
Power-aware branch predictor update

A. Baniasadi

Abstract: Designers have invested much effort in developing accurate branch predictors. To
maintain accuracy, current processors update the predictor regularly and frequently. Although this
aggressive approach helps to achieve high accuracy, for a large number of branches, quite often,
updating the branch predictor unit is unnecessary as there is already enough information available
to the predictor to predict the branch outcome accurately. Therefore, the current approach appears
to be inefficient since it results in unnecessary energy consumption. The author introduces the
power-aware branch predictor update (PABU). PABU uses a simple power efficient structure to
identify well behaved accurately predicted branch instructions. Once such branches are identified,
the predictor is no longer accessed to update the associated data. The key to the success of the
proposed technique is a power efficient method that can effectively identify such branches. The
author exploits branch instruction behaviour to identify such branch instructions. He shows that it is
possible to reduce the number of predictor updates considerably without losing performance. The
technique is evaluated by studying energy and performance tradeoffs for SPEC2000 benchmarks. It
is shown that the technique can reduce branch prediction energy consumption considerably for both
floating point and integer benchmarks. This comes with a negligible impact on performance.

1 Introduction

The goal of this work is to reduce branch predictor energy
consumption without compromising accuracy and hence
overall performance. Reducing branch predictor energy
consumption is important for two reasons: (i) branch
predictors already account for a considerable fraction of
on-chip dynamic power dissipation; (ii) their power is
bound to increase as further improvements in prediction
accuracy may call for even larger and more complex branch
predictors. The trivial option of reducing energy by using
smaller predictors is not acceptable as that would lead to
unacceptable accuracy and hence performance degradation.
In fact, maintaining and if possible improving prediction
accuracy is necessary since it may become essential for
future processors to look further in the instruction stream in
order to tolerate slower main memories and deeper
pipelines. The trend towards larger, more accurate but
more energy demanding branch predictors is exemplified by
the Alpha processor family: The Alpha EV6 [1] that was
released in 1997 used 36 kbits in its branch predictor, while
Alpha EV8 [2], which was planned for release after 2001,
used 352 kbits – an almost ten-fold increase.
Most state-of-the-art branch predictors use variations of a

branch target buffer (BTB [Note 1]) [3] for target address
prediction and of the combined branch predictor [4] for
direction prediction. Accordingly, we focus on this
organisation in this work.
The key opportunity for reducing power in state-of-the-

art branch predictors lies in that they were developed with
accuracy, speed, complexity and cost as the primary

considerations. This tradeoff favours uniformity. Naturally,
existing predictors treat all branches uniformly performing
the same number of steps per branch. These steps are
powerful enough to capture the behaviour of as many
branches as possible. However, as we show in this work,
quite often, not all steps are needed to accurately predict the
branch outcome for all branches. The goal of this work is to
exploit this variation and reduce predictor power by
selectively updating the predictor for well behaved
branches.

Understanding how we can reduce branch predictor
power requires a closer look at the underlying principle of
operation for state-of-the-art predictors. Specifically mod-
ern predictors are history-based. They record branch
behaviour implicitly assuming that past behaviour is a
good indicator of future behaviour. Processors fill in the
branch predictor tables as soon as the outcome of a branch
instruction is decided, effectively learning how the specific
branch behaves (this is called the learning phase). Then,
provided that the branch exhibits relatively stable beha-
viour, highly accurate prediction is possible simply by
looking up the previous outcomes.

A key motivating observation for this work is that there
are many well behaved branches for which, once the
learning phase is over, the collected information stays
virtually unchanged for a period much longer than the
learning phase. We refer to this post-learning phase as the
steady state phase. Existing designs continuously update all
predictor structures even in the steady state. This is
unnecessary. By detecting well behaved branches it should
be possible to avoid updating the predictor.

We introduce the power-aware predictor update (PABU)
to reduce power dissipation while maintaining performance.
PABU uses a power efficient structure, referred to as the
PABU-filter, to identify well behaved branches that are in
their steady state. PABU exploits branch instruction steady
state behaviour and temporal locality. Once a branch is

q IEE, 2005

IEE Proceedings online no. 20045117

doi: 10.1049/ip-cdt:20045117

The author is with the Electrical & Computer Engineering, University of
Victoria, 3800 Finnerty Rd., Victoria, British Columbic, Canada V8P 5C2

E-mail: amirali@ece.uvic.ca

Paper received 6th September 2004

Note 1: Line prediction is a similar in nature alternative to the BTB.

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 5, September 2005 585

deemed as one in its steady state, updating the predictor is
avoided.

Specifically, by using PABU, while maintaining per-
formance cost within 0:1%, we can:

. reduce the number of BTB updates by up to a maximum
of 82%
. reduce the number of predictor buffer updates by up to a
maximum of 80%
. reduce branch prediction energy consumption for a
variety of predictor sizes by up to 50%.

Previous study has suggested techniques that reduce power
dissipation in the entire processor (e.g. voltage and
frequency scaling). However, improving power dissipation
in future designs is most likely to follow an incremental
path. This may require revisiting different processor
components and optimising them for better power effi-
ciency. In a conventional processor each component’s
power dissipation accounts for only a fraction of the total
power dissipation. Nonetheless, revisiting traditional
designs and developing power-aware components provides
a reliable opportunity for reducing power in future
processors. To facilitate this goal, power-aware components
should achieve considerable local savings while imposing
very little performance cost.

Note that PABU introduces new hardware which will
impose overhead. In general, adding new hardware may
reduce energy, if the new addition saves energy spent
elsewhere. As such, PABU will only be justified if savings
exceed the overhead.

In this work we are concerned with power reduction
techniques at the architectural level that are complementary
to low-level circuit techniques. Our goal is to revisit existing
architectural decisions, revising where necessary so that
energy is used more efficiently.

2 Power-aware predictor update

To enhance performance, many processors use the branch
predictor aggressively. While this has resulted in high
branch prediction accuracy, unfortunately it comes with
extra power dissipation. By using WATTCH [5] we
estimated that the power consumed by a 32k-entry
combined branch predictor and a 1k-entry, 4-way, BTB of
a 4-way issue, 64-entry window superscalar processor is
11:6% of the total processor switching power. Moreover,
branch predictor accuracy impacts the overall processor
power dissipation. Reportedly, replacing complex power
hungry branch predictors with small and simple ones will
result in higher overall power dissipation due to an increase
in the number of mispredicted instructions executed [6].
Accordingly, in this work we focus on low power and highly
accurate predictors.

PABU relies on the following three observations:

1. At fetch, many modern processors access the BTB using
the instruction address of the fetched instruction – a
possible branch – to index the buffer. If the branch address
is found in the BTB, we know the predicted instruction
address at the end of the fetch cycle, which is at least one
cycle earlier than for a branch prediction buffer. This
requires storing taken branch addresses and their target
address in the buffer. Accordingly, we update the BTB
frequently and as soon as we know the target address and are
certain that the branch is taken. However, our study on
SPEC2000 benchmarks shows that more than 99% of the
BTB updates are unnecessary since the associated branch

address is already stored in the BTB. In other words, since
many branches appear frequently, all but the first update are
unnecessary as long as the branch is not evicted from the
buffer. However, many processors (e.g. [7]), update BTB for
every taken branch to ensure that the branch information is
stored.
2. Several high-performance designs (e.g. [8, 9]) use the
combined predictor, which is one of the most accurate
predictors [4], to find out the branch outcome. Combined
predictors use three underlying subpredictors. Two of the
subpredictors produce predictions for branches. They are
typically tuned for different branch behaviours. The third
subpredictor is the selector and keeps track of which of the
two subpredictors works best per branch. Typical configura-
tions use bimodal predictors for one of the subpredictors and
the selector, and a pattern-based predictor like gshare for the
last subpredictor. Bimodal predictors capture temporal
direction biases (e.g. mostly taken) in branch behaviour
and have short learning times. However, they cannot capture
complex repeating branch behaviours that do not exhibit a
direction bias. Pattern-based predictors like gshare can
successfully capture repeating direction patterns and
correlated behaviours across different branches.
However, these predictors require longer learning times
and have larger storage demands. By using a selector,
combined predictors offer the best of both underlying
subpredictors: fast learning and prediction for branches that
exhibit temporal bias, and slower but accurate prediction for
branches with repeatable direction patterns. The subpredic-
tors use saturating counters to record information. A typical
mechanism in such predictors is to increment the associated
counter if the branch is taken and decrement it if it is not
taken. To reduce the number of bits required, small counters
(e.g. 2-bit counters) are used. Once the counter value has
reached the maximum (e.g. three), taken branch outcomes
will no longer increment the counter. Similarly, once the
counter has reached its minimum, not taken branch
outcomes will not change the predictor state. In other
words, the counter is not decremented past the minimum,
nor it is incremented past the maximum. Later, the counters
are probed to predict the branch outcome. If the counter
value is more than a threshold (e.g. one for 2-bit counters)
the branch is predicted taken. Otherwise, the branch
outcome is predicted to be not taken.

This approach, while providing accurate predictions, is
inefficient since many (i.e. � 90%, as we show later) of the
subpredictor updates are unnecessary as they attempt to
increment= decrement a counter that is already saturated to
the maximum=minimum. For example, in the case of loops
with more than hundreds of iterations, only the first and last
few predictor updates provide useful information. The rest
of the updates do not change the state of the counters
associated with the loop branch instruction.

We categorise predictor buffer updates into three major
groups. The first group includes those updates that do not
change the predictor state. An example is an update caused
by a taken branch whose associated counter is already
saturated to the maximum value. We refer to such updates as
noneffective updates (NEUs). The second group of updates
includes those that change the predictor state but not the
immediate outcome. An example of such updates is an
update caused by a taken branch whose associated counter is
already more than the threshold (e.g. the counter value is
two) but less than the maximum value (e.g. three). While
such updates do not change the immediate predictor
outcome they may impact future decisions. We refer to
such updates as probably effective updates (PEUs). The third
group of updates includes those that change both the

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 5, September 2005586

predictor state and immediate outcome. An example of such
updates is an update causing a counter to pass the threshold.
We refer to such updates as effective updates (EUs).
Figure 1 reports the percentage of each kind of update for

SPEC2000 benchmarks and for all three predictor tables
(abbreviations are shown under the ‘Ab.’ column in
Table 1). In this Figure (and for all Figures presented in
this paper) the first four benchmarks from the left are
floating point benchmarks while the rest of the benchmarks
are integer. We also report harmonic average measurements
for floating point and integer benchmarks separately to
provide deeper insight. For each benchmark, bars from left
to right report relative distribution for NEUs, PEUs and
EUs. On average, 87% and 97% of the updates appear to be
noneffective (NEUs) for integer and floating point bench-
marks, respectively. This reaches a minimum of 78% for wlf
and a maximum of 99:8% for mes. On average, and for
integer benchmarks, only 1:8% and 3:6% of the total
number of updates are PEUs and EUs, respectively. For
floating point benchmarks, on average, EUs and PEUs
account for less than 1%. We conclude from Fig. 1 that only
a very low percentage of predictor buffer updates contribute
to performance. On average, 87% and 97% of the updates
result in power dissipation without contributing to perform-
ance for integer and floating point benchmarks,
respectively.
3. We have observed that branch instructions show strong
temporal locality. That is, during short periods of time, there
is a small set of branches that account for the vast majority
of predictions [10]. Therefore, it may be possible to use a
small structure to store information regarding the branch
instructions being executed during short intervals.

PABU uses the discussed phenomena to identify and
eliminate unnecessary branch predictor updates. To do so
and to take advantage of temporal locality, PABU uses
the 256-entry PABU-filter presented in Fig. 2 (in Section
3.4.2 we will discuss how alternative filter sizes impact
PABU).

For each dynamic branch instruction, we access the
PABU-filter prior to the original predictor to decide if
updating the branch predictor is unnecessary. If so, we
save power by not accessing the branch predictor
structures. Otherwise, we access the original predictor.
We store well behaved branch instructions that are in their
steady state in the PABU-filter. We do so by taking into
account the counters associated with the branch in the
branch predictor buffer. If all three predictor counters are
strongly biased (i.e. they are saturated), we allocate an
entry in the PABU-filter.

Every filter entry includes an address field and a two-bit
hint field. PABU uses the latter to record whether a branch is
already in the BTB, and if the branch outcome was predicted
accurately last time encountered. As presented in Fig. 2, the
following information is stored in the PABU-filter:

The first field, Branch PC, is used to store the branch
address whose associated counters are saturated.

The second field, BTB, is a single bit used to record if the
branch is already stored in the BTB. When we find a well
behaved branch present in the BTB we set this bit to one.
Later, and before updating the BTB, we check this bit to
decide whether updating the BTB is necessary.

The third field, valid, is initially (i.e. when the branch is
stored in the filter) set to zero. An accurately predicted
branch sets the ‘valid’ bit to one. If the valid bit associated
with the branch is 0, none of the predictor accesses is
avoided.

PABU avoids updating all three tables in the predictor
buffer if: (a) the branch is found in the filter (i.e. associated
counters are saturated) and (b) the valid bit is 1 (i.e. the
branch was predicted accurately last time encountered).

Similarly, PABU avoids updating the BTB if: (a) the
branch is found in the filter and (b) the valid bit is 1 and (c)
the BTB bit is set to 1 (i.e. the branch is already in the BTB).

Mispredicted branches, if found in the PABU-filter, are
removed from it. This is to ensure that the predictor is
regularly updated for problematic branches.

Fig. 1 Bars from left to right show percentage of NEU, PEU and EUs for a subset of SPEC2k benchmarks

Abbreviations are shown under the ‘Ab.’ column in Table 1

Table 1: Benchmark names, abbreviations, BTB (target address) accuracy and branch prediction (direction) accuracy

Program Ab. BTB acc., % BP acc., % Program Ab. BTB acc., % BP acc., %

ammp amm 99.3 99.4 mcf mcf 91.8 92.5

art art 98.2 98.2 mesa mes 99.9 99.9

bzip bzp 98.7 98.7 parser prs 91.7 93.9

compress cmp 93.5 94 vortex vor 98.2 99.1

equake equ 96 96.2 vpr vpr 91.3 91.9

gcc gcc 90.5 93.9 wolf wlf 86.8 87.7

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 5, September 2005 587

Provided that a sufficient number of well behaved
branches are accurately identified, PABU has the potential
for reducing branch prediction energy consumption. How-
ever, it introduces extra energy overhead and can, in
principle, increase overall energy consumption if the
necessary behaviour is not there. We take into account
this overhead in our study and show that for the programs
we studied PABU is robust.

Figure 3 shows the operation of PABU. Initially, we
access the branch predictor to see whether the counters
associated with the branch are saturated. If that is the case,
and if the branch is not already in the filter, we allocate an
entry in the PABU-filter. Later, and when the branch
outcome is known, we update the PABU-filter. We either set
the valid bit or remove the branch from the filter, depending
on the prediction accuracy. The decision regarding avoiding
the update could be taken anytime from fetch to commit, i.e.
when the branch is scheduled to update the predictor. We
investigated different timing scenarios where the PABU-
filter was probed at decode, issue or write-back. The impact
of this variation on performance and energy savings was
insignificant.

The timing overhead associated with PABU should not be
an issue since the information needed to decide whether the
update could be avoided is available far earlier than when
the branch would update the predictor.

3 Methodology and results

In this Section, we present our analysis of PABU.
We used programs from the SPEC2000 suite complied

for the MIPS-like architecture used by the Simplescalar v3.0
simulation tool set [11], and GNU’s gcc complier (flags: -
O2-funroll-loops-finline-functions). Table 1 reports the
branch prediction and BTB accuracy per benchmark when
a 32K-entry branch predictor is used. For brevity we use the
abbreviations shown under the ‘Ab.’ column. We simulated
one billion instructions, and picked four floating point
(amm, art, mes and equ) and eight integer benchmarks to

investigate how PABU impacts both integer and floating
point benchmarks. We also report harmonic average for
both floating point and integer benchmarks. We detail the
base processor model in Table 2.

To investigate how PABU impacts energy and perform-
ance for different predictor sizes, we study combined
predictors with the following configurations:

. 32k-entry gshare, bimodal and selector, 1k, 4-way entry
BTB
. 16k-entry gshare, bimodal and selector, 512, 4-way entry
BTB
. 8k-entry gshare, bimodal and selector, 256, 4-way entry
BTB
. 4k-entry gshare, bimodal and selector, 256, 4-way entry
BTB.

The gshare predictor used in all predictors uses 8-bit history.
Note that all the tables used to store information, i.e.
predictor buffers, BTB and PABU-filter, use a memory core
of SRAM cells accessed via row and column decoders.

We used WATTCH [5] for energy estimation. WATTCH
is a widely used architectural simulator that estimates CPU
energy consumption (both dynamic and leakage). Power
estimations are based on a suite of parameterisable power
models of different hardware structures and on per-cycle
resource usage counts generated through cycle-level simu-
lation. To model a typical modern processor we modelled a
2GHz superscalar microarchitecture manufactured under a
0:1 mm technology. To estimate the relevant process
parameters, we used the process scaling methodology
developed for CACTI [12] that is incorporated inWATTCH.

By using WATTCH we have estimated how much energy
consumption accessing each of the branch predictor
structures requires. This includes the energy consumed to
access BTB, local and global predictors and the selector. In
Table 3 we report the average energy consumed by each
structure separately when each structure is accessed. We
also report the relative energy consumed by accessing the
PABU-filter. Accordingly, the energy overhead associated

Fig. 2 PABU-filter

Fig. 3 Schematic showing PABU operation

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 5, September 2005588

with the PABU-filter is far less than the energy consumed by
BTB or by the predictor buffer. Nevertheless, we will
benefit from PABU if the energy saved by eliminating
predictor accesses outweighs that consumed by extra PABU
accesses. Therefore, through this study we take into account
the associated costs.
Unless stated otherwise, power results reported here are

based on the nonideal clock-gating style used by WATTCH
where gated units dissipate 10% of the maximum power
(‘cc3’). However, many studies have suggested that
the absolute and the relative contribution of leakage power
to the total system power is expected to further increase in
future technologies because of the exponential increase in
leakage currents with technology scaling [13–15]. There-
fore, we also report power savings where gated units
dissipate 30% of the maximum power later in Section 3.4.1.

3.1 Update and access frequency

In this Section we report how PABU impacts BTB and
predictor buffer update and access frequency. We limit our
attention to the 32k-entry branch predictor (predictor size
will not affect its access frequency but it does impact greatly
the energy cost of each access).
Before reporting access and update frequency for a

PABU-enhanced processor we report predictor frequency

access for a conventional predictor in Fig. 4. We also
include how often the PABU-filter is accessed for the
PABU-enhanced processor. As reported for both the BTB
and the predictor buffer the number of predictor lookups
exceeds the number of updates. This is the result of the fact
that many instructions are flushed due to branch mispredic-
tions. As such, many branch instructions reading the
predictor do not commit and therefore never update the
predictor.

In the case of the PABU-filter, however, the number of
updates exceeds the number of the lookups. This is due to
the fact that for every branch instruction we may update the
PABU-filter more than once. For example, we may update
the filter initially when we find out that the branch is in
steady state, and then remove the branch later on when we
realise that it has been mispredicted.

In Fig. 5we report the reduction in the total number ofBTB
updates and accesses achieved by PABU. The entire bar
shows the reduction in update frequency. The dark portion of
each bar reports total access reduction. Themaximumupdate
reduction is 82% for art and the minimum is 38% for wlf.
Almost all (i.e. more than 99:5%) of the eliminated BTB
updates are unnecessary ones. We have observed that the
percentage of useful BTB updates removed is less than 1%.
On average, BTB update reduction is 43% and 62% for
integer and floating point benchmarks, respectively. On
average, BTB access reduction is 16% and 31% for integer
and floating point benchmarks, respectively.

In Fig. 6 we report predictor buffer update and access
frequency reduction. In Fig. 6a bars from left to right report
the relative reduction in the total number of updates, NEUs,
PEUs and EUs, respectively. On average, we reduce the
total number of updates and NEUs by 47% and 53% for
integer benchmarks and by 60% and 64% for floating point
benchmarks, respectively. PABU does not impact the
number of EUs and PEUs considerably.

The fact that we eliminate a considerable number of
NEUs with very little impact on the number of EUs is
important since it shows that PABU successfully identifies
and eliminates unnecessary updates.

In Fig. 6b we report the relative reduction in the total
number of predictor accesses. On average, total predictor
access is reduced by 13% and 26% for integer and floating
point benchmarks, respectively.

Note that, among all benchmarks, wlf and art show the
lowest and highest BTB and predictor buffer update
frequency reductions, respectively. This is consistent with
results reported earlier in Fig. 1 where wlf has the lowest
number of NEUs while art has the highest.

PABU does not eliminate all unnecessary updates, for
two reasons. First, due to size restriction, sometimes well

Table 3: Energy consumption (in nj) for each structure
used in 32k, 16k, 8k, 4k-entry predictors used here and
the PABU-filter

Energy consumption per access Lookup Update

4k-entry local predictor 8.5 11.1

4k-entry global predictor 11.9 15.2

4k-selector 11.9 15.2

8k-entry local predictor 15.3 18.6

8k-entry global predictor 17.4 21.3

8k-selector 17.4 21.3

16k-entry local predictor 24.5 31.3

16k-entry global predictor 32.5 41.5

16k-selector 32.5 41.5

32k-entry local predictor 41.8 53.1

32k-entry global predictor 50.9 62.4

32k-selector 50.9 62.4

1k, 4-way BTB 202.1 248.6

512, 4-way BTB 111.5 136.3

256, 4-way BTB 62.1 76.4

256-entry PABU-filter 1.4 1.8

Table 2: Base processor configuration

Branch predictors studied in this work 32kGShareþ32kbi-modalw=32kselector, 1024-entry 4-wayBTB

16k GShareþ16k bi-modal w= 16k selector, 512-entry 4-way BTB

8k GShareþ8k bi-modal w= 8k selector, 512-entry 4-way BTB

4k GShareþ4k bi-modal w= 4k selector, 256-entry 4-way BTB

Scheduler 64 entries, RUU-like

Fetch unit up to 4 instr.= cycle. Max 1 branches=cycle 64-entry fetch buffer

OOO core 4-way processors: any 4 instructions=cycle

Func. unit latencies same as MIPS R10000

L1 - instruction=data caches 64k, 4-way SA, 32-byte blocks, 3-cycle hit latency

Unified L2 256k, 4-way SA, 64-byte blocks, 16-cycle hit latency

Main memory Infinite, 100 cycles

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 5, September 2005 589

behaved branches are evicted from the PABU-filter. Second,
we only eliminate updates that are associated with branches
that have all three counters saturated. This is only a subset of
the NEUs since not all three updates are always unnecess-
ary. In other words, PABU eliminates updates for branches
with three unnecessary updates. This leaves out branches
with one or two NEUs.

We also conclude from Figs. 5 and 6 that PABU performs
more effectively for floating point benchmarks. This is due

to the fact that floating point benchmarks have a larger
number of well behaved branches (more about this is
discussed later).

3.2 Performance

Although we only eliminate predictor updates for branches
that are already being predicted accurately, PABU may
negatively impact accuracy and hence performance. This
could happen since branches may change their behaviour

Fig. 4 Number of times the predictor is read or written

Bars from left to right report for predictor read, predictor write, BTB read, BTB write, PABU read and PABU write. Numbers are in million instructions

Fig. 5 Relative reduction in total number of BTB updates (entire bar) and BTB accesses (dark portion) for a PABU-enhanced processor

Fig. 6 Relative reduction in predictor buffer updates and total number of predictor buffer accesses for a PABU-enhanced predictor

a Updates
b Total accesses
Bars from left to right report for total number of updates, NEUs, PEUs and EUs

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 5, September 2005590

through time. A typical scenario is that a branch may follow
the taken path frequently before changing direction. Under
such circumstances, PABU will repeatedly avoid updating
the predictor (and follow the taken path) until the
mispredicted branch is detected and removed from the filter.
Meantime, several mispredictionsmay take place and impact
performance negatively. To determine whether PABU is
indeed worthwhile, in Fig. 7 we compare PABU-enhanced
processors with conventional processors that do not elimin-
ate any of the predictor updates. Numbers lower than 100%
represent slowdowns. Bars from left to right report
performance for processors using 32k, 16k, 8k and 4k-
entry branch predictors. Maximum performance loss is
0:06% and is observed for vpr and for the 8k-entry predictor.
Note that we witness performance improvement for some

of the integer benchmarks and for some of the predictor
sizes and for one of the floating point benchmarks, i.e. amm
in the case of the 4k-entry predictor. This may be the result
of reducing destructive aliasing as we filter some of the
unnecessary updates to the predictor. This especially
becomes more important for smaller predictors where the
probability of aliasing is higher. On average, integer
benchmarks show performance improvement for all pre-
dictors but the 32k-entry predictor.
This result is significantly important since it shows that in

cases where PABU does degrade performance, the cost is

very little. Moreover, for integer benchmarks, where
deconstructive aliasing can be critical, PABU can improve
performance.

3.3 Energy and power

In this Section we report predictor energy and power
measurements. While reducing the number of predictor
updates reduces predictors’ energy consumption, it could
potentially increase the overall energy consumption due to a
possible increase in the number of mispredicted instruc-
tions. Therefore, we also study overall energy consumption.

Figure 8 reports branch predictor energy reduction and
the PABU energy overhead for PABU-enhanced predictors
and for different predictor sizes. In Fig. 8a we report
predictor energy reduction. Note that for every benchmark
each bar reports savings for a PABU-enhanced processor
compared to a conventional processor that uses a branch
predictor similar to that used by the PABU-enhanced
processor. Average energy savings are between 20% and
25% for integer benchmarks across all predictor sizes.
For floating point benchmarks, average savings are between
23% and 42% for different predictor sizes. As expected,
floating point benchmarks show higher savings. This is
consistent with results reported earlier where access
reduction was higher for floating point benchmarks. Note
that predictor energy reduction is higher for smaller

Fig. 7 Performance for PABU-enhanced processors (higher is better)

Bars from left to right report performance for processors using 32k, 16k, 8k and 4k-entry branch predictors

Fig. 8 Relative branch prediction energy consumption reduction for PABU-enhanced processors and overhead associated with PABU

a Relative reduction
b Overhead

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 5, September 2005 591

predictor sizes. This may be due to the fact that for smaller
predictors we also reduce the number of mispredicted
instruction by reducing deconstructive aliasing. Mes, art
and amm (all floating point benchmarks) show higher
savings compared to other benchmarks.

To provide better insight, in Fig. 8b we report the energy
overhead associated with PABU compared with the
predictor energy reduction. In other words, the data reported
in Fig. 8b show how much more our savings would have
been if the overhead associated with PABU would not have
negated part of our savings. As reported, the smaller the
predictor, the more the relative PABU power overhead will
be. On average, PABU overhead negates 12%, 28%, 37%
and 42% of the savings achieved originally for processors
using 32k, 16k, 8k and 4k-entry predictors for integer
benchmarks. The PABU overhead negates 15%, 21%, 27%
and 33% of the savings achieved originally for processors
using 32k, 16k, 8k and 4k-entry predictors for floating point
benchmarks.

In Fig. 9 we report overall energy reduction for different
predictor sizes. As pointed out earlier, overall savings
should be weighted against the negligible performance cost.
On average, energy reduction for integer benchmarks is
2:7%, 1:9%, 1:4% and 1:2% for processors using 32k, 16k,
8k and 4k-entry predictors, respectively. Average energy

consumption for floating point benchmarks is 3:2%, 2:2%,
1:6% and 1:3% for processors using 32k, 16k, 8k and 4k-
entry predictors, respectively. As predictors become smaller
they consume a smaller share of the total energy. Therefore,
total energy savings start to decline as smaller predictors are
used.

Across all predictor sizes, amm and art, with overall
savings more than 5%, show higher savings compared to
others.

We conclude from Figs. 8 and 9 that PABU reduces
predictor and overall energy consumption across all bench-
marks. Also, in relative terms, PABU reduces predictor
energy more effectively for smaller predictors. In the
meantime, overall energy savings are higher for predictors
using larger predictors.

We have observed that power and energy/delay measure-
ments follow the exact trend of energymeasurements. This is
the result of the fact PABU has negligible impact on runtime;
consequently, power (energy over runtime) and energy/delay
follow energy. Therefore, we only report energy.

3.4 Sensitivity analysis

In this Section, we investigate the sensitivity of PABU to
key parameters. In Section 3.4.1, we investigate our energy

Fig. 9 Total energy reduction for PABU-enhanced processors

Bars from left to right report for processors using 32k, 16k, 8k and 4k-entry branch predictors

Fig. 10 Energy savings when leakage power is 30% of total power

a Predictor energy
b Total energy

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 5, September 2005592

results if gated units dissipate 30% of the maximum power.
In Section 3.4.2 we vary PABU-filter size and show how it
impacts energy savings.

3.4.1 Leakage power: As many studies have
suggested [13–15] in future technologies, the problem of
subthreshold leakage power in CMOS circuits will grow in
significance. When transistors are switched off, a certain
amount of leakage current flows, and this results in leakage
power. The leakage current is exponentially dependent on
the value of the threshold voltage such that if the threshold
voltage is reduced (as it will in future technologies), the
leakage current registers.
To study how this will impact our results, we investigate

how PABU will perform when gated units dissipate 30% of
the maximum power. Accordingly, in Fig. 10 we report
predictor and overall energy savings when leakage power is
30% of the maximum power and for a 32k-entry predictor.
On average, predictor energy reduction is 15% and 26% for
integer and floating point benchmarks, respectively. Aver-
age total energy savings are 1:4% and 1:9% for integer and
floating point benchmarks, respectively. The fact that
PABU aims at reducing dynamic power explains why
savings start to decrease as leakage power increases.

3.4.2 PABU-filter size: In this Section we report
how changes in the PABU-filter size impact our results. We
report predictor energy savings when the filter size is 64,
128, 256 and 512. We do not report performance as it stays
virtually intact when the PABU-filter size is changed.
Figure 11 reports energy savings for a 32k-entry predictor.
As presented energy savings are maximum when a 256-
entry filter is used. This is true for both floating point and
integer benchmarks. Meantime, floating point benchmarks
appear to be more sensitive to filter size compared to integer
benchmarks.

4 Discussion

In this Section we review the results and discuss details. We
review both floating point and integer benchmarks.

1. Floating point benchmarks include amm, art, equ and
mes. Among the four floating point benchmarks, amm, art
and mes have the highest update frequency, predictor and
total energy reduction (see Figs. 6, 8a and 9) and therefore
benefit most from PABU. A combination of factors explains
why the three stand out. First, the three have a high
percentage of NEUs (more than 97% as reported in Fig. 1).
Therefore there is a large pool of unnecessary predictor
updates to pick from. Second, all three benchmarks have a
high branch prediction rate (more than 98% as reported in

Table 1). This indicates that they have a large number of
well behaved branches.

Among the three,mes falls behind in total energy reduction
(see Fig. 9). To explain this we need to take into account
branch instruction frequency. Therefore in Fig. 12 we report
the average number of instructions per branch (IPB). Note
that high IPB indicates low branch frequency. As presented,
IPB is highest for mes. In other words, mes has the least
number of branches. Consequently, for mes, a smaller share
of total energy is consumed by the branch predictor
compared to other benchmarks. This results in lower total
energy reduction for this benchmark. Also, amm has the
lowest IPB, which may explain why amm has one of the
highest total energy reductions among all benchmarks.

Among the floating point benchmarks, equ performs
worst. The following explains why equ falls behind other
floating point benchmarks:

First, equ has a lower branch prediction rate (96%)
compared to the other three floating point benchmarks. The
other three benchmarks have prediction rates higher than 98%.

Second, equ has the lowest percentage of NEUs. While
40% of the predictor updates are NEUs for equ, for the other
three floating point benchmarks more that two-third of the
updates are unnecessary.

Third, equ has the highest PABU-filter eviction rate. To
explain this better, in Fig. 13 we report how often branch
instructions are evicted from the PABU-filter. Here we report
the percentage of dynamic branches that are evicted or
replaced by another branch. As reported, equ has the highest
rate (62%). Accordingly, as a result of deconstructive
interference, many well behaved branches whose associated
updates could potentially be eliminated are evicted from the
PABU-filter.
2. The main reason explaining why integer benchmarks do
not perform as well as the three better performing floating
point benchmarks is lower branch prediction rates (see
Table 1). All but two of the integer benchmarks, i.e. bzp and
vor, fall behind floating point benchmarks in branch
prediction rate.

Integer benchmarks, based on how they benefit from PABU,
fall into two categories:

(a) The first group includes bzp, vor, cmp, prs and vpr. This
group reduces predictor energy by at least 20% across all
predictor sizes. However, they fall behind when compared
to the three better performing floating point benchmarks
(amm, art and mes) as their energy reductions are lower.
A collection of factors including branch prediction rates,
low number of NEUs, high IPBs and high PABU eviction
rates explain this. For example, prs, cmp and vpr have a
lower number of well behaved branches as indicated by
their lower branch prediction rate. Bzp, on the other hand,

Fig. 11 Predictor energy reduction for different 1 PABU-filter sizes

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 5, September 2005 593

despite having a high branch prediction rate, comes with a
small number of NEUs compared to amm, art and mes (see
Fig. 1). Finally, vor, again despite having a high branch
prediction rate, has a high PABU eviction rate (see Fig. 13).
(b) The second group of integer benchmarks includes gcc,
mcf and wlf. This group has lower savings compared to the
first group of integer benchmarks. Again, different factors
explain why each benchmark achieves lower energy savings.
For example, the fact thatwlf has the lowest number of NEUs
(see Fig. 1) and lower than average branch prediction rate
(see Table 1) among all benchmarks may explain why it
benefits least from PABU. Low branch prediction rate also
explains why mcf belongs to this category. Gcc, on the other
hand, has a higher than average eviction rate (see Fig. 13),
which results in less energy saving.

5 Related work

Previous work has introduced Banking [6], Predictor Probe
Detection (PPD) [6], Branch Predictor Prediction (BPP)
[10] and Branch Predictor Customising [15] as methods to
reduce branch predictor energy consumption while main-
taining performance.

Banking is a natural solution to multicycle access times
for large on-chip structures such as branch predictors. Our
solution could be used on top of banking to achieve higher
power savings.

PPD aims at reducing the power dissipated during
predictor lookups. PPD identifies when a cache line has
no conditional branches so that a lookup in the predictor
buffer can be avoided. Also, it identifies when a cache line
has no control-flow instructions at all, so that the BTB
lookup can be eliminated. This is done by storing pre-
decoded bits in a structure called the prediction probe
detector. PABU is different from PPD since it eliminates
unnecessary predictor updates. Also, PABU uses a smaller
overhead compared to PPD.

BPP exploits branch instruction behaviour to gate two out
of the three subpredictors. In BPP, a buffer is introduced in
the fetch stage. Each BPP entry is tagged by the PC of a
recently seen dynamic branch and records the subpredictors
used by the two branches that followed it in the dynamic
execution stream. By comparing PABU to BPP we have
observed that PABU achieves higher energy savings with
lower energy costs. This is mainly due to the fact that, unlike
PABU, BPP focuses on the prediction buffer and does not
reduce the energy consumed by the BTB. Also, PABU is
different from BPP since it reduces the number of updates,
while BPP only focuses on the lookups.

Branch predictor customising [15] applies structure
resizing and access gating to create a customised branch
predictor. Accordingly, in this technique software is used to
exploit on-demand resources utilisation in branch predictors
to customise the predictor according to its resource
demands. PABU does not use adaptive resizing and depends
on steady state branch behaviour which is collected
dynamically. Predictor customising on the other hand,
uses a profile-based approach. Our solution can be used on
top of predictor customising, resulting in further savings.

Using saturating counters as branch confidence estima-
tors was first suggested by Smith [16]. Manne et al. [17]
suggested the ‘both strong’ estimation method, which marks
a branch as high confidence only if the saturating counters
for both gshare and bimodal predictors are in a strong state
and have the same predicted direction (taken or not-taken).
We extend their technique by marking a branch as one in its
steady state phases if all three counters used in the combined
predictor are saturated.

6 Conclusion

We presented PABU, a technique for reducing branch
predictor energy consumption while maintaining the
accuracy advantage of combined branch predictors.

Fig. 12 Instruction per branch

Fig. 13 How often branches are evicted from PABU-filter

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 5, September 2005594

We affirmed that it is possible to significantly reduce branch
predictor energy consumption by identifying and eliminat-
ing the branch predictor updates that do not contribute to
performance.
Our study showed that PABU reduces predictor and

overall energy consumption for both floating point and
integer benchmarks and across different predictor sizes. We
also observed that PABU produces better results for
applications with a higher number of well behaved branches.
We have shown that when one considers the overall

processor energy consumption, PABU-enhanced processors
always consume less energy when compared to ones that use
the conventional predictor. Because of the considerable
energy savings and the relatively small cost, PABU is an
attractive power-aware enhancement for high-performance
processors.

7 References

1 Leibholz, D., and Razdan, R.: ‘The Alpha 21264: a 500MHz out-of-
order execution microprocessor’. COMPCON, 1997

2 Seznec, A., Lix, S.F., Krishnam, V., and Sazeides, Y.: ‘Design tradeoffs
for the Alpha EV8 conditional branch predictor’. Proc. 29th Int. Symp.
on Computer Architecture, May 2002

3 Perleberg, C.H., and Smith, A.J.: ‘Branch target buffer design and
optimization’, IEEE Trans. Comput., 1993, 42, pp. 396–412

4 McFarling, S.: ‘Combining branch predictors’. Tech. Note TN-36,
DECWRL, June 1993

5 Brooks, D., Tiwari, V., and Martonosi, M.: ‘Wattch: a framework for
architectural-level power analysis and optimizations’. Proc. Int. Symp.
on Computer Architecture, 2000

6 Parikh, D., Skadron, K., Zhang, Y., Barcella, M., and Stan, M.R.:
‘Power issues related to branch prediction’. Proc. Int. Symp. on High-
Performance Computer Architecture, February 2002

7 Diep, T.A., Nelson, C., and Shen, J.P.: ‘Performance evaluation of the
PowerPC 620 microarchitecture’. Proc. Int. Symp. on Computer
Architecture, June 1995

8 Digital Semiconductor. DECchip 21064/21064A Alpha AXP Micro-
processors: Hardware Reference Manual, June 1994.

9 Digital Semiconductor. Alpha 21164 Microprocessor: Hardware
Reference Manual, April 1995.

10 Baniasadi, A., and Moshovos, A.: ‘Branch predictor prediction – a
power-aware branch predictor for high-performance processors’. Proc.
Int. Conf. on Computer Design, September 2002

11 Burger, D.C., and Austin, T.M.: ‘The SimpleScalar tool set, version
2.0’, Comput. Archit. News, 1997, 25, (3), pp. 13–25

12 Wilton, S., and Jouppi, N.: ‘CACTI: an enhanced access and cycle time
model for on-chip caches’. WRL Research Report 93/5, DEC Western
Research Laboratory, 1994. SIA. International technology roadmap for
semiconductors. Technical report, http://public.itrs.net /

13 Borkar, S.: ‘Design challenges of technology scaling’, IEEE Micro,
1999, 19, (4), pp. 23–29

14 Kam, T., Rawat, S., Kirkpatrick, D., Roy, R., Spirakis, G.S.,
Sherwani, N., and Peterson, C.: ‘EDA challenges facing future
microprocessor design’, IEEE Trans. Comput.-Aided Des., 2000, 19,
(12), pp. 1498–1506

15 Huang, M.C., Chaver, D., Pinuel, L., Prieto, M., and Tirado, F.:
‘Customizing the branch predictor to reduce complexity and energy
consumption’, IEEE Micro, 2003

16 Smith, J.E.: ‘A study of branch prediction strategies’. Ann. Int. Symp.
on Computer Architecture, May 1981

17 Manne, S., Klauser, A., and Grunwald, D.: ‘Pipeline gating: speculation
control for energy reduction’. Proc. Int. Symp. on Computer
Architecture, June 1998

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 5, September 2005 595

http://public.itrs.net/

