
ABSTRACT
We present a number of power-aware instruction front-end
(fetch/decode) throttling methods for high-performance dynami-
cally-scheduled superscalar processors. Our methods reduce
power dissipation by selectively turning on and off instruction
fetch and decode. Moreover, they have a negligible impact on
performance as they deliver instructions just in time for exploit-
ing the available parallelism. Previously proposed front-end
throttling methods rely on branch prediction confidence estima-
tion. We introduce a new class of methods that exploit informa-
tion about instruction flow (rate of instructions passing through
stages). We show that our methods can boost power savings over
previously proposed methods. In particular, for an 8-way pro-
cessor a combined method reduces traffic by 14%, 20%, 6% and
6% for the fetch, decode, issue and complete stages respectively
while performance remains mostly unaffected. The best previ-
ously proposed method reduces traffic by 10%, 15%, 4% and
4% respectively.

1. INTRODUCTION 
Successive high-performance processor generations have

thus far relied on higher frequencies and more transistors to
improve performance. Unfortunately, using more transistors
clocked at higher frequencies requires more power. As a result,
power dissipation in modern processors is now quickly
approaching alarming levels jeopardizing further advances in
performance. Finding ways to control further increases in power
is imperative for future generation processors with billion tran-
sistors operating at multi-GHz frequencies. 

In this work we are concerned with power reduction tech-
niques at the architectural level that are complementary to low-
level circuit techniques. Our goal is to revisit existing architec-
tural decisions revising where necessary so that energy is used
more efficiently. This is possible, as existing architectural deci-

sions ignored power for the most part, focusing instead on per-
formance, complexity and cost trade-offs. 

A large fraction of power in modern high-performance pro-
cessors is dissipated by the front-end, that is by instruction fetch
and decode. For example, instruction decode and fetch dissipate
28% of overall (average) processor power in the Intel P6 [3] and
as much as 36% for the less complex MIPS R3000 [1].

 In this work, we are concerned with power-aware instruc-
tion fetch/decode designs for dynamically scheduled, supersca-
lar processors. Previous work in this area exploits energy
inefficiencies that are caused by incorrect control flow specula-
tion (or, in the interest of space, speculation) [3,4]. Incorrect

speculation does not improve performance1 while it leads to
extraneous instructions passing through the pipeline consuming
additional energy (as we show in section 4, these instructions
can be as much 4 times more than those executed by the pro-
gram). Previous power-aware front-end proposals assign confi-
dence to speculation decisions. They turn-off (or gate or
throttle) the front-end on low confidence speculation decisions
(i.e., when it is highly likely that the front-end is processing
instructions down an incorrectly speculated control flow path).
We explain their operation in detail in section 2. Power is
reduced significantly since the number of extraneously pro-
cessed instructions is reduced. Of course, currently it is not pos-
sible to always predict when the front-end has wondered off to
an incorrect control flow path.

In this work we introduce a new class of power-aware front-
end throttling methods that are complementary to previously
proposed methods. Our methods are oblivious to control flow
speculation. They rely on another well understood inefficiency
of conventional front-end designs: Existing designs process
instructions with the maximum possible rate since this maxi-
mizes the chances of exploiting as much parallelism as possible.
However, this does not always improve performance signifi-
cantly. Our methods exploit this inefficiency by slowing down
the front-end (they turn it off for a couple of cycles) when they
predict that this will not reduce performance. This prediction is
based on local information about the instructions passing
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1. Actually, in principle incorrect speculation may improve
performance indirectly by prefetching memory data or
instructions. However, as we will see in section 4, this
rarely happens in practice.
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through various pipeline stages, or instruction flow or traffic.
Since our methods are oblivious to control flow speculation they
also reduce the number of extraneous instructions appearing on
miss-speculated control flow paths. For this reason, they also
reduce power demands. We make the following contributions:

• A minor contribution of this paper is that we demonstrate that
the previously proposed speculation confidence-based meth-
ods remain effective for future, highly-aggressive processor
designs.

• A major contribution of this work is that we introduce a new
class of power-aware front-end throttling mechanisms that
rely on instruction-flow information. We demonstrate that
these methods can complement existing speculation confi-
dence-based methods, further decreasing power dissipation.

The rest of the paper is organized as follows, In section 2,
we explain the rationale of our approach and discuss the various
heuristics. In section 3, we discuss and report both performance
and power related results. In section 4, we review related work.
Finally in section 5, we summarize our findings and offer con-
cluding remarks.

2. POWER-AWARE FRONT-END 
THROTTLING 

Conventional front-end designs rely heavily on control flow
speculation to forge ahead into the dynamic instruction stream.
Speculation allows a processor to guess the target of a branch
without waiting for it to execute. Consequently, the processor
can speculatively fetch and start executing the target instruc-
tions. Eventually, when the branch executes, the processor veri-
fies its guess. While speculation greatly improves performance,
it also increases power dissipation. In particular, instructions
that execute due to incorrect speculation consume power while

they do not contribute to performance2. As we also show in sec-
tion 3, the number of extraneous instructions can account for as
much as 80% of all instruction passing through the front-end
stages. Unfortunately, not using speculation in most modern
processors is not an option as the performance penalty is too
high. Moreover, as we move toward deeper pipelines and wider/
deeper instruction windows, the need for speculation increases.

Previous work on power-aware front-end designs focused on
using speculation confidence mechanisms to reduce the number
of extraneously executed instructions. Speculation confidence
mechanisms predict when the front-end is fetching instructions
down an incorrectly speculated control flow path. If so, they turn
the front-end off until confidence is regained, an action referred
to as gating or throttling. Of course, if a perfect confidence
mechanism was possible, then perfect speculation would be pos-
sible too.

In this work we propose a new class of front-end throttling
methods that are orthogonal to existing confidence-based meth-
ods. Our methods attack another well known power inefficiency
of modern processor designs. In particular, conventional proces-
sors strive to fetch and decode as many instructions as possible

and as quickly as possible. However, it is well understood, that
the additional parallelism that may be exposed (if any) does not
always improve performance. Often times, the processor is
stalled waiting for some other instructions to complete. To
understand this, let us consider the example of figure 1 and let us
focus on decode power. Shown in part (a) is sequence of four
instructions, a through d. Instructions a and b are independent,
while d depends on c. In part (b) we see how these instructions
may be fetched, decoded and executed in a conventional 4-way
processor. Even though the processor has the decode resources
to process all four of them in a single cycle, the fetch stage
delivers them in pairs in two consecutive cycles. This can hap-
pen, for example, if the four instructions appear on two different
cache blocks (which are accessed in separate cycles). As a result
it takes a total of 5 cycles to execute these instructions. In part
(c) we turn off decode for one cycle (we omit the fetch stage in
the interest of space). As a result, we decode all four instructions
at the same time (3rd cycle). Even though a and b are decoded a
cycle later than they did in part (b), notice that it still takes a
total of 5 cycles to process all four instructions. 

We can exploit this phenomenon to throttle the front-end
whenever we predict that fetching/decoding as quickly as possi-
ble will not lead to significant performance improvements. As a
result, instructions are fetched just in time for exploiting paral-
lelism. This applies to both correctly and incorrectly speculated
instructions. In the latter case, since fetch/decode will proceed at
a slower pace, we essentially reduce the number of incorrectly
speculated instructions that enter the pipeline and hence we
reduce power. Our methods work by selectively disabling fetch
and decode on a cycle by cycle basis. These methods reduce
average dynamic power. In the sections that follow we review
the heuristics we have investigated.

2.1. Flow-Based Heuristics
Our methods are instruction flow-based or flow-based. They

rely on information about the instructions that flow through each
pipeline stage. They use this information to estimate the amount
of instruction level parallelism currently present in the proces-
sor. They stall fetch/decode when they estimate that sufficient
parallelism is already available. In this case, the assumption is
that introducing additional instructions would not impact perfor-
mance significantly. The decision to throttle the front-end is
done on a cycle by cycle basis. When so determined, we simply

2. Some performance improvements are possible by side-
effects, such as prefetching of data and instructions.

Figure 1: Decoding as fast as possible may not improve
performance. (a) Four instructions in program order. (b)
Fetch, decode and execute in a conventional 4-way processor.
Fetching and decode proceeds as quickly as possible. (c)
Decode is gated for one cycle. It still takes 5 cycles to process
all four instructions even though some of them are delayed.

(a) (b) 

a

b

c

d

fetch

TI
M

E

decode exec.
a b
c d a b

c d a b
c
d

decode exec.

a b c d
ac

d

(c) 

gated

b

1417



disable fetch and decode for 3 cycles (the decode stage actually
occupies 3 pipeline stages in our configuration which is heavily
pipelined). Among the various method we tried, we report the
best three: Decode/Commit Rate, Dependence-based and Adap-
tive.

Decode/Commit Rate (DCR): This technique estimates
that sufficient parallelism exists when the number of instructions
passing through decode exceeds significantly the number of
instructions that commit. Intuitively, branch miss-speculations
will result in more instructions being decoded than committed.
Also, when there is little parallelism we will temporarily
observe many instructions being decoded (while filling up the
window) and few being committed. 

This technique simply compares the number of instructions
decoded and committed during each cycle. Best results where
obtained when we throttled the front-end when three times as
much instructions were decoded than committed. 

Dependence-Based (DEP): As another estimate of avail-
able parallelism this method simply inspects the instructions
currently being decoded counting the dependences among them.
Whenever the number of dependences exceeds a pre-specified
threshold we stall the front-end during the next three cycles. We
tried different threshold values and the best results were possible
with the threshold was set to half the decode width. The intuition
is that a high number of dependences is an indication of a long
and probably critical computation path. Consequently, it is
unlikely that introducing additional instructions as quickly as
possible will have a significant impact on performance. We have
also experimented with taking into account dependences with
the instructions already in the window. However, the results
were not promising. This heuristic is also fairly straightforward
to implement. Since dependence checking is done during
decode, the necessary information is already available. Accord-
ingly, the power overhead should be negligible.

Adaptive (ADAP): As we show in section 3, DEP works
best for some benchmarks whereas DCR works best for some
others. The adaptive method attempts to exploit the best of both
techniques. We observed that in most cases DEP works best
when the commit rate is relatively low. Accordingly, we devel-
oped a method that measures the commit rate over short periods
of time and selects DEP when the commit rate is low, or DCR
when it is high. In particular, we count the number of committed
instructions over a period of 1024 cycles. Then we divide this
number by 1024 (ignore the lower ten bits). If the number
exceeds a pre-specified threshold (4 for our 8-way processor) we
revert to DCR for next 1k cycles. Otherwise, we use DEP. We
also reset the counter and start counting over again.

2.2. Confidence-Based Heuristics
Previously proposed control flow confidence-based heuris-

tics, or simply confidence-based heuristics aim at reducing the
number of erroneously executed instructions due to control flow
miss-speculations. Of course, it is not possible to identify miss-
predictions early enough to avoid fetching and decoding instruc-
tions down the miss-predicted path. Otherwise, perfect branch
prediction would be possible and there wouldn’t be any miss-

speculations to start with. For this reason, these methods rely on
confidence mechanisms to identify low confidence speculation
decisions.

In investigating these heuristics we draw from the sugges-
tions and experience reported in [3]. We investigate the follow-
ing heuristics: CLast, Cjrs and CboS. These heuristics employ
different mechanisms for identifying low confidence branches.
These are branches for which we have experienced low predic-
tion accuracy. To throttle the front-end we count the number of
low confidence branches in the pipeline [3]. We stall the front-
end when this number exceeds a pre-specified threshold (2 in
our case chosen after experimenting with various values).

Clast: This heuristic uses an PC-indexed table with a single
bit per entry. This table is accessed for branches during fetch.
The bit indicates whether the corresponding branch was miss-
predicted last time it was encountered. Updates are done at com-
mit. A branch is deemed low-confidence if the bit is set. 

Cjrs: This is the JRS confidence estimator proposed by
Jacobsen et al. [2]. This estimator uses a table of miss distance
(saturating) counters (MDC) to keep track of branch prediction
correctness. Correctly predicted branches increment the related
MDC while the miss-predicted ones reset it. A branch is consid-
ered high confidence if its MDC exceeds a threshold (here 12). 

CboS: This is the “Both Strong” heuristic suggested by
Manne et al. [3]. It deems a branch as low confidence when any
of the two underlying branch predictors (we use a combined,
McFarling predictor) is not strongly biased. This mechanism
leverages information that is readily available and hence it
power and complexity requirements are negligible. 

Manne et al., suggest additional confidence based methods.
However, we present the ones that perform the best for our base
configuration and branch predictor.

2.3. Combining Confidence and Flow
The last method we report, combines the best confidence-

and flow-based heuristics. This is the Cadap method which
combines CboS and ADAP. Here we throttle the front-end when
either of the underlying heuristics instructs us to do so. We will
show that this method outperforms all others, demonstrating that
our flow-based methods can indeed complement existing confi-
dence-based methods.

3. METHODOLOGY AND RESULTS
In this section, we present our analysis of the various front-

end throttling methods. We report performance results in section
3.2. We report power-related measurements in section 3.3.

We used programs from the SPEC’95 suite compiled for the
MIPS-like architecture used by the Simplescalar v3.0 simulation
tool set. We used GNU’s gcc compiler (flags: -O2 –funroll-loops
–finline-functions). Table 1 reports the dynamic instruction
count and control flow prediction accuracy per benchmarks
(notice that this include all control flow instructions and takes
into account not only direction prediction but also target predic-
tion). In the interest of space, we use the abbreviations listed
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under the “Ab.” column to refer to these benchmarks.The base
configuration we used is detailed in table 2. 

3.1. Estimating Power
Measuring power dissipation for a modern processor is chal-

lenging in part due to the complexity of the underlying struc-
tures. Furthermore, different design styles (e.g., pre-charged or
static cells) may significantly impact power dissipation. For
these reasons, in this work we use traffic as an indirect, approxi-
mate metric of dynamic power dissipation. We measure traffic
per pipeline stage and define it as the number of instructions
passing through the stage. Given that we are suggesting high-
level optimizations that may be applicable to a variety of imple-
mentations, traffic is a high-level design-independent, albeit
possibly inaccurate, way of estimating the potential power sav-
ings. 

3.2. Performance
As explained in section 2, reducing the rate of fetch/decode

can negatively impact performance. Figure 2 reports relative
performance for all methods. In part (a) we show performance
for the confidence-based methods, while in part (b) we do the
same for the flow-based methods. Performance is reported rela-
tively to the base configuration. Numbers lower than 1 represent
slowdowns. In part (a) we include an ideal confidence mecha-
nism (Cideal) that never fetches miss-speculated instructions.
While this is impractical, it provides us with an upper bound. We
also include Round-Robin (RR), a simplistic method that throt-
tles the front-end on and off every three cycles. We include this
method as we believe that it is a fairly obvious alternative and
hence could provide an indication (not a proof) on whether more
elaborate methods are necessary. As shown, RR reduces perfor-
mance by 25% on average and as much as 47% for ijpeg. This
suggests that the additional cost and complexity of the other
methods may be worthwhile. Another fairly obvious alternative
is to use a narrower processor. We have experimented with a 4-
way processor and found that it too significantly lacks in perfor-
mance. Interestingly, Cideal outperforms the base suggesting
that rarely miss-speculated instructions have positive side-
effects (e.g., prefetching). Cjrs performs significantly worse
than Clast and CboS for most programs. While Clast performs
slightly better than CboS, the slowdowns are on the average rel-
atively small (1.3% and 1.5% respectively).

The flow-based DEP and DCR are not robust. For example,
DEP does not perform well for the two floating point programs
while DCR fails for jpeg and m88ksim. Fortunately, the ADAP
method indeed captures the best of both offering good perfor-
mance across the board. In some cases (e.g., perl) ADAP perfor-
mance is worse than DEP or DRC, however, the differences are
minor. On the average, ADAP, DEP and DCR are within 3.6%,
3.8% and 2.8% of the base case respectively. This does not com-
pare favorably to the confidence-based methods. However, the
combined method Cadap, performs within 2% of the base which
is close to CboS and Clast.

3.3. Traffic Reduction
Figure 3 reports the traffic due to control miss-speculation

for the fetch, decode, issue and complete stages. Reported is the
number of extra instructions passing through those stages
expressed as a fraction of all instructions passing through that
stage (e.g., 0.7 means that 3 in 10 instructions are committed).
As expected, extra traffic is higher for integer codes and it is cor-
related to branch prediction accuracy. In addition, extra traffic is
higher for decode and fetch since fewer miss-speculated instruc-
tions get to issue or complete. Interestingly, in most integer
codes, the vast majority of fetched and decoded instructions
belong to miss-speculated paths (e.g., 72% of fetched and 56%
of decoded instructions in gcc).

Figure 4 reports traffic reduction for the confidence meth-
ods. Reported is the total number of instructions passing through
each stage measured as fraction of the total number of instruc-
tions passing through the same stage in the original non-power-
aware configuration. Both correctly speculated and extraneous

Table 1: Benchmarks, dynamic instruction count 
(committed) and control flow prediction accuracy (direction 

and target).

Benchmark Ab. Inst. Count BP Acc.

gcc gcc 265M 90%

go go 132M 80%

compress com 152M 90%

li li 202M 88%

ijpeg ijp 136M 92%

m88ksim m88 209M 93%

perl per 185M 92%

vortex vor 294M 98%

fpppp fpp 150M 94%

swim swm 213M 98%

Table 2: Base configuration details. 

Base Processor Configuration

 Branch Predictor 64K GShare+64K bi-modal 
with 64K selector

Scheduler 256 entries, RUU-like

Fetch Unit Up to 8 instr. per cycle.
Max 2 branches per cycle
64-entry Fetch Buffer

Load/Store Queue 128 entries 
4 loads or stores per cycle
Perfect disambiguation

Issue, Decode,
Commit Bandwidth 

any 8 instructions / cycle

Functional l Unit 
Latencies 

same as MIPS R10000 

L1 - Instruction /Data 
Caches

64K, 4-way SA, 32-byte blocks, 
3 cycle hit latency

Unified L2 256K, 4-way SA, 64-byte blocks, 
16-cycle hit latency

Main Memory Infinite, 100 cycles
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instructions are included in this metric. For example, ideally we
could see a fetch traffic reduction of up to 72% in gcc. Parts (a)
through (c) show the results for Clast, Cjrs and CboS respec-
tively. The Cjrs method does exceptionally well, however, as we
have seen it also impacts performance significantly. On the
average, Clast reduces extra traffic by 6.8%, 10.7%, 2.3% and
2.6% at the fetch, decode, issue and complete stages. CboS per-
forms better by reducing extra traffic by 10.5%, 15.2%, 3.9%
and 3.9% for the aforementioned stages. 

Figure 5 reports traffic reduction for the flow-based meth-
ods. Parts (a), (b) and (c) are for the DEP, DCR and ADAP
methods respectively. DCR tends to perform much better than
DEP with some exceptions (e.g., li). Fortunately, the ADAP
method offers the best of DEP and DCR in most cases. In some
cases (e.g., go) it evens outperforms both DEP and DCR sug-
gesting that it alternates between the two during program
phases. In m88ksim, however, it fails to perform as well as DCR
(however, it still reduces traffic significantly). The average traf-
fic reductions are for ADAP 10.8%, 15.2%, 4.2% and 4.4% for
the fetch, decode, issue and complete stages. 

Finally, figure 5(d) shows traffic reduction for the combined
method Cadap. On the average, the reductions for the fetch,
decode, issue and complete stages are 14.9%, 20.1%, 6.2% and
6.0%. These represent an increase of 4.1%, 4.9%, 2.3% and
2.2% in absolute terms over the best confidence-based method. 

4. RELATED WORK
Many architectural power optimizations have been pro-

posed. In this section we restrict our attention to front-end throt-
tling techniques for high-performance processors. 

Figure 2: Relative performance with various front-end 
throttling methods. (a) Confidence-based, (b) Flow-based. 

We also include the simplistic round-robin (RR) method and 
an ideal confidence-based method (Cideal). Higher is better.

Figure 3: Traffic (instructions) per stage due to control 
miss-speculation measured as a fraction of all instructions 

passing through that stage. 
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Figure 4: Traffic reduction for the confidence-based 
methods. Higher is better.
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Jacobsen, Rotenberg and Smith suggested confidence mech-
anisms for branch predictors [2]. In this work we utilized some

of the more accurate ones for the purposes of throttling a highly-
aggressive front-end. 

The idea of using confidence for speculation control and
power reduction is not new. It was introduced by Manne,
Klauser and Grunwald [3,4]. H. Sanchez et al., describe a fetch
stage throttling mechanism for the G3 and G4 PowerPC proces-
sors [5]. They use this throttle mechanism in response to thermal
emergencies. This is a fail-safe mechanism. Our throttling
mechanisms are fine grain and aim at reducing average power
during normal operation.

5. CONCLUSION
We have studied various front-end throttling methods

including previously proposed methods that exploit branch pre-
diction confidence information. We also proposed methods that
exploit information about the instructions flowing through the
various pipeline stages. We affirmed that a confidence-based
method significantly reduces pipeline traffic with minimal per-
formance impact. We showed that similar benefits are possible
with a simple, instruction flow based heuristic. Finally, by com-
bining both confidence- and instruction-flow-based methods,
further power benefits were possible while maintaining compet-
itive performance (within 2% of original core).

In this work we limited our attention to reducing power due
to control miss-speculation. Our techniques are oblivious to con-
trol speculation and it may be possible to use them to reduce
power even on correctly speculated paths.
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Figure 5: Traffic reduction for the flow-based methods. 
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