. 

In this work we study the energy benefits achieved
by dynamically identifying and bypassing both fully-
trivial and semi-trivial computations. In particular, we
make the following contributions:
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• We show that, by bypassing trivial instructions, it is
possible to reduce energy consumption and improve
energy-delay, on average, by 4.5% (min.: 1.5%) and
11.8% (min.: 3.5%) respectively.

• We categorize trivial instructions based on the num-
ber of source operands needed to detect them and
their source operands availability time. We also study
how often trivial instructions belong to each category
and how this may impact our energy and perfor-
mance improvements. 
The rest of the paper is organized as follows. In Sec-

tion 2 we explain bypassing trivial instructions in more
detail. In Section 3 we explain our implementation. In
Section 4 we present our experimental evaluation. In
Section 5 we review related work. Finally, in Section 6,
we summarize our findings.

2. TRIVIAL INSTRUCTION BYPASSING 

The result of a trivial operation could be either one
of the source operands or zero or one (e.g., operations
reported in Table 1). Trivial instruction frequency
impacts potential benefits of trivial instruction bypass-
ing. Therefore, in order to decide if detecting and
bypassing trivial operations is worthwhile we need to
know how frequently they appear in the code stream. In
Figure 1(a) we report trivial instruction frequency. In
addition, and to provide better insight we also report
both fully-trivial and semi-trivial instruction frequency.
While the entire bar represents total trivial instructions,
the lower part of each bar shows the frequency of semi-

trivial instructions and the upper part represents fully-
trivial instructions. 

As represented by the entire bar, on average, trivial
instructions account for about 12% of the total instruc-
tions. Gcc and vpr have higher number of trivial
instructions compared to others. Wlf has the lowest
number of trivial instructions.

In general, semi-trivial instructions outnumber fully-
trivial instructions. Fully-trivial instructions may
account for as much as one third of the total number of
trivial instructions (e.g., equ). Meantime they may
account for as little as 2% of the total trivial instructions
(e.g., wlf). On average, about 85% of the trivial instruc-
tions are semi-trivial while the remaining 15% are
fully-trivial instructions. 

As reported in Table 1, different instruction types
can be trivial depending on their source operand values.
However the trivial instruction frequency is different
from one instruction type to another. 

Figure 1(b) reports how often each instruction type
is trivial. As reported, at least 10% of each instruction
type is trivial. In cases such as mult, div, and or trivial
instructions account for more than half of the instruc-
tions. However, note that a high percentage of trivial
instructions for a specific instruction type does not
always mean that the particular instruction type will
have a considerable impact on energy-efficiency. For
example, while 90% of the divisions appear to be triv-
ial, they only account for less than 1% of the total num-
ber of instructions executed.    

Trivial instructions can only be bypassed when
either both operands (for semi-trivial) or their TO (for

Table 1: Full- and semi-trivial instructions studied in this work

Operation Full Triviality Condition

Multiplication: A*B A=0 or B=0

Division: A/B A=0

AND: A & B A=0x00000000 or B=0x00000000

OR: A | B A=0xffffffff or B=0xffffffff

Logical Shift: A<<B,A>>B A=0 

Arithmetic Shift: A<<B, A>>B A=0 

Operation Semi Triviality Condition 

Addition: A+B A=0 or B=0

Subtraction: A-B B=0 or A=B

Multiplication: A*B A=1 or B=1

Division: A/B B=1 or A=B

AND A & B A=0xffffffff or B=0xffffffff or A=B

OR: A | B A =0x00000000 or B=0x00000000 or A=B

XOR: A XOR B A or B =0x00000000

Logical Shift: A<<B,A>>B B=0

Arithmetic Shift: A<<B, A>>B B=0



fully-trivial) are known. Based on the source operand(s)
availability time(s), we categorize trivial instructions to
two groups:

 The first group are those instruction whose source
operand/operands (both operands for semi-trivial, the
TO for fully-trivial) is/are known while they are at the
decode stage. For this group, the required source oper-
ands have been produced early enough so the trivial
instruction could be bypassed at decode stage. 

The second group of trivial instructions are those
instructions whose necessary operands are not available
at instruction decode stage. Therefore, these trivial
instructions could not be bypassed at the decode stage
and are sent to the issue queue where they wait for their
operands and the required resources to become avail-
able. This group of trivial instructions is identified at
the issue stage and when the required source operands
(again, both operands for semi-trivial, TO for fully-triv-
ial) are known. 

We refer to the trivial instructions identified at
decode as decode-trivial and to those identified at issue
as issue-trivial. In Figure 2 we report the percentage of
decode-trivial and issue-trivial instructions.   While the
entire bar represents total trivial instructions (similar to
Figure 1(a)), the lower part of each bar shows the fre-
quency of decode-trivial instructions and the upper part
represents issue-trivial instructions. 

On average, issue-trivial instructions account for
half of the trivial instructions. However, for some
benchmarks (e.g.,bzp and equ) the number of decode-
trivial instructions exceeds issue-trivial instructions.
For other benchmarks (e.g., gcc and vpr) issue-trivial
instructions are more than decode-trivial instructions. 

Note that the earlier a trivial instruction is identified,
the earlier it could be bypassed. As such, we expect
higher energy savings and performance improvements
achieved by decode-trivial instruction compared to
issue-trivial instructions. 

3. IMPLEMENTATION
    
In this work we assume that all reservation stations

monitor their source operands for data availability
simultaneously. We also assume that at dispatch,
already-available operand values are read from the reg-
ister file and stored in the reservation station. The reser-
vation station logic compares the operand tags of
unavailable data with the result tags of completing
instructions. Once a match is detected, the operand is
read from the bypass logic. As soon as all operands

Figure 1: (a) Trivial instruction frequency and
distribution: The entire bar represents trivial
instruction frequency. The lower part shows semi-
trivial instruction frequency while the upper part
shows fully-trivial instruction frequency. (b) How
often each instruction type is trivial. (See Table 2 for
benchmark abbreviations) 
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Figure 2: Trivial instruction frequency and
distribution: The entire bar represents trivial
instruction frequency. The lower part shows decode-
trivial instruction frequency while the upper part
shows issue-trivial instruction frequency. (See Table
2 for benchmark abbreviations)
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become available in the reservation station, the instruc-
tion may issue (subject to resource availability) [9]. An
alternative implementation is storing pointers to where
the operand can be found (e.g. in the register file) rather
than storing the data in the reservation station [10].
While trivial instruction bypassing could be used on top
of both implementations, here we assume the former.

 Figure 3 shows the schematic of a processor that
bypasses trivial instructions and the procedures fol-
lowed. We first discuss decode-trivial instructions. At
decode, the Trivial Instruction Detection unit examines
source operands. If the instruction is trivial, the rename
table is modified so it maps the destination register to
the physical register assigned to the input source oper-
and or to the zero register as presented in 3(b). Once the
renaming table is modified, we no longer execute the
trivial instruction. As such, instructions depending on
the trivial instruction result can start execution immidi-
ately (subject to resource availability). Note that
decode-trivial instructions, once detected, do not con-
sume execution unit resources.

To identify trivial instructions while they are in the
issue queue the trivial instruction detection unit exam-

ines the produced data as soon as the associated tag is
received by the reservation station. Once we detect an
issue-trivial instruction we bypass executing the
instruction and send the result to the write-back unit as
presented in 3(c). However, the destination register of
an issue-trivial instruction should not be released since
there may still be instructions depending on the trivial
instruction outcome which have not read their source
operands yet. 

 Note that, in order to improve performance, modern
processors wakeup consumer instructions in advance
and before the data is actually available. This makes
executing producer-consumer pairs in consecutive
cycles possible. As a result, issue-trivial instructions
would have to be issued first and then read operands to
test triviality. Consequently, in this study we assume
that issue-trivial instructions take issue slots but will
not be executed in the ALU and will write their results
as soon as possible. Therefore, issue-trivial instructions
benefit less from trivial instruction bypassing compared
to decode-trivial instructions.

4. METHODOLOGY AND RESULTS

In this Section, we report our analysis framework.
To evaluate how bypassing trivial instructions impacts
performance and energy, we compare our processor

with a conventional processor that does not bypass triv-
ial instructions. We report performance, energy and
energy-delay.

We used both floating point (equ, mes and swm) and
integer (gzp, vpr, gcc, bzp and wlf) programs from the
SPEC CPU2000 suite compiled for the MIPS-like PISA

Figure 3: a) Schematic for a pipelined processor bypassing trivial instructions b) Decode-Trivial instruction
detection procedure c) Issue-Trivial instruction detection procedure.
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architecture used by the Simplescalar v3.0 simulation
tool set [1]. We used WATTCH [4] for energy estimation.
The benchmark set studied here includes different pro-
grams including high and low IPC and those limited by
memory, branch misprediction, etc.

Note that detecting and bypassing trivial instructions
requires additional hardware. Consequently, and
depending on how the technique is implemented, this
will result in power overhead. Through this study we
assume that this power overhead is negligible compared
to our savings. 

We used GNU’s gcc compiler. In the interest of
space, we use the abbreviations shown under the “Ab.”
column in Table 2. We simulated 500M instructions
after skipping 500M instructions. We detail the base
processor model in Table 3.

4.1. Performance

Bypassing trivial instructions will improve perfor-
mance only if the bypassed instructions are on the criti-
cal path. To investigate how bypassing trivial
instructions impacts performance, in Figure 4, we
report performance improvements compared to a con-
ventional processor. Vpr and mes show higher perfor-

mance improvements compared to other benchmarks.
Wlf has the lowest performance improvement among all
benchmarks.

4.2. Energy and Energy-Delay

In Figure 5 we report energy and energy-delay mea-
surements. In 5(a) we report energy savings achieved
by bypassing trivial instructions. Wlf has the lowest
energy savings compared to other benchmarks. Vpr and
equ have higher energy reduction compared to the rest
of the benchmarks. 

In 5(b) we report energy-delay improvements
achieved by bypassing trivial instructions. Again, wlf
has the lowest energy-delay improvement compared to
other benchmarks. Vpr has the highest energy-delay
improvement among all benchmarks

 
4.3. Discussion

In this Section we review the results. A detailed
analysis of the results would require studying many
issues including instruction type distribution for the
bypassed instructions and how often critical path
instructions are bypassed for each benchmark. Our dis-
cussion here, however, only focuses on the data pre-
sented earlier. We discuss integer and floating point
benchmarks separately. 

1) The integer benchmarks studied here include gzp,
vpr, bzp, gcc and wlf. Among integer benchmarks, vpr
and gcc have higher number of trivial instructions. The
high number of trivial instructions for vpr explains why
this benchmark benefits more than other benchmarks
from bypassing trivial instructions. As for gcc, how-

Table 2: Benchmark abbreviations used here

Program Ab. Program Ab.

164.gzip gzp 177.mesa mes
171.swim swm 183.equake equ
175.vpr vpr 256.bzip2 bzp
176.gcc gcc 300.twolf wlf

Table 3: Base processor configuration. 
Instruction Fetch Queue #  32

Reorder Buffer Size  64

Load/Store Queue Size  32

 Branch Predictor 8K GShare+8K bi-modal w/ 8K 
selector

Scheduler 64 entries, RUU-like

Fetch Unit Up to 4 instr./cycle. 64-Entry Fetch 
Buffer

OOO Core any 4 instructions / cycle

L1 - Instruction Caches 64K, 4-way SA, 32-byte blocks, 3 
cycle hit latency

L1 - Data Caches 32K, 2-way SA, 32-byte blocks, 3 
cycle hit latency

Unified L2 256K, 4-way SA, 64-byte blocks, 
16-cycle hit latency

Main Memory Infinite, 80 cycles

Memory Port #  2

Figure 4: Performance improvement achieved by
bypassing trivial instructions over a conventional
processor.
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ever, the number of decode-trivial instructions is lower
than vpr and bzp and only higher than gzp and wlf. Also
note that gcc has a relatively low number of fully-trivial
instructions compared to other integer benchmarks (see
Figure 1(a)). These two factors may explain why gcc
falls behind in performance and energy measurements
despite having a high number of trivial instructions. 

Among the integer benchmarks wlf has the lowest
number of trivial instructions. This may explain why it
has the lowest performance, energy and energy-delay
improvement among integer benchmarks. 

2) The floating point benchmarks include equ, swm
and mes. Among floating point benchmarks mes has the
highest number of trivial instructions. This may explain
why mes has the highest performance improvement
among the floating point benchmarks. Equ, while hav-
ing less number of trivial instructions compared to mes,
has a higher number of decode-trivial instructions. This
may explain why equ shows high energy savings.

Finally, swm falls behind mes and equ in both perfor-
mance and energy measurements. This is consistent
with the fact that swm has less number of trivial,
decode-trivial and fully-trivial instructions when com-
pared to mes and equ. 

5.  RELATED WORK

Previous study has introduced many dynamic opti-
mization techniques to reduce the complexity or latency
associated with producing operands. 

Lipasti and Shen introduced value prediction and
showed that data values exhibit “locality” where values
computed by some instructions tend to repeat [7].They
suggested using this locality to exceed the dataflow
limit and to effectively and speculatively produce oper-
ands earlier than when they normally become available. 

Sodani and Sohi introduced the concept of dynamic
instruction reuse[8]. Their work relied on the observa-
tion that many instructions, having the same inputs, are
executed dynamically. As such, many instructions do
not have to be executed repeatedly since their results
can be obtained from a buffer where they were saved
previously. 

Trivial instruction bypassing is not speculative.
Moreover, we detect trivial instructions no matter how
infrequent they are. Also, as we do not rely on instruc-
tion past behavior, we do not require additional storage
to store the associated information. Consequently we
are able to improve both power and performance simul-
taneously. 

Richardson suggested a restricted form of bypassing
trivial instructions [5]. His definition of trivial compu-
tations only included certain multiplications (by 0, 1,
and –1), divisions (X ÷ Y with X = {0, Y, -Y}), and
square roots of 0 and 1. 

Yi and Lilja [2] showed that detecting and eliminat-
ing trivial instructions dynamically can reduce the pro-
gram execution time. They identified trivial
computations dynamically and improved performance
by bypassing or simplifying them. Our study shows that
simplifying instructions (e.g., replacing a multiplication
with a shift operation if the multiplicand is a power of
2) does not impact overall energy-efficiency consider-
ably. This is due to the fact that simplifiable instructions
are infrequent and therefore do not contribute to energy
or performance as much as bypassable instructions do.
Therefore, in this study we focus only on bypassing
trivial instructions. Moreover, in this work we studied
how bypassing trivial instructions results in higher
energy-efficiency. We also extended their study by pro-
viding a deeper and more detailed analysis of trivial
instructions. 

Figure 5: (a) Energy improvement achieved by
bypassing trivial instructions over a conventional
processor. (b) Energy-delay improvement achieved
by bypassing trivial instructions over a conventional
processor.
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Tran et al., evaluated dynamic methods to reduce
pressure on the register file. They explored the impact
of bypassing trivial instructions on the register file pres-
sure [3]. We used their implementation of register
remapping to bypass decode-trivial instructions in this
study.

Chung et al., suggested optimization of embedded
software [6].They presented software-based techniques
to reduce the computational effort of programs, using
value profiling and partial evaluation. Their tool
reduced the computational effort by specializing fre-
quently executed procedures for the most common val-
ues of their parameters. Their work included
introducing software solutions to replace complex func-
tions which have trivializing operands with more sim-
ple functions. Our work is different as it introduces
dynamic hardware-based optimizations. Dynamic opti-
mizations can be integrated with the microarchitecture
and result in better architectural transparency. As such,
our technique can optimize legacy code without the
need for recompilation. 

 

6. CONCLUSION

In this work we showed that it is possible to improve
energy consumption and energy-delay by bypassing
trivial instructions. 

We categorized trivial instructions to fully-trivial
and semi-trivial instructions based on whether both
source operands are needed to decide the result. We
also categorized trivial instructions to decode-trivial
and issue-trivial instruction based on the pipeline stage
that they could be identified at. We showed that semi-
trivial instructions account for the majority of trivial
instructions while, on average, decode-trivial and issue-
trivial instructions each account for almost half of the
total trivial instructions.      

Our study showed that by bypassing trivial instruc-
tions, on average, we can improve energy consumption
and energy-delay by 4.5% and 11.8% over a conven-
tional processor. 
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