
SABA: a Zero Timing Overhead Power-Aware BTB
for High-Performance Processors

 Kaveh Jokar Deris Amirali Baniasadi
Electrical and Computer Engineering Department

University of Victoria, Victoria, Canada
{kaveh, amirali}@ece.uvic.ca

Abstract
Modern high-performance processors access the branch
target buffer (BTB) every cycle to speculate branch target
addresses. This aggressive approach improves
performance as it results in early identification of target
addresses. However, unfortunately, such accesses, quite
often, are unnecessary as there is no control flow
instruction among those fetched.

In this work we introduce Speculative BTB Access
(SABA) to address this design inefficiency. SABA relies on
a simple power efficient structure, referred to as the SABA-
filter, to identify cycles where there is no control flow
instruction among those fetched, at least one cycle in
advance. By identifying such cycles and eliminating
unnecessary BTB accesses we reduce BTB�s power
dissipation (and therefore power density).

SABA comes with zero timing overhead as it makes
decisions regarding future cycles and therefore does not
impact critical path delay. Our study shows that, by using
SABA, it is possible to eliminate more than half of the
unnecessary BTB accesses while paying a very low
performance cost (average: 0.7%). We also study how
variations in SABA-filter configuration, branch predictor
configuration and processor execution bandwidth impact
power savings and performance slowdown for a SABA-
enhanced processor.
1 Introduction
Power optimization techniques often aim at optimizing
processor units consuming large shares of total power
dissipation (e.g., issue logic [15]). However, in recent years
there have been studies focusing on units with smaller
share of total power but with higher power density. Such
units often create hot spots and can cause permanent faults
(e.g., register renaming unit[16]).

This work introduces power optimization techniques for
the branch target buffer (BTB). We target the BTB due to
the following: First, conventional high-performance
designs access the BTB aggressively and frequently. This
requires using multi-ported structures and can result in high

temperatures (possibly resulting in faults) and higher
leakage [17, 18]. Second, BTB is an energy hungry
structure and consumes a considerable share of the branch
predictor unit�s energy budget.

Exploiting the BTB improves performance by making
early identification of target addresses (for control flow
instructions) possible. To achieve this, at fetch, modern
processors access BTB for all instructions to find the
branch/jump target address as soon as possible. This
aggressive approach helps performance, but it is inefficient
from the energy point of view. This is due to the fact that
control flow instructions (conditional or unconditional
branches) account for less than 25% of the fetched
instructions. Therefore, many BTB accesses consume
energy and produce heat but do not contribute to
performance.

We introduce Speculative BTB Access (SABA), as a
power-aware method to identify and eliminate unnecessary
BTB accesses. SABA exploits fetch cycles� history to
detect cycles where BTB access does not contribute to
performance. SABA reduces power dissipation (and
therefore power density) by avoiding accessing the BTB
during such occasions. To avoid any timing overhead,
identifying cycles with no control flow instructions is done
at least one cycle in advance. Therefore, SABA comes with
zero timing overhead and does not increase front-end
latency.

Using a set of the SPEC CPU2000 benchmarks and
WATTCH power models [3] we find that with an average
performance penalty of 0.7%, SABA eliminates more than
half of the unnecessary BTB accesses.

The rest of this paper is organized as follows. In Section
2 we discuss our motivation. In Section 3 we introduce
SABA and present the details. In Section 4 we discuss
methodology and results. In Section 5 we review related
work. Finally, in Section 6 we offer our concluding
remarks.

2 Motivation
Modern processors fetch instructions aggressively. This is
to keep the instruction queue full and let the pipeline
execute as many instructions as possible in parallel. The
number of fetched instructions varies during program
runtime depending on program behavior and processor
configuration.

 A previous study shows that the average gap between
control flow instructions can be as high as 12 instructions
[2]. Nonetheless, in order to avoid extra delay, modern
processors access BTB for all instructions. This aggressive
approach, quite often, results in power dissipation and
excessive heat without contributing to performance. This is
due to the fact that many of these accesses are not
necessary since there are no control flow instructions
among the instructions fetched during the cycle. We refer
to such cycles as control-free cycles or CFCs. Alternatively
we refer to cycles where there is at least one control flow
instruction among the instructions fetched as control-
dependent cycles or CDCs. The energy consumed by
unnecessary BTB accesses depends on how often CFCs
occur.

Figure 1 reports CFC frequency for processors with
different execution bandwidths and for the subset of SPEC
CPU2000 used in this work. As presented, CFC frequency
is high for different execution bandwidths.

CFC Frequency

0%

10%

20%

30%

40%

50%

60%

70%

80%

gzp vpr gcc mes art mcf amm prs bzp twf AVG

2-way
4-way
6-way
8-way

Fig. 1. CFC frequency for different applications and for

different execution bandwidths
We conclude from Figure 1 that there is an opportunity

to reduce BTB power dissipation by identifying CFCs and
avoiding accessing BTB for them.

An alternative approach to avoid BTB accesses during
CFCs is to use a pre-decoder to identify control flow
instructions. This, unfortunately, can result in extra delay.
Previous work shows that increasing predictor latency
significantly erodes performance1. Therefore, any design
choice resulting in increasing branch predictor delay, is

1 The trend is exemplified by the AMD processor family. The
AMD-k6 used a highly accurate 8k-entry GAs branch predictor.
The newer AMD Althon uses a less accurate but faster 2k-entry
branch predictor [5]. Accordingly, AMD has sacrificed higher
predictor accuracy (and therefore energy efficiency [2]) for faster
clock rate.

probably not a good choice [4]. To address this problem,
SABA avoids increasing prediction latency by making
decisions regarding BTB usage in future cycles. SABA
aims at identifying CFCs at least one cycle in advance and
therefore does not impact critical path delay. Hence, it does
not increase overall prediction latency.
3 SABA Architecture
SABA aims at predicting CFCs at least one cycle before
they occur. Accurate CFC prediction enables us to prevent
unnecessary BTB accesses. Figure 2 shows SABA�s block
diagram including the SABA-filter used to eliminate
unnecessary BTB accesses.

Fig. 2. SABA architecture

SABA consists of a small global history shift register
(GHR). This register represents the history of CDCs and
CFCs. Throughout this paper we refer to the length of this
register as GHR-size. The bigger the GHR-size is, the more
we know about past history.

We use zeros and ones to represent CFCs and CDCs in
the GHR respectively. We use the GHR value to access an
entry in the PHT (Prediction History Table). Every PHT-
entry contains an n-bit saturating counter with a maximum
value of Sat. We increment the counter when a CFC is
detected. We decrement the counter if the fetch cycle is a
CDC.

At fetch, we use the recent fetch history to probe the
counters. We use the counter value to speculate whether the

Fig. 3. (a) Control free cycle predictor lookup. (b) Control free cycle predictor update.

next cycle is a CFC. A saturated counter in PHT indicates
that the next cycle is probably a CFC (see Figure 3(a)).
We update the SABA-filter every cycle and as soon as we
know whether there has been a control flow instruction
among those fetched (see Figure 3(b)). This is possible at
decode and after instructions are decoded. One possible
way to correct CFC mispredictions, upon finding a control
flow instruction among the decoded instructions, is to
update the SABA-filter entry associated with the time the
instruction was fetched. This can be done by approximating
this time by shifting the most recent global history by 3 bits
(assuming that fetch latency is 3 cycles).

TABLE 1: Simulated processor configuration

Processor Core
Instruction Window
Fetch Width
Issue Width

Miss pred. Penalty
Fetch Buffer
Functional Units

RUU= 128; LSQ=32
Upto 8 Instruction per cycle;
4 Instruction per cycle;
4 integer, 4 FP
6 cycle
64 entries
4 Int ALU, 4 Int mult/div
4 FP ALU, 4 FP mlt/div, 2 mem prt

Memory Hierarchy
L1 D-cache Size
L1 I-cache Size
L1 latency
L2

Memory latency
D-TLB/I-TLB Size

64 KB, 4-way, 32B blocks, wr bk
64 KB, 4-way, 32B blocks, wr bk
3 cycle
Unified, 512KB, 4-way LRU
64B blocks, 16-cycle Latency, wr bk
80 cycles
128/64-entry, fully assoc.,
30-cycle miss

Branch Prediction
BTB
Direction Predictor
Return-address-stack

512-entry, 4-way
Combined predictor, 32K entries
64-entry

4 Methodology and Results
In this section, we present our methodology and evaluate
SABA. We report how variations in SABA-filter
configuration, branch predictor configuration, and
processor execution bandwidth impact performance, BTB
access frequency and power dissipation reduction. We used

programs from the SPEC CPU2000 suite compiled for the
MIPS-like architecture used by the Simplescalar v3.0
simulation tool set [6]. We detail the base processor model
in table 1.

To evaluate our technique, we used a modified version of
Wattch toolset [3]. We report both accuracy (i.e., how
often we accurately predict a CFC) and coverage (i.e., what
percentage of CFCs are accurately identified) for a wide
range of filter sizes (from 2 to 64 PHT entry).

Table 2: Energy consumed per access for branch

predictor units and the SABA-filter.
Modeled Unit Size Percentage
SABA 32 x 3 < 0.25%
BTB 512 x 4-way 60.2%
Comb. dir.
Predictor

32k x 3 (LHT)
32k x 2 (GHT)
32k x 2 (sel.)

33.91%

RAS 64 (entry) 5.64%

Provided that a sufficient number of CFCs are accurately
identified, SABA has the potential for reducing BTB
energy consumption. However, it introduces extra energy
overhead and can increase overall energy if the overhead
exceeds savings. To estimate the relevant process
parameters, including the power overhead associated with
SABA, we used the process scaling methodology
developed for CACTI [7] that is incorporated in WATTCH.
We report relative energy consumed per access by a typical
(i.e., 32-entry) SABA filter and other structures used in the
branch predictor in Table 2. We report energy consumption
for each structure compared to the energy consumed by a
branch predictor equipped with a 32k-entry hybrid
predictor, a 4-way, 512-entry BTB and a 64-entry RAS. As
reported the overhead of the typical SABA filter is far less
than the energy consumed by the BTB. Nonetheless, we
take into account this overhead in our study.

4.1 Accuracy and Coverage

In Figure 4 we report average prediction accuracy and
coverage for SABA for the SPEC�2K applications studied

(a)
AVG Accuracy

65%

70%

75%

80%

85%

90%

1 2 3 4 5 6

GHR-Size

2 bits
3 bits
4 bits

(b)
AVG Coverage

0%

10%

20%

30%

40%

50%

60%

70%

1 2 3 4 5 6

GHR-Size

2 bits
3 bits
4 bits

Fig. 4. Average accuracy and coverage achieved for different SABA-filter configurations and for the SPEC2k benchmarks
studied here. For each GHR-size (x-axis) bars from left to right report for 2-, 3- and 4-bit saturating counters.

(a)
AVG BTB Power Reduction

0%

2%

4%

6%

8%

10%

12%

14%

16%

1 2 3 4 5 6

GHR-Size

2 bits
3 bits
4 bits

(b)
AVG IPC Drop

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

1.6%

1 2 3 4 5 6

GHR-Size

2 bits
3 bits
4 bits

Fig. 5. Average BTB power reduction and performance loss for different SABA-filter configurations and for the SPEC2k
benchmarks studied here. For each GHR-size (x-axis) bars from left to right report for 2-, 3- and 4-bit saturating counters for
different configuration of suggested predictor.

in this work. In 4(a) we report average accuracy for different
GHR-sizes (i.e., 1 to 6) and saturating counters (i.e., 2, 3 and
4-bit counters). As reported we predict CFC cycles with an
accuracy varying from 74% to 88% for different SABA-filter
configurations.

 Note that mistaking a CFC for a CDC does not harm
performance as it only results in unnecessary BTB access.
However, mispredicting a CDC as a CFC, can result in late
target address identification and comes with an extra cycle
penalty in our study.

 In 4(b) we report what percentage of CFCs is identified.
We identify between 25% and 61% of CFCs for different
SABA configurations.

We conclude from Figure 4 that with a fixed GHR-size,
increasing saturation threshold will generally increase
accuracy but reduce coverage. With a fixed counter size,

increasing the GHR-size does not always improve accuracy
or coverage. A small GHR-size results in recording very little
history, whereas larger GHR-sizes may result in mapping
small repeating patterns to different SABA-filter entries
which may result in a longer SABA learning period.

4.2 Power and Performance
We report BTB power reduction and processor performance
loss in Figure 5. We use the same set of parameters used in
Figure 4. BTB power reduction varies between 6 and 15% for
different SABA-filter configurations. Average performance
loss is below 1.5% for all configurations. For a fixed GHR-
size larger saturation threshold comes with lower
performance loss but at the expense of reduced power
savings. For a fixed counter size, increasing the GHR-size
almost always improves BTB power reduction. The only
exception is when we increase the size from three to four. We

conclude from Figure 5 that the best GHR-size or history
length to consider in predicting application behavior is
different from one application to another. This is consistent
with other studies [14].
4.3 Sensitivity Analysis
In this section we report SABA�s BTB power reduction and
performance cost for different branch predictors and for
processors with different execution bandwidths.
4.3.1 Branch Predictor Configuration
To investigate how SABA impacts power and performance
for different branch predictor configurations, we study the
following combined branch predictor [8] configurations: a)
2k-entry gshare, bimodal & selector BTB: 256-entry, 4-way
b) 4k-entry gshare, bimodal & selector BTB: 512-entry, 4-
way c) 8k-entry gshare, bimodal & selector BTB: 512-entry,
4-way and d) 32k-entry gshare, bimodal & selector BTB:
512-entry, 4-way.
The gshare predictor used in all predictors uses 6-bit history.

We assume a GHR-size of 6 bits and 3-bit saturating
counters. This requires using a 64-entry PHT where each
entry is a 3-bit counter (192 bits total). We select this
configuration as it results in considerable power reduction
while maintaining performance within acceptable limits.

In Figure 6, we report performance and BTB power
reduction for the four configurations. As reported variations
in predictor and the BTB size have very little impact on our
results. Mesa and art show higher BTB power reduction
compared to other benchmarks. This is consistent with the
data reported in Figure 1 where both benchmarks show higher
number of CFCs compared to other applications.

Note that in the case of mesa we witness a small (less than
0.1%) performance improvement. Our study shows mesa
achieves better performance as the result of better prediction
for indirect jump instructions. Art, on the other hand, shows
the highest performance loss among all applications. This can
be explained by the fact that SABA does not predict CFCs
occurring in art as accurately as other applications.
4.3.2 Execution Bandwidth
In Figure 7, we report BTB power reduction for four different
pipeline execution bandwidths. To provide insight we also
report maximum power reduction possible as achieved by a
perfect CFC predictor (Oracle). While the entire bar shows
maximum power reduction possible, the lower part in each
bar reports power reduction achieved by a 64-entry SABA-
filter using 3-bit counters. In a narrow pipeline, e.g., the 2-
way processor, fewer instructions are fetched each cycle.
With fewer fetched instructions, there is lower chance of
having a control flow instruction among those fetched.
Hence, CFCs are more frequent. Consequently, there is
higher chance for BTB power reduction by using SABA. This
explains why BTB power reduction is higher for the 2-way
processor. As the processor bandwidth increases so does the
number of fetched instructions. Therefore, CFCs become less
frequent and so does the BTB power reduction achieved by
SABA.

AVG. BTB Power Reduction

0%

5%

10%

15%

20%

25%

30%

35%

40%

gzp vpr gcc mes art mcf amm prs bzp twf AVG

2k BP
256 BTB
4k BP
 512 BTB
8k BP
 512 BTB
32k BP
 512 BTB

AVG. IPC Drop

-0.1%
0.1%
0.3%
0.5%
0.7%
0.9%
1.1%
1.3%
1.5%
1.7%
1.9%

gzp vpr gcc mes art mcf amm prs bzp twf AVG

2k BP
256 BTB
4k BP
 512 BTB
8k BP
 512 BTB
32k BP
 512 BTB

Fig. 6. Average BTB power reduction and performance loss

for different branch predictor and BTB size.
We conclude from Figure 7 that SABA eliminates more

than half of the unnecessary BTB accesses across all
execution bandwidths. Note that this comes with negligible
performance cost.

AVG. BTB Power Reduction

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

2 way 4 way 6 way 8 way

Oracle

SABA

Fig. 7. Maximum BTB power reduction (entire bar) and BTB
power reduction achieved by SABA (lower bar) for
processors with different execution bandwidths.

5 Related Work
Previous work has introduced Banking and prediction probe
detector (PPD) [2] to reduce predictor or BTB energy

consumption. Banking reduces the active portion of the
predictor. Predictor Probe Detection (PPD) [2] reduces
branch predictor energy consumption. PPD aims at reducing
the power dissipated during predictor lookups. PPD identifies
when a cache line has no conditional branches so that a
lookup in the predictor buffer can be avoided. Also, it
identifies when a cache line has no control-flow instruction at
all, so that the BTB lookup can be eliminated. SABA can be
used on top of banking to further reduce power dissipation.
SABA is different from PPD as it does not impact timing
complexities and makes decisions regarding BTB accesses
occurring at future cycles.

 Chung and Park proposed modifications to the branch
predictor to perform early PHT access to predict BTB access
[1]. Our work is different as it is independent of the branch
predictor implementation and relies on fetch history to make
predictions.

Baniasadi and Moshovos introduced Branch Predictor
Prediction (BPP) [12] and Selective Predictor Access
(SEPAS) [13] to reduce branch predictor energy
consumption. BPP stores information regarding the sub-
predictors accessed by the most recent branch instructions
executed. This information is used to avoid accessing all
three underlying structures. SEPAS selectively accesses a
small filter to avoid unnecessary lookups or updates to the
branch predictor. Our method is different from BPP and
SEPAS as we focus on the BTB lookups.

Chaver et al, [10] used profiling to resize large BTB
structures whenever reducing size does not impact the BTB
miss rate. Hu et al, reduce leakage power in direction
predictors [9]. They turn off cache lines if they have not been
used in a long time. Monchiero et al, introduced a new Hint
instruction to help identifying static branches and to reduce
prediction power [11]. Our work is different as we use
runtime information to avoid unnecessary BTB accesses.
6 Conclusion
In this work we presented SABA, a power-aware extension to
high-performance processors, to identify and avoid
unnecessary BTB accesses. SABA relies on a small filter
referred to as the SABA-filter to record instruction fetch
history. We used the recorded information to identify cycles
where there is no control flow instruction among those
fetched.

We studied how variations in SABA-filter configuration,
branch predictor configuration and processor execution
bandwidth impact power and performance. We eliminated
more than half of the unnecessary BTB accesses with
negligible performance cost. SABA does not impact predictor
delay as it stops unnecessary accesses occurring in future
cycles.

7 Acknowledgments
This work was supported by the Natural Sciences and
Engineering Research Council of Canada, Discovery Grants
Program and Canada Foundation for Innovation, New
Opportunities Fund.

References

[1] Sung Woo Chung, Sung-Bae Park, �A Low Power

Branch Predictor to Selectively Access the BTB�,
Asia-Pacific Computer Systems Architecture
Conference, pp 374-384, September 2004.

[2] Dharmesh Parikh, Kevin Skadron, Yan Zhang, Mircea
R. Stan, �Power-Aware Branch Prediction:
Characterization and Design�, IEEE Transaction on
Computers, Vol. 53,No. 2, pp. 168-186, February
2004.

[3] D. Brooks, V. Tiwari, and M. Martonosi, �Wattch: A
frame work for architectural power analysis and
optimizations,� In Proceedings 27th International
Symposium on Computer Architecture, 2000, pp. 83�
94.

[4] Daniel A. Jimenez, Stephen W. Keckler, and Calvin
Lin. �The Impact of Delay on The Design of Branch
Predictors�, In Proceedings of the 33rd Annual
International Symposium on Microarchitecture, Nov
2000.

[5] K. Diefendorff, �K7 Challenges�, Intel.
Microprocessor Report, 12(14), Oct. 1998

[6] D. C. Burger and T. M. Austin. �The SimpleScalar tool
set,version 2.0.�, Computer Architecture News,
25(3):13�25, Jun. 1997.

[7] S. Wilton and N. Jouppi. �An Enhanced Access and
Cycle Time Model for On-chip Caches.� In WRL
Research Report 93/5, DEC Western Research
Laboratory, 1994.

[8] S. McFarling, �Combining Branch Predictors�,
Technical Note TN-36, In DEC Western Research
Laboratory, June 1993.

[9] Z. Hu, P. Juang, K. Skadron, D. Clark and M.
Martonosi. �Applying Decay Strategies to Branch
Predictors for Leakage Energy Saving�, In
Proceedings of IEEE International Conferences on
Computers and Processors, 2002.

[10] D. Chaver, L. Pinuel, M. Prieto, F. Tirado and M. C.
Huang. �Branch Prediction on Demand: an Energy
Efficient Solution�, In ISPLED'03, 2003.

[11] Matteo Monchiero, Gianluca Palermo, Mariagiovanna
Sami, Cristina Silvano, Vittorio Zaccaria and Roberto
Zafalon. �Low-Power Branch Prediction Techniques
for VLIW Architectures: A Compiler-Hints Based
Approach Integration�, The VLSI Journal, 38(3):515-
524, January 2005.

[12] Amirali Baniasadi, Andreas Moshovos, �Branch
Predictor Prediction: A Power-Aware Branch Predictor
for High-Performance Processors�, In Proceedings of
ICCD 2002, pp. 458-461

[13] Amirali Baniasadi, Andreas Moshovos, �SEPAS: A
Highly Accurate and Energy Efficient Branch
Predictor�, Proceedings of International Symposium
on Low Power Electronics and Design, 2004, pp. 38-
43

[14] Juan, T., Sanjeevan, S., Navaro, J. J. �Dynamic
History-Length Fitting: A third level of adaptivity for
branch prediction�, Proc. of the 25th Ann. Int�l Symp.
Computer Architecture, Jun. 1998.

[15] R. Canal and A. Gonzalez. �A low-complexity issue
logic�, In Proc. of 2000 International Conferences on
Supercomputing, May 2000.

[16] Andreas Moshovos, �Checkpointing alternatives for
high performance, power-aware processors�,
Proceedings of International Symposium on Low
Power Electronics and Design, 2003: pp. 318-321

[17] Philo Juang, Kevin Skadron, Margaret Martonosi,
Zhigang Hu, Douglas W. Clark, Phil Diodato, Stefanos
Kaxiras, �Implementing branch-predictor decay using
quasi-static memory cells�, ACM Transactions on
Architecture and Code Optimization.pp. 180-219
(2004)

[18] Kevin Skadron, Tarek F. Abdelzaher, Mircea R. Stan:
Control-Theoretic �Techniques and Thermal-RC
Modeling for Accurate and Localized Dynamic
Thermal Management�, Proceedings of the Eighth
International Symposium on High-Performance
Computer Architecture (HPCA'02), 2-6 February
2002, Boston, Massachusettes, USA: pp. 17-28

