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Abstract—A methodology for the design of recursive digital fil-
ters having nearly linear phase response is proposed. The under-
lying design method is of the direct type whereby the filter is de-
signed as a single unit. The design problem is formulated as a cas-
cade of filter sections where each section is represented by a bi-
quadratic transfer function either in the conventional polynomial
form or in the polar form. The design problem is then solved using
a constrained Newton’s method whereby constraints are used to
assure the stability of the filter, to control the step size in order
to achieve fast convergence, and to eliminate a real-axis pole-mi-
gration problem that often interferes with the design process. Sev-
eral design examples demonstrate that when compared with fil-
ters designed using existing state-of-the-art methods, the proposed
methodology yields filters having reduced order and/or improved
performance.

Index Terms—Recursive digital filters, infinite-impulse response
(IIR) digital filters, nearly linear-phase filters, constant-delay
filters.

I. INTRODUCTION

R ECURSIVE (IIR) digital filters are often used because
high selectivity can be achieved with a significantly lower

filter order than that required by nonrecursive (FIR) filters sat-
isfying the same specifications. However, high selectivity is
accompanied by an often undesirable nonlinear phase response
which corresponds to a varying group delay with respect to
frequency. A nonlinear phase response would thus result in
temporal skewing of the various frequency components of the
signal. Such signal distortion, usually referred to as phase or
delay distortion [1] can cause audible artifacts in audio signals,
difficulties for symbol detection in communication systems, or
skewed and blurred features in images.

In some applications, phase response is unimportant. For
such applications, a fairly large choice of methods is available
to the filter designer ranging from closed-form methods based
on the classical analog-filter approximations (see [1, Ch. 12])
to optimization methods of all kinds. In [1, Ch. 16], uncon-
strained algorithms of the quasi-Newton family are used in a
least- th formulation. Filter stability is achieved by means of
a well-known stabilization technique whereby poles outside
the unit-circle of the plane are replaced by their reciprocals.
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MATLAB® function iirlpnorm in [2] implements an uncon-
strained least- th quasi-Newton algorithm of the type found
in [1]. On the other hand, MATLAB® function iirlpnormc in
[2] implements a least- th Newton method that uses barrier
constraints to assure the stability of the resulting filter. A
more recent method reported in [3] uses a constraint transcrip-
tion method to achieve an efficient solution of a non-smooth
non-convex objective function with continuous functional
constraints. Since there is no restriction on the resulting phase
response, these methods generally yield a better magnitude
response than methods that also optimize the phase response.

In other applications, it is important to have linear or nearly
linear phase response in addition to a prescribed magnitude re-
sponse. If an absolutely linear phase response over the entire
baseband is, for some reason, required, then a nonrecursive de-
sign must be used. However, in most practical applications a
nearly linear phase response with respect to passbands is more
than adequate considering that signals in stopbands are gen-
erally deemed to be noise, and introducing delay distortion in
noise is of no consequence. The classical method for designing
recursive filters with nearly linear phase response with respect
to passbands is the equalizer approach whereby a recursive filter
that would satisfy the magnitude response specifications is first
designed by some means and then a delay equalizer in the form
of an allpass filter is designed to compensate for the fluctua-
tions in the group delay of the recursive filter with respect to
passbands [1], [4], [5]. An approach for the design of equal-
izers using a constrained least- th primal active-set method is
described in [6] and a MATLAB® function iirgrpdelay which
implements a constrained Newton method that can be used to
design arbitrary delay equalizers can be found in [7].

A great variety of other methods have also been used for the
design of recursive filters having nearly linear phase response.
In a method described in [8], filter stability is assured by an
apparently heuristic method whereby the step size is halved
during each iteration. In [9], a Gauss–Newton method is used
in conjunction with a multiple exchange method and Rouchés
theorem to assure the stability of filters optimized to meet pre-
scribed magnitude and phase responses. The weighted integral
of the squared-error method in [10] allows the inclusion of
stability constraints with the magnitude constraints. Another
method reported in [11] uses a convex stability domain so that
the problem can be solved using semidefinite programming.
In [12] a so-called -power error criterion is proposed and is
then optimized using quadratic programming; this approach is
then applied for the design of one- and two-dimensional digital
filters. In [13], a globally-optimal solution for a recursive filter
having a prescribed group delay is found using polynomial
optimization. The constrained optimization problem is simpli-
fied in [14] by using an argument-based stability criterion that
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results in a single integer-valued constraint. In [15], a design
technique of the model-reduction family is described whereby
second-order cone programming is used to minimize an appro-
priate objective function. With this technique, IIR filters that
satisfy prescribed passband and stopband magnitude-response
specifications can be designed.

In this paper, a new methodology for the design of recursive
filters with nearly linear phase response is proposed. The
underlying method is of the direct type whereby the filter is
designed as a single unit in such a way as to achieve prescribed
magnitude-response specifications on the one hand and nearly
flat group-delay characteristic with respect to passbands on
the other while keeping the filter order as low as possible. The
problem is formulated as a constrained quadratic programming
problem and is solved using an optimization engine based on
Newton’s method. Two different forms of the transfer function,
namely, a polynomial and a polar form, are explored and the
two are then compared. The paper deals with several practical
issues associated with the design of recursive digital filters in
general such as initialization and the handling of stability and
step-size constraints to achieve stability on the one hand and to
achieve fast convergence on the other. The paper also deals with
a real-axis pole-migration problem that often interferes with the
design process. Numerous real-life designs have shown that the
proposed methodology leads to a significant reduction in the
filter order required to satisfy arbitrary specifications imposed
on the magnitude-response and group delay relative to corre-
sponding designs obtained by some of the existing state-of-the
art methods including the classical equalizer approach.

The paper is organized as follows. Section II deals with the
problem formulation and Sections III and IV deal with the
polynomial and polar formulations, respectively. In Section V,
practical issues pertaining to initialization and termination
criteria are investigated. The polynomial and polar formula-
tions are compared in Section VI. Typical design examples and
results are reported in Section VII and conclusions are drawn in
Section VIII. Appendixes A – C provide closed-form formulas
for the gradient vector, Hessian matrix, and for the required
constraints.

II. PROBLEM FORMULATION

Recursive digital filters are often realized in terms of a cas-
cade arrangement of second-order biquadratic sections in order
to achieve reduced sensitivity to roundoff errors. The transfer
function of an -order filter of this type can be represented in
the classical polynomial form [1]

(1)

where

(2)

is the number of filter sections, is the filter order,
and is a positive multiplier constant. An odd-order transfer
function can be obtained by including a first-order section. The
transfer-function coefficients are assumed to be real.

Following the approach described in [16], the transfer func-
tion can be expressed in the so-called polar form as

(3)

where the and are the zero and pole radii and and
are the corresponding angles in the plane, respectively,

and

(4)

Although (1) and (3) are equivalent, there are, nevertheless,
significant differences when performing the optimization, no-
tably in the evaluation of the constraint matrices. Consequently,
the performance of the optimization algorithm as well as that of
the resulting digital filters can be affected as will be discussed in
Section VI. The two formulations are developed in Sections III
and IV below.

The filter design problem is formulated as a quadratic pro-
gramming problem of the form

(5)

where is the vector of optimization parameters and matrix
and vector represent linear constraints. This problem is solved
by using a constrained Newton’s method [17], [18]. In addition
to , and , Newton’s method requires the objective function

, the gradient vector , and the Hessian matrix ;
the last two items will be referred to simply as the gradient and
Hessian, respectively, hereafter.

The optimization algorithm minimizes the approximation
error over a set of frequencies
where is sufficiently large to ensure that the discretized
problem is a good approximation of the corresponding con-
tinuous problem. Frequencies can be chosen by using the
nonuniform adaptive sampling technique proposed in [19].
This technique is described in some detail in Section VII.

The approximation error at frequency is defined as

(6)

where the actual frequency response, i.e., the transfer
function evaluated at is the desired frequency
response, and is the sampling period in seconds, typically
assumed to be unity.

The objective function can be formulated as a weighted
function of the form

(7)

where is an even integer and is a
set of error weights corresponding to the frequencies in .
Suitable values for the weights in order to achieve prescribed
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specifications can be assigned by using the weighting technique
described on p. 747 of [1].

Often a value of is used which would result in least-
squares solutions. However, minimax solutions can also be ob-
tained by incorporating the above formulation in a least- th al-
gorithm such as the one described in [20] (see also [1, p. 739]).

A. Gradient of the Objective Function

The gradient of the objective function in (7) can be
evaluated as

(8)

where is the complex conjugate of and is
the gradient of the error function with respect to .

B. Hessian of the Objective Function

The Hessian of the objective function in (7) is

(9)

where

(10)

and represents the Hessian of the error function.

C. Positive-Definiteness of the Hessian

For Newton’s method to converge, the Hessian must always
be positive definite. However, during the optimization process
this condition can be violated since we are dealing with a highly
nonconvex multimodal problem in the present paper. This diffi-
culty can be circumvented by modifying the Hessian, , in each
iteration such that

where is the identity matrix and
if

if

with being the minimum eigenvalue of [17]. In this way,
a positive definite Hessian is achieved in every iteration which
would assure that the Newton direction is always a descent di-
rection.

III. POLYNOMIAL FORMULATION

For a linear phase response, the desired frequency response
assumes the form

(11)

where is the desired magnitude response at and is
the group delay. Usually, the absolute value of the group delay
is unimportant and in such applications the appropriate course

of action is to treat the group delay as an independent variable
that can be chosen to bring about an additional reduction in the
approximation error [5].

The actual frequency response can be obtained from (1) as

(12)

and if the group delay, , is treated as another independent vari-
able, the parameter vector in (2) assumes the form

(13)

The approximation error, , given by (6), can be com-
puted by using (11) and (12). The elements of the gradient of
the error function and the Hessian of the error func-
tion required in (8) and (10), respectively, are given in
Appendix A.

A. Constraints

The linear constraint matrix consists
of three submatrices corresponding to step-size, filter-stability,
and real-pole boundary constraints, respectively. Similarly, the
constraint vector can be expressed as . Closed-
form formulas for the elements of matrix and vector can be
found in Appendix B.

1) Step-Size Constraints: These constraints limit the changes
in the independent parameters to prevent the algorithm from
overshooting the minimum point, which could cause the algo-
rithm to diverge. It turns out that, in practice, the sensitivities
of the objective function to the various elements of the param-
eter vector in (13) tend to differ quite a bit and by applying
different step limits for the filter coefficients, the multiplier con-
stant , and the group delay , better results can be achieved.

In our design algorithm, step limits (upper bounds) for the
different parameters are applied by using a step-size vector
of the form

(14)

where is the iteration number. The different step limits are
computed recursively as

if (15)

if (16)

if (17)

where is a constant and is the objective function evalu-
ated at . The step-size vector is initialized at the start of the
algorithm using empirical values. On the basis of many filter
designs, a good value for was found to be 0.5. Whenever
the value of the objective function increases, the step limits for
the coefficient and transfer function constant parameters are re-
stricted to of their previous values and the step limit
for the delay parameter is restricted to of its pre-
vious value.
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Fig. 1. Stability region with a stability margin � .

2) Filter-Stability Constraints: For a stable recursive filter,
the poles must lie within the unit circle of the plane. For
each biquadratic transfer function in (1), the coefficient pairs

must be located in the stability triangle shown in
Fig. 1 [1]. This figure also shows an inner triangle which pro-
vides a stability margin [21] which would ensure that
the filter does not become unstable in the presence of coefficient
roundoff errors. A small positive value of also helps to reduce
the numerical sensitivity of the optimization algorithm.

Incorporating a stability margin, the stability constraints as-
sume the form

(18)

(19)

(20)

3) Real-Pole Boundary Constraints: The authors have ob-
served that during the optimization process, a complex-conju-
gate pole pair may migrate to the real axis and thus become a
pair of distinct real poles. Additionally,

a) such real poles often have a small radius and, therefore,
do not contribute significantly to the frequency response
of the filter;

b) although a conjugate pole pair will readily become a real
pole pair, it is less likely that a real pole pair will become
a conjugate pair.

In effect, it is beneficial to prevent pole migration to the real axis
from occurring especially on account of observation (a). This is
accomplished by restricting the feasibility region further. For a
biquadratic filter section, the poles are real if

(21)

Applying this constraint results in the parabolic boundary shown
in Fig. 2. Unfortunately, (21) is not a linear constraint and so it
cannot be used as a constraint in (5). However, the parabolic
boundary can be approximated by a set of tangent lines that can
serve as linear constraints. Seven tangent lines located at

Fig. 2. The feasible region and real-pole boundary.

as illustrated in Fig. 2 were found to work well. The equations
for the tangent lines are given by

(22)

(23)

(24)

(25)

(26)

(27)

(28)

and since the coefficients change from one iteration to the next
one, these equations must be updated in every iteration.

IV. POLAR FORMULATION

The actual frequency response for the polar formulation can
be obtained from (3) and the error function in (6) can be deduced
using (11) and (12).

With the inclusion of the group delay, , as an independent
parameter, the parameter vector in (4) assumes the form

(29)

Formulas for the elements of the gradient of the error function
and the Hessian of the error function required

in (8) and (10), respectively, are given in Appendix C.

A. Constraints

As for the case of the polynomial formulation, we apply step-
size, filter-stability, and real-pole boundary constraints.
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Fig. 3. Initial pole/zero placement for a 10th-order lowpass filter.

1) Step-Size Constraints: The form of these constraints is
very similar to those for the polynomial formulation, i.e.,

(30)

where represents the step limits for the zero/pole radii and
angles for the biquadratic factors for for the th
iteration. The values are initialized and modified in the same
manner as for the polynomial formulation.

2) Filter-Stability Constraints: The polar formulation sim-
plifies the stability constraints into a single constraint per sec-
tion of the form where is the stability
margin. The lower bound is only necessary when constraining
poles to lie in the passband region as is described in the next
paragraph.

3) Real-Pole Boundary Constraints: Like the stability con-
straints, the real-pole boundary constraints reduce to a single
constraint per section of the form . Another use of
a constraint of this type is to force the poles to remain in the pass-
band sector. In the case of lowpass filters, the constraint would
assume the form where is the passband edge
frequency.

It was observed through experimentation that the polar
formulation is significantly less susceptible to the real-axis pole
migration problem than the polynomial formulation. Conse-
quently, the real-pole boundary constraint can often be omitted
in practice in which case the constraint matrix would assume
the form .

V. ALGORITHM INITIALIZATION AND TERMINATION

As stated earlier, nearly linear-phase recursive filters, like
phase equalizers, are highly nonconvex multimodal problems

and, therefore, it is important to find good initial values for pa-
rameters , and . For the design problem under consid-
eration, two techniques were found to yield good initial designs.

A. Method of Trends

In [22], a large number of digital filters were designed and the
successful designs were analyzed to find patterns or trends in
the pole and zero locations. Also in [22], the concepts of phase
zeros and magnitude zeros were introduced. As shown in Fig. 3
for a tenth-order lowpass filter, two phase zeros are located out-
side the unit circle and contribute to the phase response in the
passband and eight magnitude zeros are located very close or
on the unit circle outside the passband sector thereby resulting
in increased attenuation in the stopband. On the basis of these
patterns, good initial designs can be readily generated.

B. Balanced Model Truncation Method

The balanced model truncation (or reduction) method (BMT)
is often used to generate a low-order recursive filter from a high-
order nonrecursive filter [23]–[26]. The main steps for this tech-
nique are to first convert the transfer function of the nonrecursive
filter into a state-space balanced model, then reduce the system
order, and finally convert the model into the reduced-order re-
cursive transfer function. The coefficients or zeros and poles of
the resulting transfer function can then be used as the initial
values of the transfer function in (1) or (3) as appropriate.

C. Termination

For some designs, the optimization algorithm would not con-
verge to a solution that satisfied the prescribed specifications in
a reasonable number of iterations. To circumvent this problem,
a fail-safe upper limit of, say, 200 iterations, can be imposed on
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the algorithm. For designs that converge, the algorithm is termi-
nated earlier using the progress ratio

(31)

where is the value of the objective function at and is
the iteration number. A suitable termination tolerance was found
to be .

VI. COMPARISON OF THE POLYNOMIAL AND POLAR

FORMULATIONS

On the basis of results obtained in a large number of designs
satisfying a variety of specifications, the following general ob-
servations can be made:

a) Although the polar formulation requires the evaluation of
transcendental functions, it usually requires less computa-
tional effort than the polynomial formulation. This is be-
cause it has simpler constraints and also typically fewer
iterations are required to achieve convergence.

b) The polar formulation usually outperforms the polyno-
mial formulation especially with respect to group-delay
performance. However, occasionally a better magnitude
response is achieved with the polynomial formulation.

VII. DESIGN EXAMPLES

In this section, we provide detailed results obtained in four
design examples, each intended to demonstrate some feature of
the proposed methodology. In all designs a value of was
assumed to facilitate comparisons with competing designs, i.e.,
all designs were essentially least-squares solutions.

The frequencies in (6) were selected using the nonuniform
adaptive sampling technique described in [19], which we have
found to be very effective in eliminating spikes in the error func-
tion. This technique was implemented as an integral part of the
optimization algorithm. The underlying principles involved are
as follows: Each passband and stopband is segmented into a
fixed number of frequency intervals, possibly nonuniform,
and fixed sample frequencies are assigned in the first and last
intervals, usually at the band edges. Before each iteration, the
error in each band is evaluated over a dense grid of so-called
virtual sample frequencies where is typically at least
and the frequency of maximum error in each of the remaining

intervals is located and then used as a sample frequency.
In this way, frequency points at which spikes are beginning to
form in a given iteration are located and are used as sample
frequencies in the next iteration. Transition bands are treated as
a ‘don’t-care’ bands, i.e., no sample frequencies are assigned.
(See [19] for details).

In the present experiments, which involved the design of low-
pass filters, fixed sample frequencies were assigned in the first
and last three passband intervals and the first three and last stop-
band intervals. The weights used for these fixed sample frequen-
cies were 1.0, 0.8. 0.6, 0.5, 0.4, 0.4, 0.5, 0.6, 0.8, 1.0, from left
to right. The weights used for the variable sample frequencies
were all set to unity.

The numerical values of the parameters used in the nonuni-
form sampling technique were as follows:

• sampling frequency rad/s;

TABLE I
LOWPASS DIGITAL-FILTER SPECIFICATIONS FOR EXAMPLE USING AN INITIAL

DESIGN OBTAINED WITH THE METHOD OF TRENDS (EXAMPLE 1)

TABLE II
DESIGN PARAMETERS FOR EXAMPLE 1

• initial sample frequency rad/s;
• final sample frequency rad/s;
• number of virtual sample points for each band ;
• number of sample frequencies (variable plus fixed)

in Example 1 and 24 in each of Examples 2–4.
In Example 1, we designed a filter that would satisfy the spec-

ifications in Table I using the polynomial and polar formula-
tions along with the method of trends described in [22] for the
initial design. The design parameters and results obtained are
listed in Tables II and III, respectively. The fixed sample fre-
quencies were 0.001, 0.6264, 0.6271, 0.6277, 0.6283, 0.9425,
0.9447, 0.9469, 0.9491, 3.1406. As can be seen in Table III, the
polynomial formulation resulted in slightly better stopband per-
formance whereas the polar formulation resulted in a reduced
group-delay variation and slightly better passband magnitude
response.

In view of the fact that the polar formulation usually offers
certain advantages over the polynomial formation, as detailed in
Section VI, we have used the polar formulation for our designs
of the filters in Examples 2 to 4 along with the BMT method for
the initialization.

In Example 2, we designed a filter that would satisfy the spec-
ifications in Table IV and compared it with a corresponding
filter obtained by using an elliptic filter in cascade with a delay
equalizer [2]. The initial design was generated using a nonre-
cursive filter of order 33. The fixed sample frequencies were
0.001, 1.8793, 1.8812, 1.8831, 1.8850, 2.1991, 2.2001, 2.2010
2.2019, 3.1406. The design parameters and results obtained are
listed in Tables V and VI. As can be seen, the proposed method
produced a filter with a significantly lower order and improved
performance, especially reduced group delay.

In Example 3, we designed a filter that would satisfy the
specifications in Table VII. In this case, the initial design was
obtained by using a 25th-order nonrecursive filter. The fixed
sample frequencies were 0.001, 1.5661, 1.5677, 1.5692, 1.5708,
1.8850, 1.8862, 1.8875, 1.8887, 3.1406. The design parameters
and results obtained are listed in Tables VIII and IX. In Table IX
we also show results obtained by using the cone-quadratic-pro-
gramming (CQP) method proposed in [27]. Once again, we note
that the proposed method resulted in an improved design with a
notably lower passband ripple and group delay. For consistency
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TABLE III
DESIGN RESULTS FOR EXAMPLE 1

TABLE IV
LOWPASS DIGITAL-FILTER SPECIFICATIONS FOR EXAMPLE COMPARING THE

PROPOSED AND EQUALIZER METHODS (EXAMPLE 2)

TABLE V
DESIGN PARAMETERS FOR EXAMPLE 2

TABLE VI
DESIGN RESULTS FOR EXAMPLE 2

TABLE VII
LOWPASS DIGITAL-FILTER SPECIFICATIONS FOR EXAMPLE COMPARING THE

PROPOSED AND CQP METHODS (EXAMPLE 3)

with [27], Table IX includes the average and maximum values
of the relative deviation of the passband group delay , which
is defined as

(32)

where is the group delay at frequency and is the
average group delay across the passband.

In Example 4, we compare our method with an unconstrained
optimization method proposed in [21]. In this approach, the

TABLE VIII
DESIGN PARAMETERS FOR EXAMPLE 3

TABLE IX
DESIGN RESULTS FOR EXAMPLE 3

TABLE X
LOWPASS DIGITAL-FILTER SPECIFICATIONS FOR THE EXAMPLE COMPARING

PARAMETERIZED AND PROPOSED METHODS (EXAMPLE 4)

TABLE XI
DESIGN PARAMETERS FOR EXAMPLE 4

filter transfer function is parameterized using a hyperbolic
tangent transformation (HTT), an arctangent transformation
(ATT), or a modified bilinear transformation (MBT). The
resulting optimization problem is then solved by using either
the quasi-Newton method of Broyden, Fletcher, Goldfarb,
and Shanno (BFGS) or a modified Newton’s method. The
filter specifications and corresponding design parameters for
our method are given in Tables X and XI. The initial transfer
function was obtained by using a 16th-order nonrecursive filter.
The fixed sample frequencies were 0.001, 1.2529, 1.2541,
1.2554 1.2566, 1.8850, 1.8862, 1.8875, 1.8887, 3.1406. In
Table XII, we compare our results with those reported in [21].
As can be seen, the proposed method gave a reduced passband
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TABLE XII
DESIGN RESULTS FOR EXAMPLE 4

ripple as well as reduced group-delay variation and, in addition,
increased minimum stopband attenuation.

We are currently in the process of implementing our algo-
rithm in terms of the least- th algorithm described in [20] which
is expected to yield reduced magnitude-response error as well
as reduced group-delay error. In addition, we plan to compare
our methodology with some of the more promising of the re-
cent methods referenced in the introduction. An interesting ap-
proach to explore would be to add one or more nonrecursive
sections to the cascade arrangement. In this way, additional ar-
bitrary zeros, which are accompanied by corresponding poles at
the origin of the plane, can be introduced. As stated by Lang
in [9], zeros tend to exert significant influence on the frequency
response with respect to passbands where phase response lin-
earity is required and, in effect, a set of nonrecursive sections
can imitate the behavior of a phase equalizer. In fact, by this
means, Lang was able to obtain better lowpass filters than cor-
responding filters reported in the past by Descky in [28] and Lu
in [29]. We have also obtained a better lowpass filter than one
reported by Lu and Hinamoto in [27] but the last word has not
been said on this issue. Further comparisons need to be carried
out with the conic-programming approach as well as with some
of the other competing methods over a diverse range of filter
types including bandpass and bandstop filters not to mention
differentiators and Hilbert transformers.

One of the reviewers expressed the opinion that the case of
cascaded higher order sections should also have been consid-
ered. Unfortunately, when the order of the filter sections is in-
creased above two, the simplicity of the stability constraints as
well as the real-pole boundary constraints would be destroyed
and essentially our methodology would be difficult if not impos-
sible to apply. A consequence of that would be that the optimiza-
tion problem at hand would no longer fit the mold of the standard
quadratic programming problem in (5). Nevertheless, the use
of higher-order transfer functions could be explored by using
Lang’s method in [9] whereby the stability issue is handled in
an indirect way using Rouché’s theorem. Further work com-
paring a diverse range of designs carried out with the method-
ology as presented in this paper and designs carried out with
Lang’s approach would resolve the issue as to whether one or
more higher-order sections would be better than a set of cas-
caded second-order sections.

VIII. CONCLUSION

A methodology for the design of recursive digital filters with
nearly linear phase response has been described. The design
problem is formulated as a constrained quadratic programming

problem and is solved using an optimization engine based on
Newton’s method. Two different formulations of the problem
have been explored, namely, the polynomial and polar formu-
lations. A number of practical aspects associated with the de-
sign of recursive filters in general have also been investigated
such as initialization and the handling of stability and step-size
constraints to achieve stability on the one hand and to expe-
dite convergence on the other. Furthermore, a technique that
can be used to circumvent a real-axis pole-migration problem
inherent in the design of recursive filters by optimization has
been proposed. Many design examples have revealed that the
polar formulation usually outperforms the polynomial formu-
lation and, in addition, it requires reduced computational ef-
fort. Relative to designs based on some of the existing state-of-
the-art approaches, e.g., the classical equalizer approach, the
proposed methodology yields filters having significantly lower
order and/or improved performance.

APPENDIX A
GRADIENT AND HESSIAN FOR THE POLYNOMIAL FORMULATION

A. Gradient of the Error Function

The gradient of the error function is given by

(33)

where

Although the derivatives of the error function are complex quan-
tities, (8) yields a real-valued gradient since the imaginary parts
cancel out when the errors and their conjugates are added.
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B. Hessian of the Error Function

The Hessian of the error function, , is defined as

...
...

. . .
...

...

(34)

Unfortunately, this matrix is not block diagonal as in the equal-
izer case [16] where the mirror-image numerator and denom-
inator polynomials give rise to certain symmetry properties in
the derivatives of the error function.

The Hessian in (34) can be simplified by splitting it into sev-
eral block-symmetric matrices and then taking advantage of its
inherent symmetry properties. The second-order partial deriva-
tives with respect to the transfer function coefficients are divided
into two block matrix types, diagonal 4 4 block matrices and
lower triangular 4 4 block matrices. The diagonal block ma-
trices are given by

(35)

where is the section number. The block
matrices are the symmetric blocks that are located along the di-
agonal of the Hessian and represent all the second-order partial
derivative combinations with respect to the transfer function co-
efficients for the same section. By virtue of the symmetry prop-
erty of the Hessian, the upper triangular matrix is equal to the
lower triangular matrix. Therefore, only the equations for the
lower triangular matrix and the diagonal second-order partial
derivatives need to be evaluated. It was also found that the upper
2 2 block diagonal submatrices of the blocks are equal
to zero. The equations for the block matrices are

(36)

(37)

(38)

(39)

(40)

(41)

(42)

As can be seen in (42), all the 2 2 submatrices within the
blocks are block symmetric and, therefore, only 6 equa-

tions are needed to obtain all the blocks in the Hessian.
The lower triangular blocks are given by

(43)
where are the transfer
function section numbers. Unlike the diagonal block matrices,
the lower triangular block matrices are not symmetric and,
therefore, there are 16 equations for each block. The equations
for each of the four columns of the block matrices
follow.

First column:

Second column:

Third column:

Fourth column:
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The remaining equations needed to construct the Hessian are
the second-order partial derivatives with respect to multiplier
constant, , and group delay, . The second-order partial
derivatives with respect to are

those of the filter coefficients with respect to the group delay, ,
are all zero, i.e.,

and the remaining derivatives are given by

and

APPENDIX B
CONSTRAINTS FOR THE POLYNOMIAL FORMULATION

The constraints are formulated as

where each element of is the allowed change in the corre-
sponding element of the parameter vector

A. Step-Size Constraints

Letting and be equal to the allowed changes in the
respective filter coefficients and and be equal to the al-
lowed changes in and , respectively, during each iteration,
the inequality

(44)

assumes the form

...
...

. . .
...

...
...

...
...

B. Stability Constraints

The stability constraints can be expressed in terms of as

(45)

and since

(46)

(47)

we get

(48)

(49)

(50)

Alternatively, the stability constraints can be expressed in matrix
form as

...
...

. . .
... ...

...
(51)

where

C. Real-Pole Boundary Constraints

The real-pole boundary constraints can be expressed in terms
of as

(52)

Equations (22)–(28) have their tangent points on the real-pole
boundary. Because the tangent-line boundary in Fig. 2 extends
a small amount into the real-pole region, we introduce a margin-
control variable that shifts the real-pole boundary in Fig. 2 to
the right. Expressing the constraint in terms of and including

in (22)–(28), we get

(53)

(54)

(55)

(56)

(57)

(58)

(59)
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The constraint equations in (52) can be expressed as

...
...

. . .
... ...

...
(60)

where

APPENDIX C
GRADIENT AND HESSIAN FOR THE POLAR FORMULATION

A. Gradient of the Error Function

The gradient of the error function is given by

(61)

where

B. Hessian of the Error Function

The Hessian of the error function, , is given by

...
...

. . .
...

...

(62)

As for the polynomial formulation in Appendix A, the Hessian
in (62) is not block diagonal and several equations are required
to construct it. Its construction can be simplified by splitting
it into several block symmetric matrices and taking advantage
of its symmetry properties. The second-order partial derivatives
with respect to the zero/pole radii and angles are divided into
two block matrix types, diagonal 4 4 block matrices and lower
triangular 4 4 block matrices.

The diagonal block matrices are given by

(63)

where is the number of sections. The
block matrices are symmetric blocks that are located along the
diagonal of the Hessian and represent all the second-order par-
tial derivative combinations with respect to the zero/pole radii
and angles for the same biquadratic factor. From the symmetry
of the Hessian, the upper triangular matrix is the reflection of
the lower triangular matrix and, therefore, only the equations
for the lower triangular matrix and the diagonal second-order
partial derivatives are required.

Another interesting observation is that, unlike the Hessian di-
agonal blocks for the polynomial formulation, the upper 2 2
diagonal block submatrices of the blocks are not equal
to zero. The equations for the block matrices follow. If
we let

and

we get
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The lower triangular blocks are given by

(64)

where . Unlike the diag-
onal block matrices, the lower-triangular block matrices are not
symmetric and, therefore, there are 16 equations for each block.
The block matrix elements represent the second-order
partial derivative combinations with respect to the transfer func-
tion coefficients for the cases where . The equations for
the first four columns of the block matrices are given
below.

First column:

Second column:

Third column:

Fourth column:

The second-order partial derivatives with respect to the transfer
function multiplier constant, , are

Finally, the second-order partial derivatives with respect to the
group delay, , are

and
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