
ABSTRACT
We describe the Slice Processor micro-architecture that imple-
ments a generalized operation-based prefetching mechanism.
Operation-based prefetchers predict the series of operations, or
the computation slice that can be used to calculate forthcoming
memory references. This is in contrast to outcome-based predic-
tors that exploit regularities in the (address) outcome stream.
Slice processors are a generalization of existing operation-based
prefetching mechanisms such as stream buffers where the opera-
tion itself is fixed in the design (e.g., address + stride). A slice
processor dynamically identifies frequently missing loads and
extracts on-the-fly the relevant address computation slices. Such
slices are then executed in-parallel with the main sequential
thread prefetching memory data. We describe the various sup-
port structures and emphasize the design of the slice detection
mechanism. We demonstrate that a relatively simple organiza-
tion can significantly improve performance over an aggressive,
dynamically-scheduled processor and for a set of pointer-inten-
sive programs and for some integer applications from the
SPEC’95 suite. In particular, a slice processor that can detect
slices of up to 8 instructions extracted over of a region of up to
32 instructions improves performance by 11% on the average
(even if slice detection requires up to 32 cycles). Allowing slices
of up to 16 instructions results in an average performance
improvement of 15%. Finally, we study how our operation-
based predictor interacts with an outcome-based one and find
them mutually beneficial.

1. INTRODUCTION
Prediction-based methods have been instrumental in sus-

taining the exponential performance growth we have enjoyed
over the past decades. Prediction allows processors to guess
forthcoming program demands and take appropriate action on
the program’s behalf. A particular area where prediction-based
methods have been very successful is that of prefetching mem-

ory data. Prefetching guesses what memory data the program
will need and attempts to read them in advance of the actual pro-
gram references. If successful, prefetching reduces the negative
impact of long memory latencies. While existing prefetching
methods have been effective, there is a continuous need for
improvements main because memory latencies do not improve
as fast as processor clock speeds.

Both static and dynamic prefetching methods for the data
and the instruction memory streams have been proposed. In this
work we are concerned with dynamic, hardware-based memory
data prefetching. Existing prefetchers of this kind fall into two
broad categories: outcome-based and operation-based. Out-
come-based methods work by detecting repeating patterns in the
program’s data address stream (a subset of the program’s data
outcome stream). For example, an outcome-based prefetcher
may observe that every time the program accesses address 100
soon thereafter it also accesses address 200. Consequently, such
a prefetcher may then initiate an access to address 200 every
time an access to address 100 is observed. Operation-based
prefetchers also observe the program’s address stream. How-
ever, rather than trying to identify repeating address patterns
these prefetchers look for evidence of repeating operations (or
computations). In general, these prefetchers predict that once the
program accesses address A then it will soon access address f(A)
where f() is some operation or sequence of operations. Stream
buffers or stride-based prefetchers are examples of existing
operation-based prefetchers. There, f() is simply a linear pro-
gression of the form “f(A)=A + stride” . In this case, the sought
after operation is fixed in the design. Other operation-based
prefetching methods have been proposed, however, they also tar-
get specific classes of memory accesses such as those produced
when accessing recursive data structures (see section 5 for a
summary).

In this work we build on the success of existing operation-
based prefetching methods and propose the Slice Processor
micro-architecture. Slice Processors are a generalized imple-
mentation of operation-based prefetching. A slice processor
dynamically identifies problematic loads and automatically
extracts the computation slices that were used to calculate their
target addresses. These slices include only those instructions
that are necessary for executing the offending load. The slice is
then used to calculate subsequent memory accesses and to
prefetch them. Slices execute speculatively in the form of scout-
threads which run in-parallel with the main sequential program
(or thread). Scout threads affect program execution only indi-
rectly by prefetching memory data.

Slice-Processors:
An Implementation of Operation-Based Prediction

Andreas Moshovos
Electrical and Computer

Engineering
University of Toronto

moshovos@eecg.toronto.edu

Dionisios N. Pnevmatikatos
Electronic and Computer

Engineering
Technical University of Crete

pnevmati@ece.tuc.gr

Amirali Baniasadi
Electrical and Computer

Engineering
Northwestern University

amirali@ece.northwestern.edu

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
ICS ’01 Sorrento, Italy
© ACM 2001 1-58113-410-x/01/06…$5.00

321

In this paper, much of our focus is in discussing the details
of the slice processor microarchitecture. We made an effort to
minimize complexity while facilitating integration with a con-
ventional high-performance processor core. We also made an
effort to minimize as much as possible the interaction with the
conventional core. We demonstrate that a slice processor can
improve performance by 11% on the average by prefetching
memory data for a set of pointer-intensive integer applications.
This slice processor is capable of detecting slices of up to 8
instructions in length detected over a region of up to 32 instruc-
tions and requires 32 cycles to detect such slices. Moreover, it
uses in-order execution for scout threads.

Other proposals aimed at extracting and pre-executing pro-
gram slices exist. We review them in section 5. To the best of our
knowledge, however, this is the first work that proposes mecha-
nisms for automatic, dynamic identification of arbitrary program
slices and of pre-executing them for prefetching memory data.
While it may be possible to extend our methods to also predict
other events such as branches or values, in this work we restrict
our attention to prefetching.

The rest of this paper is organized as follows. In section 2
we explain the rationale of our approach by means of an exam-
ple. We also discuss the advantages and disadvantages of opera-
tion-based prediction. In section 3, we present an
implementation of the slice-processor. Here we explain how we
can leverage the experience with outcome-based predictors to
also perform operation-based prediction. In section 4, we dem-
onstrate that our slice-processor architecture can be used to tol-
erate miss latencies for a set of integer applications. We also
show that in most cases, it interacts favorably with a stride
prefetcher. In section 5, we review related work. Finally, in sec-
tion 6 we offer concluding remarks.

2. MOTIVATION
We motivate operation-prediction using the code fragment

of figure 1(a). A linked list is traversed while performing a com-
putation on its data elements (shown as a call to routine “pro-
cess()”). Let us assume that the subroutine “process()” is well-
behaved and that the linked list is not cache-resident. Moreover,
let us assume that performance is limited by how quickly we can
traverse the linked list. Under these assumptions, performance
will be limited by how quickly we can service the various
instances of the “l = l->next” statement. As shown in part (b), in

machine code, this statement translates into a single self-recur-
ring load (shown in bold). Dynamically, the execution of this
loop unravels as shown in part (c) with multiple instances of the
aforementioned load appearing in sequence.

An outcome-based prefetcher will be able to predict the list
references only if some form of regularity exists in the resulting
address stream. This may be incidental or the result of carefully
allocating the list’s elements. In general, however, this may not

be the case1. While there might be no regularity in the memory
stream, we can observe that regularity exists in the operation
that produces the memory stream. In fact, this operation remains
constant throughout the loop. As shown in part (c), the next
address is calculated starting from the current address in register
r1, by simply accessing memory location “r1+4”. This observa-
tion suggests that it might be possible to predict the operation
(as opposed to its outcomes) and use it to compute the addresses
(the outcomes) of the linked list’s elements. To do so, we may
use techniques similar in spirit to those used in outcome-based
predictors, where rather than using outcomes as our prediction
unit we instead use operations or computation slices.

Our slice processor builds on this observation. The goal of a
slice processor is to dynamically predict the operations, or the
slices that are used to calculate the memory addresses accessed
by frequently missing loads. This is done by observing the slices
of offending loads as they are committed. These slices are then
used to compute subsequent memory references. In the example
of figure 1, the slice processor will extract the slice containing
the self-recurring load references shown in part (c). This slice
will be used to prefetch subsequent list elements every time the
frequently missing load is encountered. An abstract view of how
execution progresses as shown in figure 1(d). On the left, we
show how execution may proceed in a conventional processor.
Upon encountering a load that miss (dark box), execution stalls
waiting for memory, shown as the gray box (of course, in a
dynamically-scheduled processor, other instructions may exe-
cute in the meantime, however, we omit them for clarity). In a
slice processor, as soon as a slice is extracted, it is used to
prefetch memory data in the form of scout thread. The scout

Figure 1: (a) A code-fragment with a frequently missing load shown in boldface. (b) Assembly pseudo-code for the code of part
(a). (c) Dynamic execution trace showing the operations used to calculate the references that miss. (d) Comparing conventional
execution with execution in a slice processor (ideal case).

while (l)
 process (l->data)
 l = l->next

(a)

...
loop:beq r1, r0, exit

load r2, 0(r1)
call process
....
load r1, 4(r1)
bra loop

exit:

(b)

...
loop: ...

load r1, 4(r1)
...
load r1, 4(r1)
...
load r1, 4(r1)
...

(c) (d)

co
nv

en
tio

na
l

sl
ic

e-
pr

oc
es

so
r

scout
threadstall

1. Regularity will exist when the same list is traversed repeat-
edly. In this case, the space required to store the repeating
pattern will be proportional to the size of the linked list
itself. Of course, careful encoding may be able to reduce
these space requirements.

322

thread runs in parallel with the main sequential thread affecting
its performance indirectly.

While we have used a simple linked list as our motivating
example, the slice processor is, in principle, capable of extract-
ing arbitrary slices. In the general case, detected slices do not
consist of self-recurring instances of the same load. Rather they
include an arbitrary mix of instructions that end with a load that
misses often. Moreover, while we have shown slices that use the
previous address of a load reference to compute the next one, in
general this may not be the case. A slice may be rooted on other
computations. In section 4.8, we discuss few of the most fre-
quent slices exploited in a slice processor implementation and
we show, that the slice processor can capture fairly elaborate
address calculations in addition to array and simple linked lists.

2.1. Running Ahead of the Main Thread
One may wonder how scout threads can run ahead of the

main thread and prefetch memory data. There are several rea-
sons why this may be the case:
1. A conventional processor has to fetch, decode and execute not

only the slice, but also, all other instructions. In our example,
these include the intervening function call and the loop over-
head. The scout thread comprises only those instructions that
are necessary for calculating an address.

2. The processor’s scope is also limited by the size of its instruc-
tion window.

3. Every time a branch mis-prediction occurs, a conventional
processor discards all subsequent instructions and starts over
again. However, the computations that lead to a frequently
missing load may be control independent of those intermedi-
ate mis-speculated branches. (In the example of figure 1, the
list traversal loads are control independent of any control-
flow in function “process()”.) Consequently, the more instruc-
tions the conventional processor has to execute and the more
spurious branch mispredictions it encounters, the higher the
probability that a scout thread will manage to prefetch data.

4. Finally, conventional processors have no mechanisms for rec-
ognizing that a particular slice should be given priority and
executed as soon as possible even when it is present in the
instruction window A scout thread implements a “poor
man’s” prioritization of slices that lead to frequently missing
loads. Intuitively, for applications with low parallelism, this is
less of a concern for future wide superscalars.

2.2. Operation- and Outcome-based Predic-
tion

We have explained that a slice processor has the potential of
prefetching memory references that may foil outcome-based
predictors. However, when outcome-based prediction is possi-
ble, it has an inherent advantage. Outcome-based prediction col-
lapses a series of computations into a lookup reducing the
inherent latency required to calculate memory addresses. Opera-
tion-based prediction cannot reduce this latency beyond what
may be possible by optimizing the slice. Moreover, while the
outcome stream of a computation may exhibit strong repetition,
the computation itself may be complex or may change unpre-
dictably due to intervening control flow. For this reason, we

view slice processors as complementary to existing outcome-
based methods.

3. THE SLICE-PROCESSOR MICRO-
ARCHITECTURE

In designing the slice processor microarchitecture we built
on the experience with outcome-based predictors. The simplest
form of dynamic outcome-based predictors is that of “last out-
come”. For example, a “last outcome” branch predictor simply
predicts that a branch will follow the same direction it did last
time it was encountered. Accordingly, we designed the slice pro-
cessor to implement a “last operation” prediction scheme. That
is, once a frequently missing load is found and its slice is
extracted, our slice processor predicts that next time around the
same slice can be used to calculate the desired target address.

To explain the operation of a slice processor it is interesting
to review how outcome-based predictors operate. In an out-
come-based predictor, we start by selecting candidate instruc-
tions for prediction (e.g., loads for address prediction and
prefetching, or calls and returns for return address stack predic-
tion). Then, we observe their outcome stream identifying regu-
larities. In a “last outcome” predictor we simply record the last
observed outcome. Next time around the same instruction is
encountered, we simply predict that it will produce the recorded
outcome. Optionally, we may also implement a confidence
mechanism to selectively turn on and off prediction based on
past successes or failures. Prediction in the slice-processor
architecture parallels that of an outcome-based predictor. In par-
ticular, the slice processor operates as follows:
• We start by identifying candidate instructions for operation

prediction. Since we limit our attention to prefetching, our
candidate selector inspects retiring instructions looking for
frequently missing loads. More elaborate candidate selection
heuristics may be possible (for example, only selecting loads
that an outcome-based predictor fails to predict), however, in
this work we are interested in demonstrating the potential of
our approach hence a simple, first-cut candidate selector suf-
fices.

• .Outcome-based predictors simply record the outcomes of
candidate instructions. In an operation-based predictor how-
ever, our unit of prediction is an operation, or a computation
slice. Before we can record this slice, we have to detect it.
Accordingly, once a candidate load is identified, the dataflow
graph is traversed in reverse to identify the computation slice
that lead to it. Detecting these slices is the responsibility of
the Slicer. Detected slices are stored in the slice cache where
they are identified by the PC of the lead instruction. The lead
instruction is the earliest in program order instruction of the
slice (this is not the frequently missing load which appears at
the end of the slice)

• In outcome-based predictor, prediction is performed by sim-
ply looking up previously stored outcomes (while we may be
using elaborate hash functions and leveraging history infor-
mation, nevertheless, we eventually reach to a previously
recorded outcome). In operation-based prediction, we have to
execute a computation slice to obtain the desired outcome.
This is done by spawning the corresponding slice upon
encountering a dynamic instance of a lead instruction. The

323

slice cache is probed as instructions in the main thread are
decoded and renamed. Once a lead instruction is encountered,
the slice returned from the slice cache is used to spawn a
scout thread. The scout thread begins execution immediately
and proceeds in-parallel with the main thread. Scout threads
execute in one of the available scout execution units, or
scouts. Since in this work we focus on loads that miss, no fur-
ther action is necessary. Scout-thread execution may benefit
performance only indirectly by prefetching data that the main
thread will need. Scout thread execution is speculative and
can be readily interrupted and discarded. Since scout threads
may need results produced by the main thread, a communica-
tion path is provided from the complete stage of the conven-
tional processor.

• Finally, in an outcome-based prediction we may opt for
dynamic feedback mechanisms that strengthen or weaken the
likelihood of reapplying a specific prediction based on past
successes or failures. To simplify our design, we did not
implement such feedback mechanisms in our slice processor.

Figure 2 shows the general organization of a slice processor.
Shown is a conventional out-of-order core augmented with the
structures necessary for slice processing. As instructions com-
mit, they enter the slicer in program order. At the same time they
probe the candidate selector CS. If a candidate instruction is
encountered, we initiate slice detection. After few cycles, a full
slice is produced and written into the slice cache. The slice
cache is also accessed by loads as they enter the decode stage. If
a matching entry is found, a copy of the slice entry and of the
rename table is sent to the next available scout and the corre-
sponding scout thread is spawned. As scout threads execute,
they utilize resources left unused by the main thread. Since per-
formance improves only indirectly when a scout thread
prefetches data there is no need to communicate results from the
scouts to the main processor core. In the sections that follow we
discuss the various components of the slice-processor micro-
architecture in detail.

3.1. Selecting Candidate Instructions
We select candidate instructions at commit time via a simple

miss predictor. This is a PC-indexed table where entries are 4-bit
counters. If the load has missed (in the L1), we increase the
counter by 4, otherwise we decrease the counter by 1. A load is
selected once the counter value exceeds 8. Predictor entries are

allocated only when a load has missed. Similar predictors
already exist in modern architectures for a different purpose. For
example, the ALPHA 21264 uses a cache miss predictor for
scheduling the consumers of the load [5]. However, existing
miss predictors tend to favor hits over misses (common case)
which is the opposite of what we want.

3.2. Detecting Slices
Upon detecting a candidate instruction we need to detect the

computation slice that lead to it. This is done in the Slicer. Con-
ceptually, the slicer performs a reverse walk of the dataflow
graph identifying all instructions in the computation slice. It
then produces a sequence containing these instructions in pro-
gram order, oldest (lead) to youngest (candidate load). We
present an implementation that requires no changes to existing
processor mechanisms. For simplicity, we chose to ignore both
memory and control-flow dependences. The implementation we
simulated works as follows:

The slicer maintains a record of the past N committed
instructions. The number of entries N limits how far back in the
program trace we can look for identifying a slice. In our experi-
ments we restricted N to 32. Instructions enter the slicer as their
are committed and in program order. Each instruction occupies a
single slicer entry. The entries are maintained in a circular
queue. If all entries are occupied we simply discard the oldest.
Slicer entries include the following fields: (1) PC, (2) Instruc-
tion, and (3) Dependence Vector, or DV. The PC field identifies
the PC of the instruction stored, the instruction field contains the
complete opcode, and the DV contains dependence information.
The DV is a bit vector with a bit per slicer entry (i.e., 32 for our
32-entry slicer). It identifies the immediate parents of the corre-
sponding instruction.

We explain the operation of the slicer using the example of
figure 3. Shown is the slicer at the point when a candidate load
instruction “load r1, 0(r1)” shown in boldface (entry 10) has just
committed. (We use a simple linked list example for ease of
explanation. The same mechanism will work for more elaborate
address calculations.) At this point the slicer contains the
instructions from the two preceding loop iterations (notice that
the two iterations followed a different control-flow path). The
DV of each entry identifies its immediate parents. For example
the load in entry 10 depends only on the preceding instance of
the same load at entry 5. Accordingly, the 5th bit (from right) of

Figure 2: The Slice-processor micro-architecture. Shown in grey are the structures necessary for slice processing and how they
interact with an existing processor core.

Fetch
Decode

&
Rename

Schedule Execute Commit

Slicer

Slice-Cache

CS

Sc
ou

ts

Conventional

Core

324

its DV is 1. The load at entry 5 has a DV whose 0th bit 1 since it
only depends on the load at entry 0. We will explain how we
construct the DV vectors shortly. First, we focus on how we con-
struct slices.

Slice construction conceptually proceeds in two phases (1)
detecting the slice, and (2) extracting the instructions for storage
in the slice cache. Detection is done by propagating a depen-
dence vector or DV as follows: Starting from the candidate load
we send its DV to the immediate preceding slicer entry (entry 9).
Entry 9 checks the 9th bit of the incoming DV. Because it is
zero, it just propagates the DV as is to entry 8. The instruction in
entry 9 is not part of the slice. This process continues, until we
hit an entry that corresponds to a set bit in the propagated DV. In
our example, this is entry 5. This instruction belongs in the slice
and for this reason it ORs its own DV with the DV it received
before passing it on to entry 4. This way the instructions it
depends on will also be included in the slice. This step-by-step
process continues until we reach the oldest instruction in the
slicer.

We then proceed to the slice construction phase where the
opcodes of the slice instructions are assembled into a continuous
sequence shown in part (b) and are identified by the PC of the
oldest instruction which is the lead. A naïve implementation is
to scan the entries in order inserting marked instructions as they
are encountered.

In our experiments we have restricted the number of entries
in a slice to 8 which is 1/4 of the size of the slicer. There are two
reasons why we chose to do so. First, using a small number of
instructions reduces the latency of constructing the slice-entry.
Moreover, intuitively, the larger the fraction of original instruc-
tions that appear in the slice, the lower the probability that the
scout-thread will run ahead of the main sequential thread. While

what we have described is a sequential process where each slicer
entry has to be processed in order, in practice it should be possi-
ble to process multiple slicer entries within a single cycle. In
Appendix A we describe a dynamic logic implementation of the
slicer.

Constructing Dependence Vectors: Constructing DVs (at
insertion time) is a process similar to register renaming. We use
a producer table (PT) having one entry per register. A PT entry
points to the slicer entry of the most recent producer of that reg-
ister. PT entries are set as instructions are inserted into the slicer.
To construct an instruction’s DV we simply lookup the produc-
ers of its source registers using the PT. For simplicity we choose
to track only the integer registers in the PT. On a MIPS-like ISA
such as the one we use, address calculations are usually per-
formed using integer registers. An example of the producer table
state is shown in figure 3(a). The entry for r1 points to entry 10
of the slicer, while the entry for r2 points to entry 8. Entries 3 to
31 are marked as “not available” since no instruction currently
in the slicer is producing any of these registers.

Instructions Exiting the Slicer: Upon removing an instruc-
tion from the slicer, we also need to clear all references to it by
subsequent slicer entries. Simply resetting all DV bits in the cor-
responding column is sufficient (this can be done instanta-
neously for all entries by providing a column reset in the DV
array). We also need to update the PT. If the PT entry for the tar-
get register still points to this instruction, then we have to clear it
(not available). This functionality can be incorporated in the PT
cell (compare and reset on a match).

3.2.1 Slicer Considerations
Observations on Slice Form: Notice that the generated slice
contains three instances of the same instruction. This is possible

Figure 3: The Slicer: (a) Detecting a slice. (b) Constructing the slice. (c) A Slice-Cache entry.

(c)

PC Inst. Inst. Inst.

3 0x400200 load r1, 4(r1) load r1, 4(r1) load r1, 4(r1)

Producer Table

PC Inst. DV

0 0x400200 load r1, 4(r1) 0 0 0 0 0 0 0 0 0 0

1 0x400204 load r2, 0(r1) 0 0 0 0 0 0 0 0 0 1

2 0x400208 bne r2, r5, 0x400220 0 0 0 0 0 0 0 0 1 0

3 0x400220 mult r2, r2, r4 0 0 0 0 0 0 0 1 0 0

4 0x400224 bne r1, r0, 0x400200 0 0 0 0 0 0 0 0 0 1

5 0x400200 load r1, 4(r1) 0 0 0 0 0 0 0 0 0 1
6 0x400204 load r2, 0(r1) 0 0 0 0 1 0 0 0 0 0

7 0x400208 bne r2, r5, 0x400220 0 0 0 1 0 0 0 0 0 0

8 0x40020c mult r2, r2, 1 0 0 1 0 0 0 0 0 0 0

9 0x400210 bne r1, r0, 0x400200 0 0 0 0 0 0 0 0 0 1

10 0x400200 load r1, 4(r1) 0 0 0 0 1 0 0 0 0 0

r1 r2 r3 ... r31

10 8 NA ... NA

(a)

oldest

youngest

PC Inst.

0x400200 load r1, 4(r1)
load r1, 4(r1)
load r1, 4(r1)

(b)

325

as it corresponds to a slice of the actual dynamic execution trace.
Moreover, notice that no control flow instructions were included
in the slice. While in some cases the resulting slice may be
incorrect, this has only performance implications. Moreover, not
including control-flow allows us to exploit slices whose instruc-
tions span over intermediate, unrelated branch instructions. In
addition to not including control flow we also do not track mem-
ory dependences. As a result stores never appear in a slice. This
obviates the need for handling speculative stores executed from
scout threads. We do so for simplicity. However, including
memory dependences requires no modifications to the slice
detection mechanism. We only need to setup the DV appropri-
ately as stores and loads commit. At commit time, the actual
dependences amongst loads and stores are known (or can be
determined) since all addresses have been calculated.
Keeping up with the Main Core’s Commit Rate: Finally, the
slicer needs to accept new instructions at the rate they are com-
mitted. However, we expect that slice detection will require mul-
tiple cycles preventing the slicer from accepting newly
committed instructions in the meanwhile. The solution we chose
uses two copies of the slicer: the working slicer and the shadow
slicer. The working slicer always accepts entries from the com-
mit stage. Upon detecting a candidate instruction, we copy all
entries from the working slicer into the shadow slicer. By physi-
cally interleaving the two copies, we can copy all entries in par-
allel. Detection proceeds in the shadow slicer, while the working
copy is kept up-to-date with newly committed instructions.

What we have described is just one way of performing slice
detection. Further optimizations and alternative methods are
possible. For example, it could be possible to construct complete
DV vectors identifying the whole slice iteratively during register
rename or for that matter construct the whole slice during
decode (by associating slices with registers). Moreover, we may
detect and record memory dependences in the load/store sched-
uler.

3.3. The Slice-Cache
Once slices are detected they are stored into the slice-cache

for future reference. The slice-cache is a PC-indexed structure
where entries contain a number of instructions comprising a
slice. An example is shown in figure 3(c). The entry contains the
PC of the lead instruction and the opcodes of all instructions in
the slice. We store the actual instructions to avoid having to read
them from the instruction cache. Finally, the number of instruc-
tions within the slice is also stored in the slice cache entry
(shown under the column marked with #). The maximum num-
ber of instructions within a slice cache entry is set to equal to the
maximum slice the slicer can detect (8 for most experiments).
There are strong similarities between a slice-cache and a trace-
cache. While the actual storage mechanism may be exactly the
same, the slice-cache contains discontinuous portions of the
dynamic execution trace.

3.4. Scout-Thread Spawning and Execution
Having identified scout slices and having stored them in the

slice cache the next step is detecting an appropriate time for
spawning a scout thread. Scout thread spawning occurs when

the main sequential thread decodes a lead instruction. We spawn
scout threads at decode, since the scout thread may need to read
values produced by instructions before the lead one. Once the
lead instruction has been decoded, it is guaranteed that all pre-
ceding instructions have also been decoded and renamed. Con-
sequently, the scout thread can detect any dependences and wait
accordingly (we will explain how shortly).

 Lead instructions are simply identified by accessing the
slice cache. If a matching entry is found, then we spawn a scout
thread with the instructions found in the slice-cache entry. Scout
threads are assigned to any of the Scout Execution Units, or
Scouts, in a round-robin fashion. In our experiments we have
used 8 scouts which we managed as a circular queue. For sim-
plicity, if no scout is currently available we simply overwrite the
oldest one even if it has not completed execution. Recall, that
scout threads are speculative and the main thread never inspects
their results. For this reason, they can be discarded at any time.
Each scout contains a small instruction buffer which stores the
instructions in the scout-thread. In our experiments we limit this
to 8 instructions per scout. The scouts share the same functional
units as the main processor. Execution of scout instructions pro-
ceeds only when there is sufficient issue-bandwidth and
resources left from the main sequential thread.

In detail, spawning a scout thread is done as follows: Having
read the slice out of the slice cache, we store it in the next in
order scout unit. At that point we also make a copy of the main
core’s integer register rename table. We need this information so
that we can start renaming the instructions within the slice. This
is necessary, as some of the instructions within the slice may
have to wait for values produced by preceding instructions from
the main thread. This communication is one-way. A scout thread
may read a value produced by the main thread. However, we
never propagate a result from a scout thread to the main thread.
We have experimented with both in-order and out-of-order
instruction queues for the scout units. In either case, register
results produced by scout instructions are stored in temporary
storage within the scout unit. For example, we can store them
into instruction queue entry of the producer. Since there are very
few entries in the scout unit (8 in our experiments), a simple res-
ervation style implementation suffices. Note that since slices do
not contain stores, it is not necessary to buffer memory results
separately. Loads access the L1 and the load/store queue of the
conventional processor. This does not require additional ports as
scout thread instructions execute only when these resources are
left unused by the main thread.

Since we focus only on loads that miss, performance may
improve as a result of prefetching. Accordingly, it is not neces-
sary to communicate scout thread results to the main thread. An
instruction that executes in a scout unit needs to communicate
only with subsequent instructions within the same scout unit.
However, additional paths are required to route instructions and
data from the scout units to the main core’s functional units.

In an processor implementing simultaneous multithreading
[13] it should be possible to execute scout threads as separate
threads in the conventional core. However, care must be taken to
consider the overheads associated with creating an additional
context for every scout thread. Moreover, in this case, care must
be taken to reduce resource contention amongst the scout

326

threads and the main thread. Such an organization is beyond the
scope of this paper.

4. EVALUATION
While the idea of pre-executing program slices is appealing,

the entire concept may be mute if it does not improve bottom-
line performance. In this section we evaluate the performance of
an implementation of slice processors using detailed, execution-
driven simulation of an aggressive, dynamically-scheduled
superscalar processor. The rest of this section is organized as
follows: We start by describing our methodology in section 4.1.
In section 4.2 we measure the potential of our method assuming
an ideal slicer (i.e., zero detection latency) and experiment with
both out-of-order and in-order scout units. Having demonstrated
the potential of slice processors, we then investigate the impact
of slice detection latency in section 4.3. To provide additional
insight on the inner-workings of the slices, we present measure-
ments on their size, frequency and resulting executed instruc-
tions in section 4.4. In sections 4.5 and 4.6 we study the effect of
having a different number of scout units and of allowing longer
or shorter slices. In section 4.7 we study how our slice processor
interacts with a stride prefetcher. Finally, in section 4.8 we
present a few of the most frequently executing slices to demon-
strate that our slice processor can exploit elaborate slices.

4.1. Methodology
In our experiments we used the Olden pointer intensive pro-

grams and gcc and perl from SPEC95. The olden benchmarks
have been used extensively in previous memory prefetching
studies since they are pointer-intensive and since some of them
exhibit noticeable data miss rates. We selected gcc and perl from
the SPEC95 programs since they too exhibit noticeable data
cache miss rates. Since in this work we used slice processors to
prefetch data from memory, performance may improve only
when memory stalls are a problem to start with. We have used
modified input data sets to achieve reasonable simulation times.
In addition, we ran all benchmarks for the first 300M committed
instructions. Most benchmarks run to completion with this limit.
In the interest of space, we use the abbreviations shown in table
1 in our graphs. Table 1 also reports the number of dynamic
loads and the resulting miss rate.

To evaluate our slice processor we have extended the Sim-
plescalar simulator. Our base configuration is an aggressive, 8-
way dynamically-scheduled superscalar processor with the char-
acteristics shown in table 2. We have used a 16k data cache to
compensate for the reduced data sets. Moreover, our base pro-
cessor implements perfect memory dependence speculation so it
will send load requests as early as possible (while this reduces
the positive impact of prefetching, previous work has shown that
it is possible to approximate this using memory dependence pre-
diction). Our base processor has a deep pipeline (12 cycles min-
imum). The slice processor augments the base configuration
with a slicer, a slice cache, a candidate selector and a number
scout units. The characteristics of these units are also shown in
table 2. We have experimented with various slicer latencies and
with both out-of-order and in-order scout units.

4.2. Performance Potential
To evaluate the potential of slice processors we first consider

a 32-entry slicer that requires zero time to detect a slice. More-
over, this slicer can detect up to 8 slices simultaneously, one per
committed instruction. This slicer is obviously unrealizable, but
we use it to provide a measure of the performance potential of
slice processors. We couple this ideal slice detector unit with
realistic single-issue scout units that are either in-order or out-
of-order.

Figure 4 compares the performance of the two alternatives
reporting relative performance over the base processor. The dark
bar corresponds to out-of-order scout units, while the gray bar to
in-order ones. Some programs such as bisort and perimeter, do
not benefit by the slice processor. This should not come as a sur-
prise as these programs did not exhibit noticeable data cache
miss rates to begin with. The rest of the programs where data
miss rates are noticeable, do see benefits, often significant.
Health in particular, more that doubles its performance (the
actual performance improvements are 2.41 and 2.4 for out-of-
order and in-order scout units respectively). Health’s dominant
data structure is a linear list which is accessed repeatedly. It is
questionable whether this really represents a realistic applica-
tion, but nevertheless, it demonstrates the ability of slice proces-
sors to identify this class of memory references. Em3d gains
almost 27% while perl sees an improvement of about 8%. On
the average over all benchmark, the slice processor improves

performance by about 11%2 While not visible, the slice proces-
sor with out-of-order scout units performs slightly worse than
the base for power (the slowdown is less than 0.5%). Increased
memory system contention and data cache pollution are the pri-
mary causes. References initiated by scout threads tie up mem-
ory resources (e.g., ports) and may indirectly delay subsequent
requests from the main thread. In addition, prefetched memory
blocks may evict cache blocks that were still needed. A potential
solution would be to add a separate prefetch buffer. However,
such an investigation is beyond the scope of this work.

In Figure 4 we can also see that the performance impact of
in-order versus out-of-order scout units is minor. For most pro-
grams, in-order scout units either perform as well as the out-of-
order ones, or trail them in performance by 1-2%. Interestingly,
in-order scout units perform better than out-of-order ones for
power. Out-of-order scout threads tend to make more progress
more quickly. Unfortunately, since these are speculative threads,
the additional work so performed is not always beneficial.

Since the performance differences between in- and out-of-
order scout units are really small, and the in-order scout units
are less expensive to implement, in the rest of the evaluation we
will restrict our attention to in-order scout units.

4.3. Slicer Latency
To quantify the effect of an actual slicer, we modeled slicers

with realistic latencies. Once a slice detection is initiated (a can-
didate load has committed), the slicer becomes busy for a num-
ber of cycles during which (1) no other slice detection can be
initiated and (2) the slice cannot be initiated as it has not been

2. All speedup averages reported in this paper are computed
using the harmonic mean.

327

constructed yet. We simulated three slice detection latencies: 8,
16 and 32 cycles. We feel that 16 and 32 cycles are actually
fairly pessimistic.

Figure 5 plots the relative performance over the base proces-
sor, of a slice processor with in-order slice execution units and
realistic slice detection unit latencies. From left to right, we

report slicer latencies of 0, 8, 16 and 32 cycles. We include the
0-cycle latency slicer for ease of comparison. Performance
remains mostly unaffected even when the slice detection latency
is as high as 32 cycles. There are two reasons why. First, in most
programs, once detected, slices tend to execute many times.
Delaying detection by a few cycles, may prevent spawning scout
threads for the very few initial instances of the slice. Second,
even when slices are not executed numerous times, slice detec-
tion takes place when a frequently missing load is encountered.
In this case, often the processor is anyhow stalled waiting for
memory to respond. As a result, few new instances of the slice
are encountered while slice detection is in progress. Even in this
case, very little is lost from not detecting the slice instanta-
neously. In some cases, using a higher latency slicer improves
performance slightly (e.g., in tsp). A longer-latency slicer may
not detect some slices that are detected by a shorter-latency
slicer. These slices dot not always improve performance.

The results of this section are crucial to the viability of slice
processors as they show that even under pessimistic slice detec-
tion latency assumptions, slice processors are able to sustain
sizeable performance benefits.

Table 1: Programs used in our experimental evaluation. We report the dynamic committed load count and the resulting L1 data
cache miss rates.

Benchmark Ab. Loads L1 Miss Rate Benchmark Ab. Loads L1 Miss Rate

Olden

bh bh 73.8M 0.9%power pow 98.1M 0.1%

bisort bis 4.9M 0.6%treeadd tad 89.0M 1.3%

em3d em3 77.9M 27.0%tsp tsp 109.6M 2.2%

health hlt 87.4M 17.0% SPEC ‘95

mst mst 41.1M 6.2%gcc gcc 181.9M 2.9%

perimeter per 56.7M 1.2%perl prl 95.6M 2.0%

Table 2: Base configuration details. We model an aggressive 8-way, dynamically-scheduled superscalar processor having a 256-
entry scheduler and an 128-entry load/store queue..

Base Processor Configuration

 Branch Predictor 64K GShare+64K bi-modal
with 64K selector

Fetch Unit Up to 16 instr/cycle (4 branches).
64-entry buffer, non-blocking

Instruction Scheduler 256 entries
RUU-like

Load/Store Queue 128 entries, 4 loads or stores/cycle
Perfect disambiguation

Issue/Decode/Commit
Bandwidth

any 8 instructions / cycle Functional Unit Latencies same as MIPS R10000

L1 - Instruction cache 64K, 2-way SA, 32-byte blocks,
3 cycle hit latency

L1 - Data cache 16K, 4-way SA, 32-byte blocks,
3 cycle hit latency

Unified L2 256K, 4-way SA, 64-byte blocks,
16-cycle hit latency

Main Memory Infinite, 100 cycles

Slice-Processor Units

Slicer 32-entry, not pipelined
8 instructions max per detected slice
Simulated latencies: 0, 8, 16 and 32

Slice-Cache 1K-entry
4-way set associative
8 instructions max. per slice

Scouts 8 Units, 8 instructions max per unit
In-order or out-of-order, single-issue

Candidate
Selector

4K-entry, 4-way set associative
4-bit counters

Figure 4: Speedup over base configuration for slice
processors using in- and out-of-order scout units. The values
for health are 2.41 (left bar) and 2.4 (right bar). Reported
also is the harmonic average.

1.00
1.05
1.10
1.15
1.20
1.25
1.30

bh bis em
3

gc
c hlt m

st pe
r pr

l
po

w ta
d

tsp AVG

Out-Of-Order In-Order

328

4.4. Slice Statistics
To gain some insight on the inner-workings of the slice pro-

cessor, in this section we present a number of relevant statistics
about the slices detected and executed in our slice processor. In
particular, we report the number of unique slices detected, the
instruction count distribution of slices and their instruction dis-
tance distribution. We also report the instruction overheads
resulting from scout thread execution.

It is clear that the number detected slices and their length
will directly affect the slice cache design. Table 3 lists the num-
ber of unique slices detected by the slice detector unit during the
execution of each benchmark. It can be seen that with exception
of gcc, very few unique slices are detected suggesting the most
of the misses come from few loads. While the number of loads
that miss may be small, there might be multiple slices that lead
to a frequently missing load. To reduce the number of detected
slices, we have implemented a straightforward filtering scheme
(to minimize slicer pressure and slice cache conflicts). In partic-
ular, in the candidate selector we keep a single bit that indicates
whether we have detected a slice for the corresponding instruc-
tion. We do not initiate slice detection if this bit is set. We have
also experimented with allowing slice detection to proceed every
time we encounter a frequently missing load. We found that
there was very little variation in performance.

Figures 6(a) and 6(b) plot the detected and executed cumula-
tive distribution of slice occurrence versus slice length in
instructions. The distribution varies from 2 to 32 instructions for
detected slices and 2 to 8 instructions for executed slices (we
execute slices of up to 8 instructions). We can see that the
detected slice length distribution suggests that a significant frac-
tion of all detected slices (10%) are longer than ten instructions.
This fraction is larger for mst and perimeter. However, we
restricted execution to only those slices that were up to 8
instructions in length (later on we show results for longer slices).
As we explained in section 3.2, we did so as slices that contain a
large fraction of all instructions are less likely to run ahead of
the main thread. For most programs, the majority of executed
slices have up to 4 instructions. Em3d, perimeter, power and tsp
exhibit strongly biased distributions with virtually all executed
slices having 4 instructions. Other programs tend to exhibit

more of a linear distribution with noticeable fractions of longer
slices

In addition to how many instructions appear in slices,
another interesting statistic is the dynamic instruction distance
of a slice. We define dynamic instruction distance of a slice to
be the number of dynamic instructions that appear in between
the slice’s lead (oldest in program order) and the candidate load
(youngest in program order). This includes all instructions both
those that belong in the slice and those that do not. This distance
is loosely related to the probability of a scout thread running
ahead of the main thread. A longer distance increases the
chances of running ahead of the main thread. Figures 7(a) and
7(b) report the cumulative distributions for detected and exe-
cuted slices respectively. These distributions vary from 1 to 32
instructions as our slicer has 32 entries. Compared to the num-
ber of instructions appearing in the slices (figures 6(a) and 6(b)),
we can see that even though slices contain few instructions, they
actually spread over a lot more instructions. For example, more
than 50% of executed slices in gcc spread over 24 or more
dynamic instructions of the main thread.

Table 4 shows the overhead instructions executed by scout
threads. We express these as a fraction of all committed instruc-
tions by the main thread. Overhead ranges greatly, from single
digit up to about 44%. However, with the exception of power,
this overhead computation does not hurt performance. When
loads miss often, chances are that the main core is under-uti-
lized. Consequently, in such cases, the demands placed by scout
threads can be easily satisfied. Furthermore, scout execution
consumes resources only not used by the core processor, and in
this way can affect the performance only in an indirect way.
Lastly there is a good correlation between overhead computation
and performance improvement for most of the benchmark pro-
grams, indicating that the slice processor is rarely wasting
resources.

4.5. Sensitivity to the number of Scout Units
We also experimented with varying the number of scout

units. In particular, we also simulated slice processors with 4
and 16 scout units. Using a smaller number of scout units clearly
reduces the resource requirements for slice processors. How-
ever, it may also result in many slices being prematurely over-
written long before they had a chance of prefetching data.

Figure 8(a), compares the performance improvements over
the base processor for 4, 8 and 16 scout units from left to right.
Noticeable variation is observed for em3d, perl and treeadd.
Interestingly, for treeadd increasing the number of scout units

Figure 5: Performance improvements with finite slicer
latencies and in-order scouts. We compare slicers with a
latency of 8, 16 and 32 cycles. For ease of comparison we also
include performance with a 0-cycle latency slicer. The values
for health are 2.4, 2.4, 2.39 and 2.39 from left to right.

1.00
1.05
1.10
1.15
1.20
1.25
1.30

bh bis em
3

gc
c hlt m

st pe
r pr

l
po

w ta
d

tsp AVG

0 cycles 8 cycles 16 cycles 32 cycles

Table 3: Number of unique slices detected per benchmark.

Program Unique
Slices

Program Unique
Slices

Bh 205 Perimeter 43

Bisort 13 Perl 381

Em3d 58 Power 73

Gcc 8742 Treeadd 53

Health 208 Tsp 117

Mst 72

329

actually hurts performance. Again, this is the result of increased
memory pressure and data cache pollution. Treeadd’s core data
structure is, as the name implies, a tree. Since our slices are
oblivious to intermediate control-flow, they correspond to spe-
cific paths through the tree’s branches. When more scout threads
are simultaneously active, it is likely that some (if not most of
them) will be prefetching down the wrong path polluting the
data cache and consuming memory resources. When the number
of scout units is small, however, fewer scout threads are active,
and few of them get to prefetch deep down a mis-speculated
path. Since em3d’s access sequence is more predictable (linked
list), having more scout units helps (8 vs. 4), However, at some

point we saturate the memory system so adding more units does
not impact performance (i.e., going from 8 to 16). For some pro-
grams (e.g. perl) we observe fluctuations in performance
depending on the number of scout units.

4.6. Slice Length Sensitivity
Finally, we also take a look at the sensitivity of our slice pro-

cessor to the length of the slices that can be detected and exe-
cuted. It would seem that having longer slices may increase the
chances of a scout thread running ahead of the main thread.
However, as we explained, care must be taken to also take into

Figure 6: Cumulative distribution of slice instruction count. (a) Detected slices, (b) executed slices.

Figure 7: Dynamic instruction distance for (a) detected slices and (b) executed slices. We define instruction distance to be the
number of dynamic instructions between the lead instruction (oldest instruction in the slice) and the candidate load (youngest
instruction in the slice). This includes all instructions independently on whether they belong in the slice or not.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 5 7 9 11 13

BH

BIS

GCC

EM3

HLT

MST

PER

PRL

POW

TAD

TSP
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 4 7 10 13 16 19 22 25 28 31

(a) Detected Slices (b) Executed Slices

00%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 4 7 10 13 16 19 22 25 28 31

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 4 7 10 13 16 19 22 25 28 31

BH

BIS

EM3

GCC

HLT

MST

PER

PRL

POW

TAD

TSP
(b) Executed Slices(a) Detected Slices

330

account the fraction of overall computation such slices repre-
sent. Also, longer slices may spread over multiple branches, giv-
ing rise to the danger of capturing computations whose utility is
limited to a specific control-flow paths.

Figure 8(b) reports performance relative to the base proces-
sor for slices of up to 4, 8 and 16 instructions from left to right.
The slicer in all experiments is left at 32-entries. For most pro-
grams, allowing longer slices increases performance. In mst and
to a lesser extend in tsp we observe a large jump in performance
when we move from 8 instruction slices to 16 instruction ones.
As we have seen in figure 6(a), many detected slices in these
programs had more than 8 instructions. Note, that using longer
slices does not always improve performance. For example, per-
formance drops (albeit only slightly) in perl when we move
from 8 instruction slices to 16 instruction ones.

We have also experimented with larger slicer windows and
found that after a while, slice utility drops. Even though we were
able to capture slices that spread over more instructions, they
were less likely to prefetch useful data. In addition we have
experimented with partial window slicers, which attempt to
extend the reach of the slices by admitting in the detection win-
dow only integer instructions and loads. Based on the observa-
tion that address calculation is achieved with arithmetic and
logical instructions and by loads, partial window slicers do not
admit branches, stores and floating point instructions in their
detection window. In this way the resulting slice for a slicer of
32 entries may contain instructions that are farther than 32
instruction apart in the dynamic instruction stream of the pro-
gram. However, our experiments showed that the partial slicers
overall performed very similarly to regular slicers with the same
number of entries

4.7. Interaction with a Stride Prefetcher
Finally, we present a preliminary investigation of how slice

processors interact with an out-come-based prefetcher. For this
purpose, we have augmented our base configuration with a
stride prefetcher. Our stride prefetcher is loosely based on the
model by Farkas at al. [4]. In particular, it uses a 4K-entry PC-
indexed table to detect memory operations that follow a stride
pattern. It uses ttwo bit saturating counters with a threshold of 2
for initiating prefetching requests only for instructions that
exhibit repeating stride access patterns. Once such an instruction
is identified, prefetching requests are sent whenever it is exe-

cuted. The target address is calculated as “addr x stride x looka-
head” where “addr” is the address just accessed, “stride” is the
identified stride, and “lookahead” has been tuned to maximize
benefits for the given configuration (32 in our case). Prefetching
requests are queued only if no other request for the same block
already exist. They compete for load/store ports with the main
core (scout threads also did the same).

Figure 9 reports performance improvements for three con-
figurations. Starting from the left is the slice processor. It has a
32 cycle slicer, scout threads of up to 8 instructions and 8 scout
units. The second, is the base configuration augmented with the
aforementioned stride prefetcher. Finally, we combined the
slicer processor with the stride prefetcher. The stride prefetcher
offers significant performance benefits for em3d, perl and tree-
add. In all three programs, combining the stride prefetcher with
the slice processor leads to further performance improvements.
However, combining the two is not always beneficial (e.g., gcc).
This is primarily the result of increased contention for memory
ports and of cache polution..

The results of this section demonstrate that our slice proces-
sor is capable of prefetching access patterns that foil an existing
stride-based prefetcher. As we explained in section 2, more
sophisticated outcome-predictors are possible. Similarly, further
improvements may be possible over the first-cut mechanisms
used in our slice processor. Accordingly, while these results are
promissing, further investigation is required to better understand
the interaction of slice processors and outcome-based predictors.

4.8. Slice Examples
Figure 10 shows some frequent slices from perl, gcc and

em3d. The slice from perl (part (a)) implements a switch state-
ment. We show both the C code (excerpt) and the resulting slice
in machine code. Note that the instructions in the slice do not
form a continuous sequence. Part (b) shows a slice from gcc
where an array element is accessed. The index of the element is
stored in a structure pointed to by some other variable. Finally,
in part (c) we show the most frequently occurring slice in em3d
that corresponds to a linked list traversal. This slice contains 4
instances of a self-recurring load.

5. RELATED WORK
Slice-processors utilize small helper threads that run in par-

allel with a main, sequential thread. Simultaneous subordinate
micro threading (SSMT) first proposed a model of executing
such helper threads [1]. In SSMT, helper threads are stored in
microcode memory and are executed upon encountering special
thread launching instructions in the main thread. As an example,
it is shown how SSMT can be used to implement a sophisticated
branch prediction algorithm. Assisted execution is a similar pro-
posal [13].

The idea of identifying slices and pre-executing them to
improve performance is not new. Farcy, Temam and Espasa sug-
gested to dynamically extract slices for mis-predicted branches
and used them to pre-calculate future branches for the purposes
of branch prediction [3]. Their computation detection mecha-
nism works by identifying a restricted set of well behaved com-
putations. Zilles and Sohi suggested using pre-execution in a

Table 4: Slice Execution Overhead for each benchmark.
Reported is the number of instructions executed by scout
threads as a fraction of the instructions committed by the
main thread.

Program Overhead
Instr. (%)

Program Overhead
Instr.(%)

Bh 7.9% Perimeter 11.5%

Bisort 0.5% Perl 20.5%

Em3d 17.4% Power 1.1%

Gcc 35.5% Treeadd 39.9%

Health 44.3% Tsp 18.3%

Mst 10.6%

331

general sense for both branches and loads. They studied the
characteristics of the computation slices leading to branches and
loads including both control flow and memory dependences
[15]. In parallel with this work, they also demonstrated that
using optimized speculative slices identified by profiling for
both loads and branches can greatly improve performance [16].
Moshovos suggested the possibility of generalized operation-
based predictors as an improvement over outcome-based ones
[8].

Roth and Sohi proposed the Speculative Data-Driven Multi-
threading (SDDM) execution model [11]. SDDM is a general
model where performance critical slices leading to branches or
frequently missing loads are pre-executed. Register integration
mechanism incorporates the results of pre-execution directly
into the main sequential thread avoiding the need for re-execut-
ing these instructions. It also filters incorrect pre-computed

results. In their study and for the purposes of demonstrating the
potential of the SDDM model, slices are identified through pro-
filing. Our slice-processor performs automatic and dynamic
detection of slices leading to loads. Moreover, execution of
slices impacts the main sequential thread only indirectly and as a
result no integration mechanism is necessary (at the expense of
re-executing instructions).

A number of other proposals investigate dynamic creation of
helper-threads. In particular the Instruction Path Coprocessor
proposal introduces a coprocessor that can dynamically opti-
mize program traces [2]. It is shown the this approach can be
used to implement previously proposed prefetchers targeting
arrays and linked lists. It may be possible to use such a copro-
cessor to identify slices and pre-execute them.

Many prefetching methods have been proposed, both static
and dynamic. We do not review them due to space limitations.
Most of them rely on some form of outcome-based address pre-
diction. A number of operation-based address predictors also
exist. For example, stride predictors fall in this category. Roth,
Moshovos and Sohi also proposed an operation-based predictor
for linked data structures which is based on detecting load to
load dependences [9]. Mehrotra at el., also proposed operation-
based predictors for arrays and linked lists [7]. Roth, Moshovos
and Sohi extended their operation-based prefetcher for pre-exe-
cuting indirect branches [10]. In all aforementioned proposals,
the class of predictable operations is fixed in the design. Our
slice processor architecture is capable of extracting and predict-
ing generalized operations. Slipstream Processors also use a
helper thread to run-ahead of the main sequential thread in effect
pre-executing instructions [4]. The helper thread is formed by
removing predictable computations from the main sequential
thread.

As described, our slice processor is capable of a restricted
form of access/execute decoupling. Smith proposed access/exe-
cute decoupled architectures [12]. In these architectures, pro-
gram execution comprises two threads, one responsible for
accessing memory and one responsible for computations. Parti-
tioning of instructions between the two threads is done statically.
Our slice processor implements a restricted form of access/exe-
cute decoupling while detecting and spawning access threads
dynamically and speculatively.

Figure 8: (a) Performance for various in-order scout unit counts. From left to right: 4, 8 and 16 scout unit slice processor
performance. The values for health are 2.35, 2.40 and 2.40 from left to right. (b) Performance for slices of 4, 8 and 16 maximum
instructions (left to right) for in-order scout units. The values for health are 1.73, 2.40 and 2.58 from left to right, and right-most
value for mst is 1.48.

1.00
1.05
1.10
1.15
1.20
1.25
1.30

bh bis
em

3
gcc hlt

m
st

per prl
pow

ta
d tsp

AVG

slice 4 slice 8 slice 16

1.00
1.05
1.10
1.15
1.20
1.25
1.30

bh bis
em

3
gcc hlt

m
st

per
prl

pow
ta

d tsp
AVG

scout 4 scout 8 scout 16
(a) Scout Unit Count (b) Max. Slice Length

Figure 9: Comparing a slice processor with an outcome-
based stride prefetcher (“stream”). The two out-of-range

numbers for health are both 2.39. Reported is relative
performance over the base configuration.

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65
1.70

bh bis em
3

gc
c hlt m

st pe
r pr

l
po

w ta
d

tsp AVG

slice stream slice+stream

332

6. CONCLUSION
We have described the micro-architecture of the Slice-Pro-

cessor. Slice-Processors are an implementation of operation pre-
diction where rather than detecting repeating patterns in the
outcome-stream of programs we instead attempt to predict
repeating patters in the computation (or operation) used to pro-
duce these outcomes. We have explained that operation predic-
tion has the potential to predict outcomes that foil existing
outcome-based predictors. However, we have also emphasized
that operation-prediction should not be viewed as a replacement
for outcome-based predictors.

We have restricted our attention to using slice processors for
memory prefetching and focused on describing the various
structures necessary for detecting, extracting and executing
slices. In particular, we have provided a detailed description of
the structures necessary for implementing a simple “last opera-
tion”-based predictor. We have provided a detailed description
of the slice detection unit (the slicer) and studied its perfor-
mance under various latency assumptions. We have demon-
strated that a simple slice processor implementation can improve
performance by about 11% on the average for a set of pointer-
intensive benchmarks and for perl and gcc from Spec95. In par-
ticular, this implementation is capable of detecting slices of up
to 8 instructions over a region that spans at most 32 instructions.
The particular implementation uses 8 single-issue scout execu-
tion engines (scouts) capable of in-order execution. We have
also found that allowing slices of up to 16 instructions can
improve performance by 15%. We have provided additional sta-
tistics to gain additional insight on the type and frequency of
slices that are commonly detected. Finally, we compared our
slice processor with a stride-based prefetcher and found that
often they benefit from each other.

Many directions for further research and improvements exist
including applying the idea of operation-prediction to other
forms of prediction such as branch and value prediction. Also,
our slice processor currently implements a simple “last-opera-
tion” prediction scheme. Building on the experience with out-
come-based predictors, it may be possible to use pattern
detectors to enhance accuracy and utility (e.g., slice A appears
after slices B and C have appeared). Nevertheless, we have dem-
onstrated that a simple implementation of slice processors can
improve performance significantly even under pessimistic
assumption about slice detection (up to 32 cycles of latency to
scan over 32 instructions) and execution (sharing resources with
the main thread).

7. ACKNOWLEDGMENTS
We thank the anonymous reviewers, Doug Carmean,

Stephan Jourdan and Eric Sprangle for their insightful com-
ments. Andreas Moshovos is on leave of absence from North-
western University. This work was supported in part by an NSF
CAREER award and by funds from the University of Toronto.
This work was also supported by the Greek Secretarial for
Research and Technology (GSRT) and the European Social
Fund through the PENED 99 program under contract 99ED408.

References
[1] R. Chappell, J. Stark, S. Kim, S. Reinhardt, and Y. Patt.

Simultaneous subordinate microthreading (SSMT). In
Proc. 26th Intl. Symposium on Computer Architecture, May
1999.

[2] Y. Chou and J. Shen. Instruction path coprocessors. In
Proc. 27th Intl. Symposium on Computer Architecture,
June, 2000.

[3] A. Farcy, O. Temam, and R. Espasa. Dataflow Analysis of
Branch Mispredictions and Its Application to Early
Resolution of Branch Outcomes. In Proc. 31st Annual
International Symposium on Microarchitecture, Dec. 1998.

[4] K. Farkas, P. Chow, N. Jouppi and Z. Vranesic. Memory-
system design considerations for dynamically-scheduled
processors. In Proc. 24th International Symposium on
Computer Architecture, June 1997.

[5] K. Sundaramoorthy, Z. Purser and E. Rotenberg.
Slipstream processors: Improving both performance and
fault tolerance. In Proc. 9th International Conference on
Architectural Support for Programming Languages and
Operating Systems, Nov. 2000.

[6] R. E. Kessler, E. J. McLellan, and D. A. Webb. The Alpha
21264 architecture. In Proc. of the Intl. Conference on
Computer Design, Dec. 1998.

[7] S. Mehrotra and L. Harrison. Examination of a memory
access classification scheme for pointer-intensive and
numeric programs. In Proc. 10th Intl. Conference on
Supercomputing, Sept. 1997.

[8] A. Moshovos. Memory Dependence Prediction, Chapter 6,
Future Directions: Operation Prediction. Ph.D. thesis,
University of Wisconsin-Madison, Madison, WI, Dec.
1998.

[9] A. Roth, A. Moshovos, and G. S. Sohi. Dependence based
prefetching for linked data structures. In Proc. 8th

Figure 10: Examples of slices that are detected and executed by the slice processor.

char *s = bufptr;
...
switch (*s)
...

lb r3, 0(r18)
sll r2, r3, 2
lui r1, 0x1000
addu r1, r1, r2
lw r2, 15816(r1)

(a) slice from perl

... = array[*ptr->field)

lw r19, 0(r16)
lw r3, 4(r19)
addu r4, r0, r3
sll r6, r4, 1
lw r2, -19544(r28)
addu r6, r2, r2
lh r2, 0(r2)

(b) slice from gcc

list = list->next

lw r4, 8(r4)
lw r4, 8(r4)
lw r4, 8(r4)
lw r4, 8(r4)

(b) slice from em3d

333

International Conference on Architectural Support for
Programming Languages and Operating Systems, Oct.
1998.

[10] A. Roth, A. Moshovos, and G. S. Sohi. Improving virtual
function call target prediction via dependence-based pre-
computation. In Proc. Intl. Conference on Supercomputing-
99, June 1999.

[11] A. Roth and G. S. Sohi. Speculative Data-Driven
Multithreading. In Proc. 7th International Symposium on
High Performance Computer Architecture, Jan, 2001.

[12] J. E. Smith. Decoupled Access/Execute computer
architectures. In Proc. 9th Intl. Symposium on Computer
Architecture, April 1982.

[13] Y. Song and M. Dubois. Assisted execution. Technical
report, Technical Report CENG-98-25, Department of EE-
Systems, University of Southern California, Oct. 1998.

[14] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L.
Lo, and R. L. Stamm. Exploiting choice: Instruction fetch
and issue on an implementable simultaneous multithreading
processor. In Proc. 23rd Annual International Symposium
on Computer Architecture, pages 191–202, May 1996.

[15] C. Zilles and G. Sohi. Understanding the Backward Slices
of Performance Degrading Instructions. In Proc. 27th
International Symposium on Computer Architecture, June
2000.

[16] C. Zilles and G. Sohi. Execution-based Prediction using
Speculative Slices In Proc. 28th International Symposium
on Computer Architecture, June 2001.

Appendix A
Here we describe a sketch of an implementation of the slice

detection mechanism. In section 3.2, we have described slice
detection as a step-by-step process where a DV (dependence
vector) is propagated in reverse program order among all
instructions in the slicer. The bits that are set in the DV identify
the instructions that are currently part of the slice. Upon receiv-
ing the DV, a slicer entry inspects whether the bit that corre-
sponds to it is set. If so, it has to OR the received DV with its
own and propagate it to the next entry. Otherwise, it simply
propagates the DV as is.

Figure 11 shows an abstract dynamic logic implementation
that should be able to process multiple slicer entries per cycle.
Shown within the dotted box is the circuitry for entry #1 (entries

are numbered starting from 0). The entry contains a number of
storage elements, shown as the boxes numbered as 0 through 3
(for ease of explanation, we assume a 4-entry slicer). These stor-
age elements hold the DV for the entry. As we explained, the DV
identifies the immediate parents of this entry.

Detecting the slice proceeds as follows: A set of vertical cDV
(cumulative dependence vector) lines cross over all entries, one
per DV bit. These lines are initially pre-charged using the tran-
sistors marked with C. Each slicer entry simply observes the
cDV line that corresponds to it. Since we are showing entry #1, a
NOT gate is connected to line cDV1 (an additional activate line
may be required to disable the NOT gate during pre-charge).
The output of the NOT gate connects to a set of the discharge
chains one per each other storage element (DV). As a result, if
cDV1 is discharged, the output of the NOT gate will be set to 1,
activating all pass-transistors marked with A. If the correspond-
ing storage element also holds a 1, then the pass-transistor B
will also be activated and the corresponding cDV line will be
discharged too (we omit the pull-down transistors that are used
to isolate A and B during precharge). In effect, we have imple-
mented a conditional OR function, discharging the cDV lines
that correspond to the immediate parents of this entry if the
incoming cDV indicated that this entry belongs in the slice. Pro-
vided that we allow sufficient time, this discharging will eventu-
ally identify all instructions in the slice. The whole detection
process is initiated by discharging the DV line for the candidate
instruction (i.e., the youngest one).

Figure 11: An implementation of the Slice Detection
Circuitry. We assume a 4-entry slicer and show the circuit
for entry 1.

precharge

power

A
B

C

0 1 2 3

cDV0 cDV1 cDV2 cDV3

in slice

AA
B B

CCC

334

