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Abstract 
Modern high-performance processors access the branch 
target buffer (BTB) every cycle to speculate branch target 
addresses. This aggressive approach improves 
performance as it results in early identification of target 
addresses. However, unfortunately, such accesses, quite 
often, are unnecessary as there is no control flow 
instruction among those fetched. 

In this work we introduce Speculative BTB Access 
(SABA) to address this design inefficiency. SABA relies on 
a simple power efficient structure, referred to as the SABA-
filter, to identify cycles where there is no control flow 
instruction among those fetched, at least one cycle in 
advance. By identifying such cycles and eliminating 
unnecessary BTB accesses we reduce BTB�s power 
dissipation (and therefore power density).   

SABA comes with zero timing overhead as it makes 
decisions regarding future cycles and therefore does not 
impact critical path delay. Our study shows that, by using 
SABA, it is possible to eliminate more than half of the 
unnecessary BTB accesses while paying a very low 
performance cost (average: 0.7%). We also study how 
variations in SABA-filter configuration, branch predictor 
configuration and processor execution bandwidth impact 
power savings and performance slowdown for a SABA-
enhanced processor. 
1 Introduction 
Power optimization techniques often aim at optimizing 
processor units consuming large shares of total power 
dissipation (e.g., issue logic [15]). However, in recent years 
there have been studies focusing on units with smaller 
share of total power but with higher power density. Such 
units often create hot spots and can cause permanent faults 
(e.g., register renaming unit[16]).  

This work introduces power optimization techniques for 
the branch target buffer (BTB). We target the BTB due to 
the following: First, conventional high-performance 
designs access the BTB aggressively and frequently. This 
requires using multi-ported structures and can result in high 

temperatures (possibly resulting in faults) and higher 
leakage [17, 18]. Second, BTB is an energy hungry 
structure and consumes a considerable share of the branch 
predictor unit�s energy budget. 

Exploiting the BTB improves performance by making 
early identification of target addresses (for control flow 
instructions) possible. To achieve this, at fetch, modern 
processors access BTB for all instructions to find the 
branch/jump target address as soon as possible.  This 
aggressive approach helps performance, but it is inefficient 
from the energy point of view.  This is due to the fact that 
control flow instructions (conditional or unconditional 
branches) account for less than 25% of the fetched 
instructions. Therefore, many BTB accesses consume 
energy and produce heat but do not contribute to 
performance. 

We introduce Speculative BTB Access (SABA), as a 
power-aware method to identify and eliminate unnecessary 
BTB accesses. SABA exploits fetch cycles� history to 
detect cycles where BTB access does not contribute to 
performance. SABA reduces power dissipation (and 
therefore power density) by avoiding accessing the BTB 
during such occasions.  To avoid any timing overhead, 
identifying cycles with no control flow instructions is done 
at least one cycle in advance. Therefore, SABA comes with 
zero timing overhead and does not increase front-end 
latency. 

Using a set of the SPEC CPU2000 benchmarks and 
WATTCH power models [3] we find that with an average 
performance penalty of 0.7%, SABA eliminates more than 
half of the unnecessary BTB accesses. 

The rest of this paper is organized as follows. In Section 
2 we discuss our motivation. In Section 3 we introduce 
SABA and present the details. In Section 4 we discuss 
methodology and results. In Section 5 we review related 
work. Finally, in Section 6 we offer our concluding 
remarks. 



2 Motivation 
Modern processors fetch instructions aggressively. This is 
to keep the instruction queue full and let the pipeline 
execute as many instructions as possible in parallel. The 
number of fetched instructions varies during program 
runtime depending on program behavior and processor 
configuration.  

 A previous study shows that the average gap between 
control flow instructions can be as high as 12 instructions 
[2]. Nonetheless, in order to avoid extra delay, modern 
processors access BTB for all instructions. This aggressive 
approach, quite often, results in power dissipation and 
excessive heat without contributing to performance. This is 
due to the fact that many of these accesses are not 
necessary since there are no control flow instructions 
among the instructions fetched during the cycle. We refer 
to such cycles as control-free cycles or CFCs. Alternatively 
we refer to cycles where there is at least one control flow 
instruction among the instructions fetched as control-
dependent cycles or CDCs. The energy consumed by 
unnecessary BTB accesses depends on how often CFCs 
occur.  

Figure 1 reports CFC frequency for processors with 
different execution bandwidths and for the subset of SPEC 
CPU2000 used in this work. As presented, CFC frequency 
is high for different execution bandwidths.  
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Fig. 1.  CFC frequency for different applications and for 

different execution bandwidths 
We conclude from Figure 1 that there is an opportunity 

to reduce BTB power dissipation by identifying CFCs and 
avoiding accessing BTB for them. 

An alternative approach to avoid BTB accesses during 
CFCs is to use a pre-decoder to identify control flow 
instructions. This, unfortunately, can result in extra delay. 
Previous work shows that increasing predictor latency 
significantly erodes performance1. Therefore, any design 
choice resulting in increasing branch predictor delay, is 

                                                
1 The trend is exemplified by the AMD processor family. The 
AMD-k6 used a highly accurate 8k-entry GAs branch predictor. 
The newer AMD Althon uses a less accurate but faster 2k-entry 
branch predictor [5].  Accordingly, AMD has sacrificed higher 
predictor accuracy (and therefore energy efficiency [2]) for faster 
clock rate. 

probably not a good choice [4]. To address this problem, 
SABA avoids increasing prediction latency by making 
decisions regarding BTB usage in future cycles. SABA 
aims at identifying CFCs at least one cycle in advance and 
therefore does not impact critical path delay. Hence, it does 
not increase overall prediction latency.  
3 SABA Architecture 
SABA aims at predicting CFCs at least one cycle before 
they occur. Accurate CFC prediction enables us to prevent 
unnecessary BTB accesses. Figure 2 shows SABA�s block 
diagram including the SABA-filter used to eliminate 
unnecessary BTB accesses. 

 
Fig. 2.  SABA architecture  

SABA consists of a small global history shift register 
(GHR). This register represents the history of CDCs and 
CFCs. Throughout this paper we refer to the length of this 
register as GHR-size. The bigger the GHR-size is, the more 
we know about past history.  

We use zeros and ones to represent CFCs and CDCs in 
the GHR respectively. We use the GHR value to access an 
entry in the PHT (Prediction History Table). Every PHT-
entry contains an n-bit saturating counter with a maximum 
value of Sat. We increment the counter when a CFC is 
detected. We decrement the counter if the fetch cycle is a 
CDC.  

At fetch, we use the recent fetch history to probe the 
counters. We use the counter value to speculate whether the  



 
Fig. 3. (a) Control free cycle predictor lookup.     (b) Control free cycle predictor update. 

 
next cycle is a CFC. A saturated counter in PHT indicates 
that the next cycle is probably a CFC (see Figure 3(a)).  
We update the SABA-filter every cycle and as soon as we 
know whether there has been a control flow instruction 
among those fetched (see Figure 3(b)). This is possible at 
decode and after instructions are decoded. One possible 
way to correct CFC mispredictions, upon finding a control 
flow instruction among the decoded instructions, is to 
update the SABA-filter entry associated with the time the 
instruction was fetched. This can be done by approximating 
this time by shifting the most recent global history by 3 bits 
(assuming that fetch latency is 3 cycles). 

 
TABLE 1: Simulated processor configuration 

Processor Core 
Instruction Window 
Fetch Width 
Issue Width 
 
Miss pred. Penalty 
Fetch Buffer 
Functional Units 
 

RUU= 128; LSQ=32 
Upto 8 Instruction per cycle; 
4 Instruction per cycle; 
4 integer, 4 FP 
6 cycle 
64 entries 
4 Int ALU, 4 Int mult/div 
4 FP ALU, 4 FP mlt/div, 2 mem prt 

Memory Hierarchy 
L1 D-cache Size 
L1 I-cache Size 
L1 latency 
L2 
 
Memory latency 
D-TLB/I-TLB Size 
 

64 KB, 4-way, 32B blocks, wr bk 
64 KB, 4-way, 32B blocks, wr bk 
3 cycle 
Unified, 512KB, 4-way LRU 
64B blocks, 16-cycle Latency, wr bk 
80 cycles 
128/64-entry, fully assoc.,  
30-cycle miss  

Branch Prediction 
BTB 
Direction Predictor 
Return-address-stack 

512-entry, 4-way 
Combined predictor, 32K entries 
64-entry 

 
4 Methodology and Results 
In this section, we present our methodology and evaluate 
SABA. We report how variations in SABA-filter 
configuration, branch predictor configuration, and 
processor execution bandwidth impact performance, BTB 
access frequency and power dissipation reduction. We used 

programs from the SPEC CPU2000 suite compiled for the 
MIPS-like architecture used by the Simplescalar v3.0 
simulation tool set [6]. We detail the base processor model 
in table 1.  

To evaluate our technique, we used a modified version of 
Wattch toolset [3]. We report both accuracy (i.e., how 
often we accurately predict a CFC) and coverage (i.e., what 
percentage of CFCs are accurately identified) for a wide 
range of filter sizes (from 2 to 64 PHT entry). 

 
Table 2: Energy consumed per access for branch 

predictor units and the SABA-filter. 
Modeled Unit Size Percentage 
SABA 32 x 3 < 0.25% 
BTB 512 x 4-way 60.2% 
Comb. dir. 
Predictor 

32k x 3 (LHT) 
32k x 2 (GHT) 
32k x 2 (sel.) 

33.91% 

RAS 64 (entry) 5.64% 
 

Provided that a sufficient number of CFCs are accurately 
identified, SABA has the potential for reducing BTB 
energy consumption. However, it introduces extra energy 
overhead and can increase overall energy if the overhead 
exceeds savings. To estimate the relevant process 
parameters, including the power overhead associated with 
SABA, we used the process scaling methodology 
developed for CACTI [7] that is incorporated in WATTCH. 
We report relative energy consumed per access by a typical 
(i.e., 32-entry) SABA filter and other structures used in the 
branch predictor in Table 2. We report energy consumption 
for each structure compared to the energy consumed by a 
branch predictor equipped with a 32k-entry hybrid 
predictor, a 4-way, 512-entry BTB and a 64-entry RAS. As 
reported the overhead of the typical SABA filter is far less 
than the energy consumed by the BTB. Nonetheless, we 
take into account this overhead in our study. 

 
4.1   Accuracy and Coverage 

In Figure 4 we report average prediction accuracy and 
coverage for SABA for the SPEC�2K applications studied  
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Fig. 4. Average accuracy and coverage achieved for different SABA-filter configurations and for the SPEC2k benchmarks 
studied here. For each GHR-size (x-axis) bars from left to right report for 2-, 3- and 4-bit saturating counters. 
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Fig. 5. Average BTB power reduction and performance loss for different SABA-filter configurations and for the SPEC2k 
benchmarks studied here. For each GHR-size (x-axis) bars from left to right report for 2-, 3- and 4-bit saturating counters for 
different configuration of suggested predictor. 

in this work. In 4(a) we report average accuracy for different 
GHR-sizes (i.e., 1 to 6) and saturating counters (i.e., 2, 3 and 
4-bit counters). As reported we predict CFC cycles with an 
accuracy varying from 74% to 88% for different SABA-filter 
configurations. 

 Note that mistaking a CFC for a CDC does not harm 
performance as it only results in unnecessary BTB access. 
However, mispredicting a CDC as a CFC, can result in late 
target address identification and comes with an extra cycle 
penalty in our study. 

 In 4(b) we report what percentage of CFCs is identified. 
We identify between 25% and 61% of CFCs for different 
SABA configurations.  

We conclude from Figure 4 that with a fixed GHR-size, 
increasing saturation threshold will generally increase 
accuracy but reduce coverage. With a fixed counter size, 

increasing the GHR-size does not always improve accuracy 
or coverage. A small GHR-size results in recording very little 
history, whereas larger GHR-sizes may result in mapping 
small repeating patterns to different SABA-filter entries 
which may result in a longer SABA learning period.  

4.2 Power and Performance 
We report BTB power reduction and processor performance 
loss in Figure 5. We use the same set of parameters used in 
Figure 4. BTB power reduction varies between 6 and 15% for 
different SABA-filter configurations. Average performance 
loss is below 1.5% for all configurations.  For a fixed GHR-
size larger saturation threshold comes with lower 
performance loss but at the expense of reduced power 
savings.  For a fixed counter size, increasing the GHR-size 
almost always improves BTB power reduction. The only 
exception is when we increase the size from three to four. We 



conclude from Figure 5 that the best GHR-size or history 
length to consider in predicting application behavior is 
different from one application to another. This is consistent 
with other studies [14]. 
4.3 Sensitivity Analysis 
In this section we report SABA�s BTB power reduction and 
performance cost for different branch predictors and for 
processors with different execution bandwidths.  
4.3.1 Branch Predictor Configuration  
To investigate how SABA impacts power and performance 
for different branch predictor configurations, we study the 
following combined branch predictor [8] configurations: a) 
2k-entry gshare, bimodal & selector BTB: 256-entry, 4-way 
b) 4k-entry gshare, bimodal & selector BTB: 512-entry, 4-
way c) 8k-entry gshare, bimodal & selector BTB: 512-entry, 
4-way and d) 32k-entry gshare, bimodal & selector BTB: 
512-entry, 4-way.  
The gshare predictor used in all predictors uses 6-bit history. 

We assume a GHR-size of 6 bits and 3-bit saturating 
counters. This requires using a 64-entry PHT where each 
entry is a 3-bit counter (192 bits total). We select this 
configuration as it results in considerable power reduction 
while maintaining performance within acceptable limits.   

In Figure 6, we report performance and BTB power 
reduction for the four configurations. As reported variations 
in predictor and the BTB size have very little impact on our 
results. Mesa and art show higher BTB power reduction 
compared to other benchmarks. This is consistent with the 
data reported in Figure 1 where both benchmarks show higher 
number of CFCs compared to other applications.  

Note that in the case of mesa we witness a small (less than 
0.1%) performance improvement. Our study shows mesa 
achieves better performance as the result of better prediction 
for indirect jump instructions. Art, on the other hand, shows 
the highest performance loss among all applications. This can 
be explained by the fact that SABA does not predict CFCs 
occurring in art as accurately as other applications.  
4.3.2 Execution Bandwidth  
In Figure 7, we report BTB power reduction for four different 
pipeline execution bandwidths. To provide insight we also 
report maximum power reduction possible as achieved by a 
perfect CFC predictor (Oracle). While the entire bar shows 
maximum power reduction possible, the lower part in each 
bar reports power reduction achieved by a 64-entry SABA-
filter using 3-bit counters.  In a narrow pipeline, e.g., the 2-
way processor, fewer instructions are fetched each cycle. 
With fewer fetched instructions, there is lower chance of 
having a control flow instruction among those fetched. 
Hence, CFCs are more frequent. Consequently, there is 
higher chance for BTB power reduction by using SABA. This 
explains why BTB power reduction is higher for the 2-way 
processor.   As the processor bandwidth increases so does the 
number of fetched instructions. Therefore, CFCs become less 
frequent and so does the BTB power reduction achieved by 
SABA. 
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Fig. 6. Average BTB power reduction and performance loss 

for different branch predictor and BTB size. 
We conclude from Figure 7 that SABA eliminates more 

than half of the unnecessary BTB accesses across all 
execution bandwidths.  Note that this comes with negligible 
performance cost.  
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Fig. 7. Maximum BTB power reduction (entire bar) and BTB 
power reduction achieved by SABA (lower bar) for 
processors with different execution bandwidths.  

5 Related Work 
Previous work has introduced Banking and prediction probe 
detector (PPD) [2] to reduce predictor or BTB energy 



consumption. Banking reduces the active portion of the 
predictor. Predictor Probe Detection (PPD) [2]  reduces 
branch predictor energy consumption. PPD aims at reducing 
the power dissipated during predictor lookups. PPD identifies 
when a cache line has no conditional branches so that a 
lookup in the predictor buffer can be avoided. Also, it 
identifies when a cache line has no control-flow instruction at 
all, so that the BTB lookup can be eliminated. SABA can be 
used on top of banking to further reduce power dissipation. 
SABA is different from PPD as it does not impact timing 
complexities and makes decisions regarding BTB accesses 
occurring at future cycles. 

 Chung and Park proposed modifications to the branch 
predictor to perform early PHT access to predict BTB access 
[1].  Our work is different as it is independent of the branch 
predictor implementation and relies on fetch history to make 
predictions. 

Baniasadi and Moshovos introduced Branch Predictor 
Prediction (BPP) [12] and Selective Predictor Access 
(SEPAS) [13] to reduce branch predictor energy 
consumption. BPP stores information regarding the sub-
predictors accessed by the most recent branch instructions 
executed. This information is used to avoid accessing all 
three underlying structures. SEPAS selectively accesses a 
small filter to avoid unnecessary lookups or updates to the 
branch predictor. Our method is different from BPP and 
SEPAS as we focus on the BTB lookups.  

Chaver et al, [10] used profiling to resize large BTB 
structures whenever reducing size does not impact the BTB 
miss rate. Hu et al, reduce leakage power in direction 
predictors [9]. They turn off cache lines if they have not been 
used in a long time.  Monchiero et al, introduced a new Hint 
instruction to help identifying static branches and to reduce 
prediction power [11].  Our work is different as we use 
runtime information to avoid unnecessary BTB accesses.  
6 Conclusion 
In this work we presented SABA, a power-aware extension to 
high-performance processors, to identify and avoid 
unnecessary BTB accesses. SABA relies on a small filter 
referred to as the SABA-filter to record instruction fetch 
history.  We used the recorded information to identify cycles 
where there is no control flow instruction among those 
fetched.  

We studied how variations in SABA-filter configuration, 
branch predictor configuration and processor execution 
bandwidth impact power and performance. We eliminated 
more than half of the unnecessary BTB accesses with 
negligible performance cost. SABA does not impact predictor 
delay as it stops unnecessary accesses occurring in future 
cycles.     
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