
ABSTRACT
 We use value prediction to improve processor per-

formance by speculating the trivializing operands in
trivial instructions. Trivial instructions are those
instructions whose output can be   determined without
performing the actual computation. We show that it is
possible to predict the trivializing operand in a trivial
instruction with high confidence. As such, we produce
trivial instruction results earlier than when they
become available in a conventional processor. More-
over, we use the speculated operands to bypass execut-
ing trivial instructions. Consequently, we further
reduce program execution time. 

Our study shows that by using our technique and
for the representative subset of SPEC’2K benchmarks
studied here, it is possible to improve performance by
up to 8.6% over a conventional processor. 

1. INTRODUCTION

In this work we use value prediction selectively to
speculate trivializing values and to break true depen-
dencies for trivial instructions. A trivial instruction is
an instruction whose output can be determined without
performing the actual computation. For such instruc-
tions, we can determine the results immediately based
on the value of one or both of the source operands.
Examples are multiply or add instructions where one of
the input operands is zero. 

Determining the trivial instruction result without
performing the computation will result in faster instruc-
tion execution. This, consequently, could result in ear-
lier execution of those instructions depending on the
trivial instruction output. This is, of course, if the
required resources (functional units, ports, etc.) are
available for the depending instructions. 

 We assume a typical load/store ISA where each
instruction may have up to two source operands. We
refer to the operand which trivializes the operation as
the trivializing operand (TO). Examples of TOs are the
operand equal to zero in an add operation or the oper-
and equal to one in a multiplication. We refer to the
other operand, (e.g., the non-zero operand in the add

operation, or the operand not equal to one in the multi-
plication) as the non-trivializing operand (NTO). 

 Yi and Lilja [8] show that detecting and eliminating
trivial instructions dynamically can reduce the pro-
gram’s execution time. They identify trivial computa-
tions dynamically and improve performance by
bypassing or simplifying them. Our study shows that
simplifying instructions (e.g., replacing a multiplication
with a shift operation if the multiplicand is a power of
2) does not impact performance considerably. This is
due to the fact that simplifiable instructions are infre-
quent and therefore do not contribute to performance as
much as bypassable instructions do. Therefore in this
study we focus on bypassing trivial instructions.

Yi and Lilja [8] also show that an optimizing com-
piler is often unable to remove trivial operations. This
is the result of the fact that trivial values are not known
at compile time. They also show that the amount of
trivial computations does not heavily depend on pro-
gram specific inputs.

Identifying trivial instructions dynamically is possi-
ble as soon as the TO and the instruction opcode are
known. However, computing the result may not always
require knowledge of both source operands. In some
cases, e.g., multiplying by zero, we do not need both
operands to compute the result. Under such circum-
stances, the result will not depend on the other operand
value. In other cases, e.g., addition to zero, both oper-
ands are needed. We refer to those trivial instructions
whose output could be calculated knowing only one of
the operands as full-trivial instructions. We refer to
those trivial instructions whose result could be com-
puted only after knowing both operands as half-trivial
instructions. Our study shows that half-trivial instruc-
tions account for the majority of trivial instructions.

Table 1 reports full- and half-trivial computations
studied in this work. We report both the operation and
the particular source operand value that will result in
trivializing the operation. It is possible to extend our
study further to include other instruction types (e.g.,
ABS). However, this will not impact our results as such
instructions are very infrequent.
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Generally, computing trivial instruction results,
while unnecessary, consumes available resources and
results in extra latency. Therefore, bypassing the com-
putation and obtaining the result without performing
the computation will improve performance. Addition-
ally, and in the case of full-trivial instructions, both per-
forming the computation and obtaining the NTO are
unnecessary.

The goal of this work is to use TO value locality to
speculate the TO and improve processor performance
by effectively bypassing both full- and half-trivial com-
putations.

In particular, by predicting the TO, we perform the
following:
• We execute full-trivial instructions as soon as the TO

is speculated. Consequently, when the NTO is still
not available, we do not wait for its availability.

• We execute half-trivial instructions as soon as the
NTO is known. In other words, we wait for the NTO
but speculate the TO.

Based on the above, we use value prediction to
speculate trivial operands and produce trivial instruc-
tion results earlier than when they would have been
produced in a conventional superscalar processor.

Provided that a sufficient number of trivial operands
are accurately identified, we can potentially improve
processor performance. However, possible mispredic-

tions can increase overall program runtime. We take
this overhead into account in our study and report how
it impacts performance. 

In summary, we make the following contributions:
• We show that trivializing operands are good candi-

dates for value prediction.
• We show that it is possible to improve processor per-

formance by using value prediction to identify and
bypass trivial operations effectively. 

The rest of the paper is organized as follows. In
Section 2 we explain TO prediction in more detail. In
Section 3 we explain implementation. In Section 4 we
present our experimental evaluation. In Section 5 we
review related work. Finally, in Section 6, we summa-
rize our findings and offer suggestions for future work.

2. TRIVIAL OPERAND PREDICTION 

The result of a trivial operation could be either one
of the source operands or zero or one (e.g., operations
reported in Table 1). Trivial instruction frequency
impacts potential benefits of trivial operand specula-
tion. Therefore, in order to decide if detecting and
bypassing trivial operations is worthwhile we need to
know how frequently they appear in the code stream. In
Figure 1 we report trivial instruction frequency. In addi-
tion, and to provide better insight we also report both
full- and half-trivial instruction frequency for the subset
of SPEC’2k benchmarks studied here. While the entire
bar represents total trivial instructions, the lower part of
each bar shows the frequency of half-trivial instructions
and the upper part represents full-trivial instructions. 

As represented by the entire bar, on average, trivial
instructions account for 13% of the total instructions.
Mcf, art and vpr have higher number of trivial instruc-
tions compared to others. Amm has the lowest number
of trivial instructions.

In general half-trivial instructions outnumber full-
trivial instructions. Full-trivial instructions may
account for as much as one third of the total number of
trivial instructions (e.g., art). Meantime they may
account for as little as 1% of the total trivial instruc-
tions (e.g., bzp). On average, about 90% of the trivial
instructions are half-trivial while the remaining 10%
are full-trivial instructions. 

As reported in Table 1, different instruction types
can be trivial depending on their source operand values.
However the trivial instruction frequency is different
from one instruction type to another. 

Figure 2 reports how often each instruction type is
trivial. With the exception of sub and and at least 20%
of each instruction type is trivial. In cases such as mult,
div, or and fadd trivial instructions account for more
than half of the instructions. However, note that a high

Table 1: Full- and half-trivial instructions studied in this 
work

Operation Full Triviality Condition

Multiplication: A*B A=0 or B=0

Division: A/B A=0

AND: A & B A=0x00000000 or 
B=0x00000000

Logical Shift: A<<B,A>>B A=0 

Arithmetic Shift: A<<B, A>>B A=0 or A=0xffffffff 

OR: A | B A=0xffffffff or B=0xffffffff

Operation Half Triviality Condition 

Addition: A+B A=0 or B=0

Subtraction: A-B B=0 or A=B

Multiplication: A*B A=1 or B=1

Division: A/B B=1 or A=B

AND A & B A=0xffffffff or B=0xffffffff 
or A=B

OR: A | B A =0x00000000 or 
B=0x00000000 or A=B

XOR: A XOR B A or B =0x00000000 or 
0xffffffff

Logical Shift: A<<B,A>>B B=0

Arithmetic Shift: A<<B, A>>B B=0



percentage of trivial instructions for a specific instruc-
tion type does not always mean that the particular
instruction type will have a considerable impact on per-
formance. For example, while 90% of the multiplica-
tions appear to be trivial, they only account for less than
2% of the total number of instructions executed.   

In general, improving performance by predicting
the trivial operands requires accurate and early value
prediction. Nonetheless, accurate prediction of trivial
values does not always result in better performance. To
be precise, there is a group of trivial operands, i.e., non-
critical trivial values in half-trivial instructions, whose
accurate and early predications do not improve perfor-
mance. Between the two source operands of each
instruction the non-critical operand is the one which
becomes available sooner than the other. Since it is
impossible to know the half-trivial instruction outcome
before both operands are known, speculating non-criti-
cal trivial operands does not improve performance. In
such cases, the processor has to wait for both operands
before it can start instruction execution. As such, no
matter how early and accurately we predict the non-

critical operand, we will not reduce the program execu-
tion time. 

 Quite often, the sooner the critical operand is avail-
able the shorter the program execution time will be.
However, executing an instruction not only requires
available operands but also it is subject to resource
availability. 

 One alternative to TO prediction is to speculate
both the TO and the NTO in a trivial instruction to
improve performance possibly even more. This would
have been an attractive alternative if speculating the
non-trivial operand as accurately as the trivial operand
was easily possible. Unfortunately, this is not the case.
Figure 3 reports value locality for both the TOs and the
NTOs for the benchmarks studied here. Note that value
locality describes the likelihood of the recurrence of a
previously seen value within a register. Here we report
value locality for a history depth of one, i.e., we report
how often the retrieved operand matches the most
recently seen value. As reported, across all bench-
marks, the TOs show higher value locality compared to
the NTOs. On average, TOs and NTOs show 93% and
60% value locality respectively. Accordingly, we do not
find speculating the NTOs as reliable since there is
much higher confidence in the TOs as they show much
stronger value-locality. As such, speculating both
source operands will result in too many misspecula-
tions which will ultimately harm performance. There-
fore, in general, trivial operands are better candidates
for value prediction. 

 Value speculation can potentially result in misspec-
ulation. In this work, we flush all instructions after the
misspeculated instruction and refetch instructions from
the cache starting from the instruction immediately
after the misspeculated instruction.

3. IMPLEMENTATION

To implement our technique, at decode, the inputs
of potentially trivial instructions are predicted. If the
instruction is predicted to be a trivial one, the rename
table is modified so it maps the destination register to
the physical register assigned to the input source oper-
and or to the zero register. Consequently instructions
depending on the destination operand of a trivial
instruction do not need to wait. 

Since we are modifying the renaming table specula-
tively we also need to change the checkpointing
scheme so we can recover from possible value mispre-
dictions properly. To recover form value mispredictions
we checkpoint both the RAT and the read pointer of the
free list upon speculating a trivializing operand. When
the instruction producing the trivializing operand com-
pletes we check the speculated source operand. In case

Figure 1: Trivial instruction frequency and distribution:
The entire bar represents trivial instruction frequency.
The lower part shows half-trivial instruction frequency
while the upper part shows full-trivial instruction
frequency. (See Table 2 for benchmark abbreviations) 

Figure 2: How often each instruction type is trivial.
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a value misprediction is detected, we restore the associ-
ated checkpoint.

 

4. METHODOLOGY AND RESULTS

In this Section, we report our analysis framework.
To evaluate our technique, we compare our suggested
design‘s performance with a conventional processor. 
• We report performance for a 512-entry last-value

[3,4] predictor. We picked a 512-entry predictor after
testing different predictor sizes. We have observed
that further increases in the predictor size does not
result in improving our technique. 

• We also report performance for a processor which
bypasses trivial instructions but, unlike our suggested
design, does not speculate the trivial source oper-
ands. 

 As we need to know the instruction type to perform
trivial value prediction, unlike many studies [1,3,9,10]
we do not perform value prediction at fetch. Rather, we
perform value prediction after the instruction is
decoded.

We used both floating point (amm, art and swm) and
integer (gzp, vpr, gcc, mcf, prs and bzp) programs from
the SPEC CPU2000 suite compiled for the MIPS-like
PISA architecture used by the Simplescalar v3.0 simu-
lation tool set [6]. The benchmark set studied here
incudes different programs including high and low IPC
and those limited by memory, branch misprediction,
etc.

We used GNU’s gcc compiler (flags: -O2 –fun-
roll-loops –finline-functions). In the interest of
space, we use the abbreviations shown under the “Ab.”
column in Table 2. We simulated 200M instructions
after skipping 200M instructions. We detail the base
processor model in Table 3.

4.1. Performance

In Figure 4 we report performance improvements
achieved by trivial value prediction over a conventional

processor. Our processor uses value prediction on top
of trivial value detection to bypass trivial instructions
whose trivializing source operand is not available at
decode time. 

To investigate if speculative trivial operand bypass-
ing is worthwhile, we also report the performance
improvement achieved by a processor which bypasses
trivial instructions but does not use value prediction to
identify trivial operands.   Bars from left to right report
performance improvement for a processor which
bypasses trivial instructions without speculating TOs
(referred to as non-speculative bypass) and a processor
which uses a 512-entry last-value predictor over a con-
ventional processor respectively. 

Table 2: Benchmark abbreviations used here

Program Ab.

164.gzip gzp
171.swim swm
175.vpr vpr
176.gcc gcc
179.art art
181.mcf mcf
188.ammp amm
197.parser prs
256.bzip2 bzp

Figure 3: Value locality for the NTOs (left) and the TOs 
(right) in trivial instructions.

Table 3: Base processor configuration. 

Integer ALU #  2

FP ALU #  2

Integer Multipliers/Dividers 
#

 1

FP Multipliers/Dividers #  1

Instruction Fetch Queue #  32

Reorder Buffer Size  64

Load/Store Queue Size  32

 Branch Predictor 8K GShare+8K bi-modal w/ 8K 
selector

Scheduler 64 entries, RUU-like

Fetch Unit Up to 4 instr./cycle.
64-Entry Fetch Buffer

OOO Core any 4 instructions / cycle

L1 - Instruction Caches 64K, 4-way SA, 32-byte blocks, 
3 cycle hit latency

L1 - Data Caches 32K, 2-way SA, 32-byte blocks, 
3 cycle hit latency

Unified L2 256K, 4-way SA, 64-byte blocks, 
16-cycle hit latency

Main Memory Infinite, 80 cycles

Memory Port #  2
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As reported, processors using non-speculative
bypass and last-value TO prediction improve perfor-
mance by 6.8% and 8.6% over a conventional proces-
sor respectively. 

Performance improvement is higher for art and vpr
compared to other benchmarks when trivial instructions
are bypassed. Meantime minimum performance
improvement achieved by bypassing trivial instructions
is observed for amm. This may be explained by the data
presented in Figure 1 where vpr and art have high num-
ber of trivial instructions while amm has the lowest
number of trivial instructions. 

Note that there is an average performance gap of
about 1.8% between the processor identifying trivial
instructions speculatively and the processor that does
not use speculation to identify trivial instructions. Spec-
ulative trivial instruction identification seems to be
more effective for vpr and art where the performance
improvement is higher over the non-speculative proces-
sor. On the other hand, speculating TOs seems to have
little impact on performance for amm, mcf, prs and bzp.
Improving the performance of the speculative proces-
sor may be possible by using more complex value pre-
dictors such as those suggested in [5,9,11,12,13,14]. 

The insignificant performance improvement
achieved over the non-speculative bypassing processor
for amm, mcf, prs and bzp could be explained as fol-
lows. While low predictor accuracy explains the small
improvement achieved for prs a second factor needs to
be considered to explain the results for amm, mcf and
bzp. Our study shows that the second factor contribut-
ing to low performance for these benchmarks is the fact
that for these three benchmarks TOs are mostly ready at
the time of instruction decode and very rarely need to
be speculated. As such, exploiting even more accurate
predictors will not impact performance considerably.
One possible way to improve performance for these
benchmarks is to change our prediction scheme so
value prediction could be done at instruction fetch. This
would require storing information regarding instruction
opcode in our value predictor. 

Currently and as part of our ongoing research we
are investigating how exploiting more accurate value
predictors and different timing schemes could impact
performance for our technique

.

5.  RELATED WORK

Yi and Lilja [8]dynamically identified and bypassed
trivial instructions. In this work we used value predic-
tion on top of their technique to identify and execute
trivial instructions that cannot be detected by their tech-

nique as the trivializing value is not available at decode
time. 

Many studies have suggested different approaches
for data value prediction. These approaches include last
value prediction [3,4], stride prediction [9,11], context
prediction [5,12], and hybrid predictors [13,14]. In this
work we use the last value predictor.

Value prediction has proven to be efficient if per-
formed with high accuracy. However, achieving high
prediction accuracies could be costly. While many stud-
ies have introduced highly accurate value predictors
[12,13,14], there are a few which have addressed the
cost, i.e., access latency and energy, associated with
value prediction (e.g., [7]).   One way to reduce the cost
and complexity associated with value prediction is to
use it selectively and only for those values that there is
high confidence in their behavior. 

Calder et al. [1] examined selective techniques for
using value prediction in the presence of predictor size
restrictions and misprediction penalties. They used fil-
tering to exploit value prediction only for instructions
on the longest data dependence path. Consequently
they minimized capacity conflicts. We selectively use
value prediction for trivial instructions as we have
observed that trivial values make excellent candidates
for selective value prediction since they are highly pre-
dictable and show strong value locality and appear fre-
quently.    

 Bhargava and John [7] introduced latency and
energy aware value prediction. Their study showed that
the latency of a high-performance value predictor can-
not be completely hidden by the early stages of the
instruction pipeline as many studies have assumed and
can result in noticeable performance degradation. To
address this problem they studied a value prediction
approach that combined the latency-friendly approach

Figure 4: Bars from left to right report performance
improvement achieved by using non-speculative bypass
and last-value TO prediction over a conventional
processor. 
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of decoupled value prediction with a more energy-effi-
cient implementation. 

Tran et al. evaluated dynamic methods to reduce
pressure on the register file. They explored the impact
of bypassing trivial instructions on the register file
pressure [15]. We used their implementation of register
remapping to bypass trivial instructions in this study.

Sato and Arita proposed techniques that exploit fre-
quent value locality, resulting in budget reduction.
They evaluated two value predictors(i.e., the zero-value
predictor and the 0/1-value predictor) [16]. Their low-
cost 0/1 predictors could be used for trivial value pre-
diction. 

6. CONCLUSION

In this work we showed that it is possible to
improve performance by using value prediction to
speculate the trivializing operand of trivial instructions.

We showed that by using our technique it is possible
to improve performance over a conventional processor.
We also showed that it is possible to improve perfor-
mance over a processor that bypasses trivial instruc-
tions without speculating the operands for some of the
benchmarks studied here. We also provided insight as
to why performance does not always improve over a
processor using non-speculative trivial instruction
bypass. 

Our study shows that by using a last-value predic-
tor, on average, we can improve performance over a
conventional processor by 8.6%. 

Possible future extensions to our work include
examining how exploiting different and possibly more
accurate value predictors impact our technique and
using value prediction to speculate trivial instruction
destination operand (instead of source operands studied
here).
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