Improving energy-efficiency in high-performance
processors by bypassing trivial instructions

E. Atoofian and A. Baniasadi

Abstract: Energy-efficiency benefits of bypassing trivial computations in high-performance pro-
cessors are studied. Trivial computations are those computations whose output can be determined
without performing the computation. Bypassing trivial instructions reduces energy consumption
while improving performance. The present study shows that by bypassing trivial instructions
and for the subset of SPEC’2K and MiBench benchmarks studied here, it is possible to improve
energy and energy-delay up to 15.6 and 30.6%, respectively, in an optimistic scenario and by
10.8 and 21.7% in a pessimistic scenario, over a conventional processor.

1 Introduction

In this work, we improve the energy-efficiency of high-
performance processors by bypassing trivial instructions.
A trivial instruction is an instruction whose output can be
determined without performing the actual computation.
For such instructions, we can determine the results immedi-
ately based on the value of one or both of the source
operands. Examples are multiply or add instructions,
where one of the input operands is zero.

Determining the trivial instruction result without perform-
ing the computation will improve energy-efficiency in two
ways. First, it will result in faster instruction execution.
This, consequently, could result in an earlier execution of
those instructions depending on the trivial instruction
output. This results in shorter program runtime which, in
turn, reduces energy consumption. Second, by bypassing
trivial instructions, we no longer spend energy on executing
them. As such, we reduce total energy consumption.

We assume a typical load/store instruction set archi-
tecture, where each instruction may have up to two source
operands. We refer to the operand that trivialises the
operation as the trivialising operand (TO). Examples of
TOs are the operand equal to zero in an add operation or
the operand equal to one in a multiplication.

It has been shown that an optimising compiler is often
unable to remove trivial operations, as trivial values are
not known at compile time, and the amount of trivial
computations does not heavily depend on program specific
inputs [1].

Identifying trivial instructions dynamically is possible as
soon as the TO and the instruction opcode are known.
However, computing the result may not always require
knowledge of both source operands. In some cases, for
example, multiplying by zero, we do not need both operands
to compute the result. Under such circumstances, the result

© The Institution of Engineering and Technology 2006

IEE Proceedings online no. 20050084

doi:10.1049/ip-cdt:20050084

Paper first received 22nd April 2005 and in final revised form 16th January 2006

The authors are with the Electrical & Computer Engineering Department,
University of Victoria, 3800 Finnerty Rd., Victoria, British Columbia, Canada
V8P 5C2

E-mail: amirali@ece.uvic.ca

IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 5, September 2006

does not depend on the other operand value. In other cases,
for example, addition to zero, both operands are needed. We
refer to those trivial instructions, whose output could be
calculated knowing only one of the operands, as fully-trivial
instructions. We refer to those trivial instructions, whose
result could be computed only after knowing both operands,
as semi-trivial instructions. Our study shows that semi-
trivial instructions account for the majority of trivial
instructions. However, bypassing a fully-trivial instruction
can impact performance and energy more than bypassing
a semi-trivial instruction. This is due to the fact that fully-
trivial instructions can be bypassed earlier and save more
energy as they make reading both operands unnecessary.

Table 1 reports the fully-trivial and semi-trivial compu-
tations studied in this work. We report on both the operation
and the particular source operand value that trivialises the
operation. It is possible to extend our study further to
include other instruction types (e.g. ABS). However, this
will not impact our results, as such instructions are very
infrequent.

Generally, power-aware techniques save energy at the
expense of performance. Bypassing trivial instructions,
however, reduces energy consumption while improving
performance. Note that computing trivial instruction
results, although unnecessary, leads to extra latency and
additional energy consumption. Therefore bypassing the
computation and obtaining the result without performing
the computation should improve both performance and
energy simultaneously.

In this work, we study the energy benefits achieved by
dynamically identifying and bypassing both fully-trivial
and semi-trivial computations. In particular, we make the
following contributions.

e We show that, by bypassing trivial instructions, it is poss-
ible to reduce average energy consumption and improve
energy-delay considerably. We study both optimistic and
pessimistic timing/complexity scenarios and show that
energy and energy-delay can be improved under both scen-
arios [energy: 15.6% (optimistic), 10.8% (pessimistic),
energy-delay: 30.6% (optimistic), 21.7% (pessimistic)].

e We investigate trivial instructions in detail. We categor-
ise trivial instructions based on the number of source
operands needed to detect them and their source operands
availability time. We also study how often trivial

313

Table 1: Fully- and semi-trivial instructions studied in
this work

Operation Fully triviality condition
Multiplication: A* B A=00rB=0
Division: A/B A=0
AND: A& B A = 0x00000000 or
B = 0x00000000
OR: AlB A = Oxffffffff or B = Oxffffffff
Logical shiftt A< B, A> B A=0
Arithmetic shift: A< B, A> B A=0
Operation Semi triviality condition
Addition: A+ B A=00rB=0
Subtraction: A— B B=0orA=8B
Multiplication: A* B A=1orB=1
Division: A/B B=1
AND: A& B A = Oxffffffff or B = Oxffffffff
orA=B
OR: AB A = 0x00000000 or
B = 0x00000000 or A= B
XOR: AXOR B A = 0x00000000 or

B = 0x00000000
Logical shiftt A< B, A> B B=0
Arithmetic shift: A< B, A> B B=0

instructions belong to each category and how this may
impact our energy and performance improvements.

2 Trivial instruction bypassing
2.1 Trivial instruction example

To provide better insight into how bypassing trivial instruc-
tions can result in better performance and energy consump-
tion, in Fig. 1, we present an example picked from the
164.gzip benchmark. 164.gzip divides input streams into
blocks and compresses each block separately by using a
combination of the LZ77 algorithm [2] and Huffman
coding [3]. LZ77 generates an output file, which is later
used by Huffman coding to produce the final compressed
file. The LZ77 algorithm finds repeating sequences in the
input data stream. The first time a sequence appears,
LZ77 writes it to its output file. Future reappearances of
the sequence are coded using two numbers: a distance
showing how far back the first appearance of the sequence
is, and a length representing how many characters build
the sequence. Once LZ77 has processed all data blocks,
the generated file is passed to Huffman coding. By using
Huffman coding, we further compress the input file.

Fig. la shows the deflate() function. This function gener-
ates compressed data by using LZ77 and Huffman coding.
Inside of this function, the ct_tally() function is called.
Ct_tally() saves the matched information and measures

the frequency of different Huffman codes. The two argu-
ments of ct_tally() are distance and length for a matched
string. Length_code is an array that relates matched length
to Huffman code. Dyn_tree[] Freq shows the number of
times a Huffman code is used during compression. In
Fig. 1c, we show a part of the assembly code corresponding
to the ct_tally() function.

The first instruction in Fig. 1¢ loads length_code/lc] into
R/[2] register. The Huffman code corresponding to length 3
is equal to 0. This value does not change within a block.
Whenever a matching with length 3 is detected in the
input stream, /bu loads the same value (zero) into register
R/[2], and addiu instruction adds zero with 257. By using
trivial bypassing, the outcome of addiu instruction is deter-
mined earlier, as we do not spend time on executing the
trivial instruction. All the instructions following addiu
depend directly or indirectly on the value of R/3/, which
is the outcome of addiu instruction. Consequently, by
bypassing addiu instruction, dependent instructions can
execute earlier. Also, addiu no longer needs arithmetic
logic unit (ALU) resources, leaving ALU resources to
instructions, which may otherwise be stalled due to
structural hazards. We also save energy by bypassing addiu.

2.2 Trivial instruction frequency and distribution

The result of a trivial operation could be either one of the
source operands or zero (e.g. operations reported in
Table 1). Trivial instruction frequency impacts potential
benefits of trivial instruction bypassing. Therefore in order
to decide if detecting and bypassing trivial operations is
worthwhile, we need to know how frequently they appear
in the code stream. In Fig. 2, we report trivial instruction
frequency. In addition, and to provide better insight, we
also report both fully-trivial and semi-trivial instruction fre-
quency. While the entire bar represents total trivial instruc-
tions, the lower part of each bar shows the frequency of
semi-trivial instructions and the upper part represents the
frequency of fully-trivial instructions.

As represented by the entire bar, on average, trivial
instructions account for about 23% of the total instructions.
Jpeg-decode and vpr have higher number of trivial instruc-
tions compared to others. Swim has the least number of
trivial instructions.

In general, semi-trivial instructions outnumber fully-
trivial instructions. Fully-trivial instructions may account
for as much as 23% of the total number of trivial instruc-
tions (e.g. swim). Meantime, they may account for as little
as 2% of the total trivial instructions (e.g. apsi). On
average, about 89% of the trivial instructions are semi-
trivial, and the remaining 11% are fully-trivial instructions.

As reported in Table 1, different instruction types can be
trivial depending on their source operand values. However,
the trivial instruction frequency is different from one
instruction type to another.

Fig. 3 reports how often each instruction type is trivial.
Similar to Fig. 2, for every instruction type, we also
report semi- and fully-trivial frequencies. Note that, as
presented in Table 1, not all instruction types can be fully-

addu R[4],R[0],R[3]
sl R[2],R[4],0x2

deflate() ct_tally(distance, length) ..
{ / { /// Ibu R[2],0(R[3])
addiu R[3],R[2],257
ct_tally(d, I-3); dyn_tree[length_code[lc]+LITERALS+1].Freq++;
} }

a b

Fig. 1 Part of 164.gzip benchmark

314

c

IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 5, September 2006

35%

30%

25%
20%
15% -
10% -
5%
0% -

B Semi-Trivial O Fully-Trivial

Fig. 2 Trivial instruction frequency and distribution
Entire bar represents trivial instruction frequency

Lower part shows semi-trivial instruction frequency and the upper part shows fully-trivial instruction frequency

trivial. In particular, addition, subtraction and XOR instruc-
tions cannot be fully-trivial. For these instructions both
operands are required to decide the outcome. Therefore as
presented in Fig. 3, all trivial instructions for these instruc-
tion types are semi-trivial.

On average, at least 20% of each instruction type is
trivial. In cases such as or and fadd, trivial instructions
account for more than half of the instructions. For instruc-
tion types that can be fully-trivial, fully-trivial instruction
frequency changes from 3% in fdiv to 51% in or. Note
that a high percentage of trivial instructions for a specific
instruction type does not always mean that the particular
instruction type will have a considerable impact on
performance. For example, although 70% of or instructions
appear to be trivial, they only account for less than 1% of
the total number of instructions executed.

Trivial instructions can only be bypassed when either both
operands (for semi-trivial) or their TO (for fully-trivial) are
known. On the basis of the operand(s) availability time(s),
we categorise trivial instructions into two groups.

The first group of instructions are those instructions
whose source operand/operands (both operands for semi-
trivial, the TO for fully-trivial) is/are known while they
are at the decode stage. For this group, the required

80%

source operands have been produced early enough, so the
trivial instruction could be bypassed at decode stage.

The second group of trivial instructions are those instruc-
tions whose required source operands are not available at
instruction decode stage. Therefore these trivial instructions
could not be bypassed at the decode stage and are sent to the
issue queue where they wait for their operands and the
required resources to become available. This group of
trivial instructions is identified at the issue stage and when
the required source operands (again, both operands for
semi-trivial, TO for fully-trivial) are known.

We refer to the trivial instructions identified at decode as
decode-trivial and to those identified at issue as issue-trivial.
In Fig. 4, we report the percentage of decode-trivial and
issue-trivial instructions. While the entire bar represents
total trivial instructions (similar to Fig. 2), the lower part
of each bar shows the frequency of decode-trivial instruc-
tions and the upper part represents the frequency of issue-
trivial instructions.

As presented, issue-trivial instructions account for the
majority of the trivial instructions for most benchmarks.
However, for some benchmarks (e.g. swim and
adpcm-decode), the number of decode-trivial instructions
exceeds issue-trivial instructions.

70%

60%

50%

40%

30% A
20% A

10% -

0% -

add sub mult div and

or

xor shift fadd fsub frmult fdiv

B Semi-Trivial O Fully-Trivial

Fig. 3 How often each instruction type is trivial?

Lower part shows semi-trivial instruction frequency and the upper part shows fully-trivial instruction frequency

IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 5, September 2006

315

35%

30%

25%

20%

15%
10%
5%
0%

B Decode-Trivial Instructions O Issue-Trivial Instructions

Fig. 4 Trivial instruction frequency and distribution

Entire bar represents trivial instruction frequency

Lower part shows decode-trivial instruction frequency and the upper part shows issue-trivial instruction frequency

Note that the earlier a trivial instruction is identified, the
earlier it could be bypassed. As such, as we show later,
higher energy savings and performance improvements are
achieved by decode-trivial instruction compared with issue-
trivial instructions.

3 Implementation

In this work, we assume that all reservation stations monitor
their source operands for data availability simultaneously.
We also assume that at dispatch, already-available
operand values are read from the register file and stored
in the reservation station. The reservation station logic com-
pares the operand tags of unavailable data with the result
tags of completing instructions. Once a match is detected,
the operand is read from the bypass logic. As soon as all
operands become available in the reservation station, the
instruction may issue (subject to resource availability) [4].

An alternative implementation is storing pointers to where
the operand can be found (e.g. in the register file) rather
than storing the data in the reservation station [5]. While
trivial instruction bypassing could be used on top of both
implementations, here we assume the former.

Fig. 5 shows the schematic of a processor that bypasses
trivial instructions and the procedures followed. We first
discuss decode-trivial instructions. At decode, the trivial
instruction detection unit examines source operands. If the
instruction is trivial, the rename table is modified so it
maps the destination register to the physical register
assigned to the input source operand or to the zero register
as presented in Fig. 5b. Once the renaming table is modified,
we no longer execute the trivial instruction. As such,
instructions depending on the trivial instruction result can
start execution immediately (subject to resource

| TRIVIAL INST. DETECTION |

a

\ 4

A

v
DECODE & COMMIT

Read Operand From
Register File

Read Operand From

From Issue Window

Register File

Functional | Bypass Path

Bypass Instruction: Bypass Instruction: Unit
Remap Renaming Do not Execute, Send Zero or the *
Table Non-Trivializing Source Operand X
to Bypass Logic & Register File To Write-Back

Fig.5 Trial instruction detection

a Schematic for a pipelined processor bypassing trivial instructions
b Decode-trivial instruction detection procedure

¢ Issue-trivial instruction detection procedure

d Bypass structure for issue-trivial instructions

316

c d

IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 5, September 2006

availability). Note that decode-trivial instructions, once
detected, do not consume execution unit resources.

To identify trivial instructions while they are in the issue
queue, the trivial instruction detection unit examines the
produced data as soon as the associated tag is received by
the reservation station. Once we detect an issue-trivial
instruction, we bypass executing the instruction and send
the result to the write-back unit as presented in Fig. 5S¢
and depicted in Fig. 5d. However, the destination register
of an issue-trivial instruction should not be released, as
there may still be instructions depending on the trivial
instruction outcome which have not read their source
operands yet.

Detecting and bypassing trivial instructions comes with
little hardware overhead. This is due to the fact that many
already available resources can be used to implement
trivial instruction detection and bypassing. Detecting
trivial instructions requires decoding the instruction type
and checking the triviality condition based on the instruc-
tion type (as presented in Table 1). The former is already
being done at the decode stage. Therefore we do not need
additional hardware. The latter, that is, checking the
trivial instruction triviality condition, requires checking if
any of the source operands are 0, 1, OxXFFFFFFFF, or if
the two source operands are equal. This can be done by
using NOR, NOR with one inverted input, NAND, and
XOR gates, respectively.

Note that, in order to improve performance, modern pro-
cessors wakeup consumer instructions in advance and
before the data is actually available. This makes executing
producer—consumer pairs in consecutive cycles possible.
As a result, issue-trivial instructions would have to be
issued first and then read operands to test triviality.
Consequently, in this study, we assume that issue-trivial
instructions take issue slots, but will not be executed in
the ALU and will write their results as soon as possible.
Therefore issue-trivial instructions benefit less from trivial
instruction bypassing compared with decode-trivial
instructions.

While this study focuses on superscalar processors, it is
important to note that trivial instruction bypassing is appli-
cable in the scalar space too. Scalar processors may benefit
from our technique as detecting and bypassing trivial
instructions will provide data for dependent instructions
sooner. This leads to earlier execution of dependent instruc-
tions. Moreover, as the bypassed trivial instructions do not
consume execution units, we would expect that ALU
structural hazards occur less frequently in the scalar pro-
cessor. On the other hand, and as a possible negative
impact, structural hazards may increase in the register file
as there is a possibility that the bypassed trivial instruction
and other completing instructions may require to write to
the register file simultaneously.

4 Methodology

In this section, we report our analysis framework. We used
both SPEC CPU2000 [6] suite and MiBench [7] bench-
marks compiled for the MIPS-like PISA architecture used
by the Simplescalar v3.0 simulation tool set [8]. The bench-
mark set studied here includes different programs with
different control flow regularities. We report branch predic-
tion rate for each benchmark in Table 2.

We used Wattch [9] for energy estimation. Wattch is an
architectural-level simulation tool and is used to estimate
energy consumption. In Wattch, the energy consumed by
major components is modelled on the basis of architectural
parameters. For example, the energy consumed by

IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 5, September 2006

Table 2: Branch prediction rate in studied benchmarks

Benchmarks Branch prediction rate
164.gzip 91.17
171.swim 96.85
175.vpr 93.02
176.gcc 89.5
177.mesa 93.58
186.crafty 93.43
197.parser 93.22
256.bzip2 95.23
301.apsi 98.55
adpcm-decode 81.22
basicmath 93.01
jpeg-encode 95.21
jpeg-decode 95.36
gsm_decode 98.57
crc32 99.99
qgsort 98.09

accessing the register file is measured using architectural
parameters such as the number of registers and the register
width. Wattch counts the number of accesses to each
component. The energy consumption of each component
is calculated by multiplying the number of accesses by the
energy consumed per access.

A complete timing/complexity analysis requires detailed
simulations of the processor, which is beyond this work.
However, to provide insight, we report results for two
extreme scenarios. In the first (optimistic) scenario, we
assume that the complexities associated with bypassing
issue-trivial instructions are negligible. This provides an
upper bound for energy and performance improvements
achieved. In the second (pessimistic) scenario, we assume
that such complexities disallow bypassing issue-trivial
instructions. Under this scenario, we report results achieved
only by bypassing decode-trivial instructions.

We use GNU’s gce v2.9 with —O3 optimisation level. We
simulated 500M instructions after skipping 500M instruc-
tions. We simulated an aggressive 8-way superscalar pro-
cessor. The processor is deeply pipelined to reflect
modern processors. We detail the base processor model in
Table 3.

5 Results

To evaluate how bypassing trivial instructions impacts per-
formance and energy, we compare our processor with a con-
ventional processor that does not bypass trivial instructions.
In Section 5.1, we report performance improvement. We
also report issue-delay reduction to provide better insight.
In Section 5.2, we report energy, energy-delay and energy
breakdown. We report sensitivity analysis in Section 5.3.

5.1 Performance improvement

Bypassing trivial instructions will improve performance
only if the bypassed instructions are on the critical path.
To investigate how bypassing trivial instructions impacts
performance, in Fig. 6, we report performance improve-
ments compared with a conventional processor. For each
application, the entire bar reports results under the optimis-
tic scenario where both issue- and decode-trivial

317

Table 3: Base processor configuration

128
64

Reorder buffer size
Load/store queue size

Scheduler 64 entries, RUU-like

Fetch unit Up to 8 instructions/cycle
64-entry fetch buffer

00O core 8 instructions/cycle

L1 - instruction caches 64 K, 4-way SA, 32-byte blocks,
3 cycle hit latency

32K, 2-way SA, 32-byte blocks,
3 cycle hit latency

256 K, 4-way SA, 64-byte blocks,

16-cycle hit latency

L1 - data caches

Unified L2

Main memory Infinite, 80 cycles
Memory port number 2
16 K GShare + 16 K bi-modal

w/16 K selector

Branch predictor

Latency from branch 8
predict to decode

stage

Latency of decode and 5
renaming

Latency of write-back 6
to commit

instructions are bypassed. The lower part of each bar reports
for the pessimistic scenario, where only decode-trivial
instructions are bypassed. On average, performance
improvements are 22.7% under the optimistic and 18%
under the pessimistic scenario. Vpr and gsort show higher
performance improvements compared with other bench-
marks. Swim has the lowest performance improvement
among all benchmarks.

Performance improvements achieved can be the result of
faster instruction execution (by breaking the dependency
chains) or improving resource utilisation (by avoiding
using functional units for trivial instructions). Our study
shows that, for the configuration and applications used in
this study, more than 90% of the performance improvement
achieved is due to faster execution of trivial instructions.

To provide better insight, in Fig. 7, we report instruction
issue-delay reduction for a processor that bypasses trivial

instructions for both complexity scenarios. Note that by
bypassing trivial instructions, trivial instruction outcomes
become available sooner. Consequently, dependent instruc-
tions may not need to wait in the issue window as long as
they have to wait in a conventional processor. As reported,
by skipping trivial instructions, on average, instructions
spend 20.2 and 13.6% less time in the issue window for
optimistic and pessimistic scenarios, respectively.

5.2 Energy, energy-delay and energy breakdown

In Figs. 8a and b, we report energy and energy-delay
measurements as reported by Wattch [9], respectively.
Similar to Figs. 6 and 7, the entire bar reports results for
the optimistic scenario and the lower part of each bar
reports for the pessimistic scenario. On average, energy
savings are 15.6% under the optimistic and 10.8% under
the pessimistic scenario. As reported in Fig. 8a, vpr and
gsort have higher energy reduction compared with the rest
of the benchmarks.

In Fig. 8b, we report energy-delay improvements
achieved by bypassing trivial instructions. On average,
energy-delay improvements are 30.6% under the optimistic
and 21.7% under the pessimistic scenario. Again, vpr has
the highest energy-delay improvement among all
benchmarks.

Note that jpeg-decode has the highest percentage of
trivial instructions (Fig. 2), but does not show the highest
energy improvement. The low number of decode-trivial
instructions in jpeg-decode may explain this. Osort has con-
siderable energy improvement despite its moderate trivial
instruction percentage. This may be the result of high
number of decode-trivial instructions.

In Fig. 9, we show how bypassing trivial instructions can
potentially impact energy for each component by reporting
energy reduction breakdown over different components for
the optimistic scenario. Components benefit differently
from trivial bypassing. The highest energy saving is
achieved in ALU. This is expected as ALU is not used
for trivial instructions. Register file comes second.
Decode-trivial instructions do not write their result to the
register file. They use remapping to eliminate writing to
the register file. Decode-trivial instructions also reduce the
energy consumed by the issue window and the result bus.
This is due to the fact that decode-trivial instructions are
identified at the dispatch stage and skip later stages. As
such they do not use the issue window and the result bus.

50%
40%
30%
20%
10% -
0% T H T T T T T T T T T T T T T T
R & & & 2 & F L& P L ¥ H SO
o S @f\Q@Q < {Z@Q,@ M, R oob,é‘% & &L oob & & §
AP SN SR SR S R SV SN S
N N '\‘b ,\Q YV > 06< 0® GQ Gq 9@/
&Q - L S

Fig. 6 Performance improvement achieved by bypassing trivial instructions over a conventional processor

The entire bar reports performance improvement achieved under the optimistic scenario (i.e. both issue- and decode-trivial instructions are bypassed)
where the lower bar reports for a pessimistic scenario (i.e. only decode-trivial instructions are bypassed)

318

IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 5, September 2006

60%

50%

40%

30%

20% -

10% A

0% B

> <) '\ 9
@7 KON & S S O
AN AR P S - - P
& ¥ ¢ <

Fig. 7 Issue delay reduction achieved by bypassing trivial instructions over a conventional processor

The entire bar reports issue-delay reduction achieved under the optimistic scenario (i.e. both issue- and decode-trivial instructions are bypassed)

where the lower bar report issue-delay reduction for a pessimistic scenario (i.e. only decode-trivial instructions are bypassed)

30%

25%

20%

15% I

10% A

0% T T T T T T T T T T T T T

o} @ @

4>Q @@ 4qucfz{(\él’,bQ@ /DQ Ob @ 69 IS bé&%&&@O
: o° &

& /\ ? (50 & ‘0{‘) oqe) e9 L 7

e €
0&2 S &
Energy
a
60%
50%
40%
30%
20% A
10% A
0% T T T
. . £ : ¢ £
5o S S ® £ &S cPb °b & & &
"’\’\'\'9Q-°'\‘e>®\°¢§‘c0
G K7 AT 6 (R e S F 8 {
N N '\‘b ,\Q) fl/ 06\ ‘()0 e,q 0@ ((\/
& e &

Energy-Delay
b

Fig. 8 Bypassing trivial instructions over a conventional processor

a Energy improvement

b Energy-delay improvement

The entire bar reports results assuming the optimistic scenario (i.e. both issue- and decode-trivial instructions are bypassed)
The lower bar reports results assuming a pessimistic scenario (i.e. only decode-trivial instructions are bypassed)

IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 5, September 2006

319

35%

30%
25%

20%
15%
10%
5%
0%

I
Ir
& O
é& &

@ register renaming
O load-store queue

m data cache O alu

| branch predictor

W register file

O issue window
@ instruction cache

m result-bus

Fig.9 Energy breakdown: the amount of energy reduction in different components

Other components mostly benefit from trivial bypassing as
the result of shorter execution time.

Energy savings could be the result of shorter runtimes (by
breaking the dependency chains) or avoiding using func-
tional units to execute trivial instructions. Our study
shows that, for the configuration and applications used in
this study, more than 93% of the energy savings achieved
is due to shorter runtimes.

5.3 Sensitivity analysis

In this section, we investigate the sensitivity of our method
to different architectural parameters. Although we have
observed similar trends under both complexity scenarios,
in this section, we only report for the optimistic scenario.
In Section 5.3.1, we report how different compiler optimis-
ation levels impact energy. In Section 5.3.2, we report how
bypassing trivial instructions impacts energy in wider
processors.

5.3.1 Compiler optimisations: Fig. 10 reports energy
improvements achieved for different compiler optimisations
for the applications studied in this work. Bars from left to
right report energy improvement for —O1, —O02 and
—03 compiler optimisations, respectively. As reported,
changing the compiler optimisation flag does not impact
energy considerably.

5.3.2 Issue bandwidth: Fig. 11 reports energy reduction
for processors with wider execution bandwidths. Bars from

left to right show energy improvement in 8-, 16- and 32-way
processors, respectively. Generally, trivial bypassing results
in higher energy improvements in wider processors. On
average, energy is improved by 15.6, 18.2, 21.3% in 8-,
16- and 32-way processors, respectively.

Bypassing trivial instructions not only leads to their faster
execution, but also results in faster execution of those
instructions depending on the trivial instructions. A pro-
cessor with a higher issue bandwidth can execute more
instructions every cycle. Therefore in a wider processor a
larger number of depending instructions can potentially
benefit from early computation of a trivial instruction.
This, ultimately, results in a shorter program runtime,
better resource utilisation and consequently higher energy
reduction for wider processors.

6 Related work

Previous study has introduced many dynamic optimisation
techniques to reduce the complexity or latency associated
with producing operands.

Lipasti and Shen [10] introduced value prediction and
showed that data values exhibit ‘locality’. They suggested
using this locality to exceed the dataflow limit and to effec-
tively and speculatively produce operands earlier than when
they normally become available.

Sodani and Sohi [11] introduced the concept of dynamic
instruction reuse. Their work relied on the observation that
many instructions, having the same inputs, are executed
dynamically. As such, many instructions do not have to

30%
25%
20%
‘mml]
1 | 1
i ||| 11
0% -

IR T W S - N R A I I SN

D Q Q > O 5 Qo
> \@@ SIS ,\g°® & Qfo@ bp’l) < a>Q,o° & & a>®o° & & @
NS N @7 QAR T oS g NN,

N N N) & N S S %&/

R € ® &

001 m02003

Fig. 10 Energy improvement for different compiler optimisations

320

IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 5, September 2006

40%

35%

30%

25%

20%
15% -
10% -
5% A
0% -

O Issue=8 M Issue=16 O Issue=32

Fig. 11 Energy improvement for processors with wider execution bandwidths

be executed repeatedly, as their results can be obtained from
a buffer, where they were saved previously.

Our work is different from the two studies discussed
earlier, as trivial instruction bypassing is not speculative.
Moreover, we detect trivial instructions no matter how
infrequent they are. Also, as we do not rely on instruction
past behaviour, we do not require additional storage to
store the associated information. Consequently, we are
able to improve both energy and performance
simultaneously.

It should be noted that using speculation to predict trivia-
lising operands can result in performance improvement
[12]. However, speculating trivialising operands does not
improve energy as it comes with considerable energy over-
head required for speculating trivialising operands.

Our technique is orthogonal to and can be used on top of
other novel architectural techniques. For example, it can be

used in a system using trace cache, as using a trace cache
(instead of a regular conventional cache) does not impact
trivial instruction distribution or frequency. The same is
true for using speculative data fetch techniques such as
data pre-fetching or way prediction.

Richardson [13] suggested a restricted form of bypassing
trivial instructions. His definition of trivial computations
only included certain multiplications (by 0, 1 and —1),
divisions (X + Y with X = {0, Y, —Y}) and square roots
of 0 and 1. Our simulations show that the energy and per-
formance improvements achieved by Richardson’s method
are lower compared with our method. The low improve-
ments are due to restricting trivial definition to only three
instructions. We also extended trivial bypassing to different
instruction types and studied its energy savings benefits. In
Table 4, we report energy, performance and energy-delay

Table 4: Trivial instruction bypassing method compared to Richardson’s method

Benchmarks Trivial bypass Richardson

Performance Energy savings Energy-delay Performance Energy savings, Energy-delay

improvement (optimistic/ improvement improvement, % % improvement, %

(optimistic/ pessimistic), % (optimistic/

pessimistic), % pessimistic), %
164.9zip 14.7/13.1 11.4/8.3 22.8/18.1 0.00 0.07 0.07
171.swim 8.8/7.7 6.8/5.6 14.3/12.1 0.00 0.08 0.08
175.vpr 45.6/30.9 26.0/15.8 49.2/27.5 0.03 0.10 0.13
176.gcc 20.3/13.3 14.7/6.9 29.1/15.2 0.12 0.19 0.31
177.mesa 16.4/14.0 11.5/7.8 24.0/18.0 1.13 0.97 2.08
186.crafty 30.7/20.7 21.6/10.2 40.0/20.6 2.00 1.12 3.06
197.parser 20.6/13.6 15.4/8.9 29.9/17.2 0.22 0.30 0.52
256.bzip2 24.7/22.4 17.3/13.9 33.7/28.0 0.00 0.08 0.08
301.apsi 15.5/15.4 11.6/11.4 23.5/23.2 0.68 0.45 1.13
adpcm-decode 14.8/11.6 10.7/9.4 22.3/17.8 0.00 0.10 0.10
basicmath 23.6/18.6 16.8/10.5 32.7/22.0 1.60 1.36 2.92
jpeg-encode 21.8/16.6 14.4/10.1 29.7/20.7 0.26 0.36 0.62
jpeg-decode 30.1/27.6 19.0/15.3 37.8/31.6 0.17 0.40 0.57
gsm_decode 17.2/13.2 13.2/8.6 26.0/17.7 0.24 11.8 12.02
crc32 22.4/22.4 16.3/16.3 31.7/31.7 0.16 50.5 50.66
gsort 35.9/26.7 23.0/13.7 43.3/26.5 1.22 0.81 2.00
AVG 22.7/18.0 15.6/10.8 30.6/21.7 0.49 4.30 4.77

IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 5, September 2006

321

improvements for both our technique (under both complex-
ity scenarios) and that of Richardson [13].

Yi and Lilja [1] showed that detecting and eliminating
trivial instructions dynamically can reduce the program
execution time. They identified trivial computations dyna-
mically and improved performance by bypassing or simpli-
fying them. Our study shows that simplifying instructions
(e.g. replacing a multiplication with a shift operation if
the multiplicand is a power of 2) does not impact overall
energy-efficiency considerably. This is due to the fact that
simplifiable instructions are infrequent and therefore do
not contribute to energy or performance as much as bypas-
sable instructions do. Therefore in this study, we focus only
on bypassing trivial instructions. Moreover, in this work, we
studied how bypassing trivial instructions results in higher
energy-efficiency. We also extended their study by provid-
ing a deeper and more detailed analysis of trivial
instructions.

This paper is an extension of our previous work on trivial
instruction bypassing [14]. We improve and extend our pre-
vious work by providing a more detailed analysis of trivial
instructions, providing a real example of trivial instruction
from SPEC’2K, and extending the number and variety of
the benchmarks. In addition, we use a more appropriate
baseline architecture that better reflects modern processors.
Moreover, we analyse the effect of trivial bypassing on
issue delay and energy breakdown over different com-
ponents and report sensitivity analysis. We also report
results for different timing/complexity scenarios and
compare our work with a previous study.

Tran et al. [15] evaluated dynamic methods to reduce
pressure on the register file. They explored the impact of
bypassing trivial instructions on the register file pressure.
We used their implementation of register remapping to
bypass decode-trivial instructions in this study.

Chung et al. [16] suggested optimisation of embedded
software. They presented software-based techniques to
reduce the computational effort of programs, using value
profiling and partial evaluation. Their tool reduced the com-
putational effort by specialising frequently executed pro-
cedures for the most common values of their parameters.
Their work included introducing software solutions to
replace complex functions that have trivialising operands
with more simple functions. Our work is different, as
it introduces dynamic hardware-based optimisations.
Dynamic optimisations can be integrated with the micro-
architecture and result in better architectural transparency.
As such, our technique can optimise legacy code without
the need for recompilation.

7 Conclusion

In this work, we have shown that it is possible to improve
energy consumption and energy-delay by bypassing trivial
instructions.

We categorised trivial instructions to fully-trivial and
semi-trivial instructions on the basis of whether both
source operands are needed to decide the result. We also
categorised trivial instructions to decode-trivial and issue-
trivial instructions on the basis of the pipeline stage that

322

they could be identified at. We showed that semi-trivial
instructions account for the majority of trivial instructions,
whereas, on average, decode-trivial and issue-trivial
instructions account for an almost equal share.

We showed that trivial bypassing reduces energy con-
sumption and energy-delay considerably over a convention-
al processor. Among different components, ALU, register
file and issue window benefit most from trivial bypassing.
We also showed that wider processors benefit more from
bypassing trivial instructions.

8 Acknowledgements

This work was supported by the Natural Sciences and
Engineering Research Council of Canada, Discovery
Grants Program and Canada Foundation for Innovation,
New Opportunities Fund.

9 References

1 Yi, JJ, and Lilja, D.J.: ‘Improving processor performance by
simplifying and bypassing trivial computations’. Proc. 2002 IEEE
Int. Conf. on Computer Design: VLSI in Computers and Processors,
September 2002, pp. 462—465

2 Ziv, J., and Lempel, A.: ‘A universal algorithm for sequential data
compression’, [EEE Trans. Inf. Theory, 1977, 23, (3), pp. 337-343

3 Huffman, D.A.: ‘A method for the construction of minimum
redundancy codes’, Proc. IRE, 1952, 40, (9), pp. 1098—1101

4 Hennessy, J., and Patterson, D.: ‘Computer architecture: a quantitative
approach’ (Morgan Kauffiman, San Francisco, CA, 1990, 1996, 2003)

5 Sohi, G.S.: ‘Instruction issue logic for high-performance,
interruptible, multiple functional unit, pipelined computers’, /EEE
Trans. Comput., 1990, 39, pp. 349-359

6 SPEC Benchmark Suite. Available at http:/www.spec.org

7 Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T.,
and Brown, R.B.: ‘MiBench: a free, commercially representative
embedded benchmark suite’. Available at http://www.eecs.umich.
edu/mibench/

8 Burger, D., Austin, T.M., and Bennett, S.: ‘Evaluating future
microprocessors: the simple scalar tool set’. Technical Report
CS-TR-96-1308, University of Wisconsin-Madison, July 1996

9 Brooks, D., Tiwari, V., and Martonosi, M.: “Wattch: a framework for
architectural-level power analysis and optimizations’. Proc. Int. Symp.
on Computer Architecture, 2000, pp. 83—94

10 Lipasti, M.H., and Shen, J.P.: ‘Exceeding the dataflow limit via value
prediction’. Proc. 29th Annual ACM/IEEE Int. Symp. and Workshop
on Microarchitecture, December 1996, pp. 226—237

11 Sodani, A., and Sohi, G.S.: ‘Dynamic instruction reuse’. Proc. 24th
Annual Int. Symp. on Computer Architecture, July 1997, pp. 194-205

12 Atoofian, E., Baniasadi, A., and Dimopoulos, N.: ‘Improving
performance by speculating trivializing operands in trivial
instructions’. 2nd Value-Prediction and Value-Based Optimization
Workshop, Boston, Massachusetts, 10 October 2004, pp. 26—31

13 Richardson, S.: ‘Caching function results: faster arithmetic by
avoiding unnecessary computation’. Int. Symp. on Computer
Arithmetic, 1993

14 Atoofian, E., Baniasadi, A., and Dimopoulos, N.: ‘Improving
energy-efficiency by bypassing trivial computations’. 1st Workshop
on High-Performance, Power-Aware Computing, Denver, Colorado,
4 April 2005

15 Tran, L., Nelson, N., Ngai, F., Dropsho, S., and Huang, M.:
‘Dynamically reducing pressure on the physical register file through
simple register sharing’. Int. Symp. on Performance Analysis of
Systems and Software, March 2004, pp. 78—88

16 Chung, E., Benini, L., DeMicheli, G., Luculli, G., and Carilli, M.:
‘Value-sensitive automatic code specialization for embedded
software’, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.,
2002, 21, (9), pp. 1051-1067

IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 5, September 2006

