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Abstract—An improved quasi-Newton (QN) algorithm that per-
forms data-selective adaptation is proposed whereby the weight
vector and the inverse of the input-signal autocorrelation matrix
are updated only when the a priori error exceeds a prespecified
error bound. The proposed algorithm also incorporates an im-
proved estimator of the inverse of the autocorrelation matrix. With
these modifications, the proposed QN algorithm takes significantly
fewer updates to converge and yields a reduced steady-state mis-
alignment relative to a known QN algorithm proposed recently.
These features of the proposed QN algorithm are demonstrated
through extensive simulations. Simulations also show that the
proposed QN algorithm, like the known QN algorithm, is quite
robust with respect to roundoff errors introduced in fixed-point
implementations.

Index Terms—Adaptation algorithms, adaptive filters, conver-
gence speed in adaptation algorithms, quasi-Newton algorithms,
steady-state misalignment.

I. INTRODUCTION

T HE least-mean-squares (LMS) algorithm minimizes the
Weiner-Hopf function iteratively by using the instanta-

neous values of the autocorrelation function of the input signal
and the crosscorrelation function between the input and desired
signals [1]. Due to its simplicity, the LMS algorithm is fre-
quently used in current practice. However, when the input signal
is highly colored or bandlimited, the LMS algorithm as well as
other algorithms of the steepest-descent family converge slowly
and the capability of such algorithms in tracking nonstationar-
ities deteriorates. In such situations, more sophisticated algo-
rithms that belong to the Newton family are preferred. However,
the computational complexity of these algorithms is usually pro-
hibitively large especially in real-time applications where low-
cost digital hardware must be employed. Numerical instability
is also a major issue in these algorithms. The conventional re-
cursive least-squares (CRLS) algorithm converges much faster
than algorithms of the steepest-descent family [1]. However, it
can become unstable and if a large forgetting factor is chosen
it can actually lose its tracking capability. The known quasi-
Newton (KQN) algorithm reported in [2], [3] offers better nu-
merical robustness whereas the LMS-Newton (LMSN) algo-
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rithms reported in [4] offer better convergence performance than
the CRLS algorithm.

Two methods are available for the development of Newton-
type adaptation algorithms: methods based on the direct solu-
tion of the normal equations of a least-squares problem (see
Section II) and methods based on the orthogonal decomposition
of the input-signal matrix. The CRLS, KQN, and the LMSN
algorithms are based on the normal equations and the QR de-
composition algorithm (QRD) is based on the orthogonal de-
composition of the input-signal matrix [5]. The computational
complexity of these algorithms is of order designated as

. The fast QRD (FQRD) algorithms in [6]–[12] are ac-
tually efficient implementations of the QRD algorithm whose
computational complexity is of . Fast RLS (FRLS) algo-
rithms with computational complexities of are also avail-
able in the literature for FIR adaptive filtering and autoregres-
sive (AR) prediction [5], [13]–[16]. FRLS algorithms exploit
the Toeplitz structure of the input-signal autocorrelation ma-
trix. The fast QN (FQN) algorithm reported in [17], which has a
computational complexity of , also exploits the Toeplitz
structure of the autocorrelation matrix to reduce the computa-
tional complexity. The FRLS and FQRD algorithms suffer from
numerical instability problems that are inherited from the nu-
merical instability problems of the CRLS and QRD algorithms,
respectively, and also the simplifications used to obtain these
algorithms [8]. However, the FQRD algorithm reported in [8]
offers numerically stable operation in low-precision implemen-
tations and in the absence of persistent excitation. The numer-
ical instability problems associated with the CRLS algorithm
are discussed in [18] where an upper bound on the relative pre-
cision to assure the BIBO stability of the CRLS algorithm in
stationary and nonstationary environments is derived. Formulas
for choosing the forgetting factor to avoid explosive divergence
for a given precision in the CRLS algorithm are also given in
[18]. However, these formulas were derived on the assumption
that the input signal is persistently exciting. Furthermore, the
input-signal statistics must be known a priori in order to use
these formulas. Consequently, a prudent strategy for the deriva-
tion of fast Newton-type algorithms would be to start with a
parent algorithm that is inherently stable. The numerical robust-
ness of the quasi-Newton (QN) algorithm reported in [2], [3] is
achieved by using a biased estimate of the autocorrelation ma-
trix, which can reduce the tracking capability of the algorithm
relative to that of the CRLS algorithm (see [19, p. 678]).

In this paper, we propose an improved version of the QN algo-
rithm reported in [2], [3] that incorporates data-selective adap-
tation. The proposed QN (PQN) algorithm takes fewer weight
updates to converge and yields a reduced steady-state misalign-
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Fig. 1. Adaptive filter.

ment relative to the KQN algorithm in [2], [3]. These features of
the new algorithm are demonstrated through MATLAB simula-
tions in stationary and nonstationary environments. Simulations
also show that the PQN algorithm, like the KQN algorithm, is
quite robust with respect to roundoff errors in fixed-precision
implementations.

The paper is organized as follows. In Section II, the pro-
posed QN algorithm is described. Performance analysis is car-
ried out in Section III. Simulation results for stationary and non-
stationary environments are given in Section IV. Finally, con-
clusions are drawn in Section V.

II. PROPOSED QUASI-NEWTON ALGORITHM

The simplest and most commonly used configuration
for adaptive filtering is the tapped delay-line structure
illustrated in Fig. 1, which is essentially an FIR dig-
ital filter. Vectors and

represent the weight and
input-signal sequences at iteration , respectively. The a priori
error signal at iteration is given by

(1)

where is the desired signal. Adaptation algorithms update the
weight vector, , in such a way as to obtain the solution of the
optimization problem

(2)

where is the expectation operator. This is usually referred
to as the Wiener solution. Adaptation algorithms use either the
steepest-descent or the Newton direction. LMS-type algorithms
use the steepest-descent direction and, therefore, their conver-
gence rate depends on the nature of the objective function and
spread of the eigenvalues of the Hessian matrix of the objective
function. Most algorithms of the Newton family use the update
formula

(3)

where is the step size and is an estimate of the inverse
of the autocorrelation matrix at iteration . The a posteriori error
at iteration is defined as

(4)

In the KQN algorithm, is determined by minimizing
with respect to in every iteration. In the PQN algorithm, data-
selective weight adaptation is performed whereby is updated
only when the magnitude of the a priori error is greater than a
prespecified error bound . In other words, whenever ,

is chosen to force the equality . The associated
optimization problem can be stated as

if

otherwise
(5)

Straightforward analysis leads to

(6)

where and

if
otherwise

As in the KQN algorithm in [3], the PQN algorithm also uses the
rank-one quasi-Newton updating formula given in Eq. (7.20) in
[20] to deduce the update of the inverse of the autocorrelation
matrix as

(7)

The estimator in (7) satisfies the classical QN hereditary con-
dition and, therefore, the associated algorithm belongs to the
QN family according to Fletcher’s classification in [21]. For the
adaptation of , is chosen to be in proportion to along

the Newton direction . Since the relation

(8)

holds true during each update, we use

(9)

and

(10)

Unfortunately, in the context of adaptive filtering, gradient is
not available at iteration since it requires future data and

. However, parameter in (10) can be approximated as

(11)
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TABLE I
PROPOSED QN ALGORITHM.

where and are defined in (1) and (4), respectively. Substi-
tuting (1) and (8) in (11), we obtain

(12)

Now substituting (9) and (12) in (7), we obtain an update for-
mula for the inverse of the autocorrelation matrix as

(13)

The weight-vector update formula can be obtained by using (6)
in (3) as

(14)

Updates are applied to and only if the a priori error
exceeds the prespecified error bound as is done in the basic QN
optimization algorithm (see [20, p. 184]). Otherwise, no updates
are applied. The PQN algorithm can be implemented as detailed
in Table I.

The crosscorrelation vector of the PQN algorithm can be de-
fined as

(15)

where . If we apply the matrix inversion
lemma given in [1], [22] to (13), we obtain the input-signal au-
tocorrelation matrix as

(16)

Using (1) in (14), straightforward manipulation yields

(17)

Using the normal equation

in (17) and simplifying the expression obtained, we have

(18)
Now using (13) and (15) in (18), we obtain

(19)

which comprises the normal equations of the objective function

(20)

where . Hence the weight-vector up-
date equation of the PQN algorithm in (14) minimizes the ob-
jective function in (20).

As can be seen, the objective function of the PQN algorithm
is similar to that of the weighted LS or LMSN algorithm (see,
(8), [4]). The updating formulas for the KQN algorithm are

(21)

(22)

where

(23)

The objective function of the KQN algorithm, on the other hand,
assumes the form

(24)
where . It turns out that in the KQN al-
gorithm the value of in the estimator in (21) approaches
zero, as can be verified by examining Fig. 4 in [3]. As a result,
the adaptation of will stop after a certain number of itera-
tions regardless of the value of whereas the basic QN op-
timization algorithm as reported in [20] suggests that the adap-
tation of should continue until the value of becomes
sufficiently small. Consequently, the steady-state value of the
misalignment and the speed of convergence will be affected.

An unbiased estimate of the inverse of the input-signal auto-
correlation matrix cannot be obtained by using the rank-one up-
date formula given in (7). However, the undesired consequences
of using a biased estimate in the adaptation of the weight vector
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Fig. 2. Evolution of ��� .

can be avoided by using a convergence factor in (3) [22]. The
autocorrelation matrix in (16) can be expressed as

(25)

As can be seen, the update formula for is a weighted sum
of the outer product and the weights depend on the input-
signal statistics and the a priori error signal. Taking the expec-
tation of both sides in (25) and invoking the assumption that
and are statistically independent, we obtain

(26)

An expression for the expectation of is difficult to de-
duce but an approximate value can be obtained in terms of its
time average based on simulation. In such an experiment the
error bound can be chosen as where is the vari-
ance of the measurement noise. The evolution of for a
white Gaussian input signal with zero mean and unit variance
assuming a variance of the measurement noise, , of is
illustrated in Fig. 2. This was determined by averaging the en-
semble of in 100 runs in a 36th-order system identification
application.

Note that since for and as is
positive definite (see Theorem 1 below), we have
for . Since , the value of does not need to
be specified if .

As can be seen in Fig. 2, the time average is a positive quan-
tity and, therefore, on the average a significant improvement can
be brought about in the estimate of with respect to . The
effect of using a biased estimate on the weight vector will, there-
fore, be less pronounced in the proposed algorithm as the quan-
tity in the step size in (6) approaches zero at steady state.
Since and for all , the weights used in (20)
and (25) are nonnegative. Therefore, if is positive definite it
is straightforward to show that the estimate in (16), i.e., the Hes-
sian of (20), would remain positive definite indefinitely. Con-
sequently, the objective function in (20) would remain convex
indefinitely.

The temporal behavior of in (20) can also be observed in
Fig. 2. Since and it is also bounded due to the fact that

is bounded (see Theorem 2 below), can approach zero
only when , i.e., when the solution of (20) is achieved.
During transience, and during steady state, ;
therefore, is large during transience and becomes small at
steady state.

The stability of Newton-type algorithms depends on the pos-
itive definiteness of [3], [4]. Furthermore, must be
bounded for a bounded input signal. Otherwise, the BIBO sta-
bility of the algorithm cannot be assured. The formula in (14)
could also lead to a biased solution for an unbounded . Both
of these requirements are satisfied in the PQN algorithm ac-
cording to the following theorems.

Theorem 1: If is a symmetric positive definite matrix,

then is also a symmetric positive definite matrix for all
.

Proof: Since is a real symmetric matrix, we can ex-

press as

(27)

where is a unitary matrix such that . If we

let and , then for any nonzero vector
, the relation in (13) can be used to obtain

Substituting (27) and the definitions of and in the above
equation, we obtain

Since , the lowest possible value of the right-hand
side in the above equation will occur when and, therefore,

(28)

for any . Hence the estimate in (13) is positive definite
for all . The symmetry of can be easily demonstrated

by noting the symmetry of .

Theorem 2: The estimate of in (13) is always bounded

in the sense that the quadratic factor is bounded pro-
vided that the input signal is bounded.
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Proof: If we premultiply both sides in (13) by and post-
multiply them by , we obtain

(29)

Since holds true for each adaptation, we have

(30)

Therefore, we conclude that if the input signal is bounded, then
is also bounded.

III. ANALYSIS OF THE PROPOSED QN ALGORITHM

In this section, we examine the performance of the PQN al-
gorithm in terms of the mean square-error (MSE) after initial
convergence in stationary and nonstationary environments. The
update formula for the weight vector in the PQN algorithm is
similar to that of the LMS-Newton algorithm given in (29) in [4,
p. 620]. The difference resides in the estimation of the inverse of
the autocorrelation matrix and the reduction factor, . The KQN
algorithm uses instead of a prespecified fixed reduction
factor and the PQN algorithm uses a variable reduction factor

. However, the steady-state MSE of the PQN al-
gorithm depends on the steady-state value of , not on its
transient value. As reported in [4], the steady-state mean-square
error given in Eqs. (40) and (46) of [4] for stationary and non-
stationary environments, respectively, is independent of the way
the inverse of the autocorrelation matrix is estimated and hence
it will not be different for other Newton-type algorithms as long
as (1) they use a weight-vector update equation of the type given
in [4], (2) they use an approximate Newton direction, and (3) the
assumptions made in [4] hold true. This conclusion is confirmed
in [p. 931, [3]] where the expression for the steady-state MSE
in the KQN algorithm is shown to be identical with that of the
LMSN algorithms. As can be verified, using in Eq. (46)
of [4], (22) of [3] can be obtained. Since the PQN algorithm fol-
lows an approximate Newton direction, employs a similar step
size, and uses the same update equations for the weight vector,
the formulas for the excess mean-square error are the same as
those in Eqs. (40) and (46) in [4]. For stationary environments,
the excess mean-square error for the PQN algorithm is given by

(31)

where is the minimum mean-square error and is the
value of as . For the case of the KQN algorithm,
this becomes . As at steady state, we
have . In addition, we have

for any prespecified .
If the weights of the unknown plant change according to the

update formula

(32)

the excess mean-square error is given by

(33)

where is the variance of the input signal and is the vari-
ance of the elements of . As can be seen, the second term in
the parenthesis is inversely proportional to and, therefore,
should not be allowed to become too small.

The optimal value of the reduction factor, , that minimizes
the excess mean-square error is given in Eq. (47) of [4]. As can
be easily verified, it is difficult to determine the optimal reduc-
tion factor as parameter in Eq. (47) of [4] is unknown a priori.
Since the derivation of involves certain assumptions, there is
no guarantee that the minimum excess mean-square error will be
obtained with [4]. To circumvent these problems, a small pos-
itive constant can be added to to be used in the weight up-
date formula for nonstationary environments so that .

A numerical value for is difficult to obtain if the input signal
is colored. However, for a white Gaussian input signal an ap-
proximate range for can be obtained as

(34)

where is the variance of the noise signal added to the desired
signal and is the complementary Gaussian cumulative dis-
tribution function [23]. The maximum reduction in the number
of weight updates can be obtained by using the Chebyshev in-
equality

(35)

where is the minimum value of and is chosen as an
integer multiple of , i.e., with .

The number of updates, convergence speed, and steady-state
MSE depend on the value of parameter . From (35), a larger
value of would reduce the number of updates. From (34), on
the other hand, we note that a larger would reduce , and ac-
cording to (31) a reduced steady-state misalignment would be
achieved in stationary environments. However, in such a case the
convergence speed of the algorithm would be compromised. A
smaller value of , on the other hand, would increase the number
of updates and and, therefore, an increased steady-state mis-
alignment would result in the case of stationary environments.
The convergence speed of the algorithm in this case would be
improved. Similar conclusions about the influence of on the
number of updates, convergence speed, and steady-state MSE
were also drawn in [23]. However, such conclusions cannot be
deduced for nonstationary environments as the relation in (33) is
nonlinear. In nonstationary environments, a reduced error bound
would improve the tracking capability of the algorithm because
the algorithm would continue to carry out updates after conver-
gence. Experimentation has shown that good performance can
be achieved in stationary and nonstationary environments by
choosing integer in in the range of 1 to 5 in the first case
and 1 to 3 in the second case.

As far as stability is concerned, the proposed algorithm is in-
herently stable as the a posteriori error is forced to be equal to
the prespecified error bound, , whenever an update is made. A
rough approximation of the variance of the measurement noise
would be enough to choose the error bound. In certain engi-
neering applications, the measurement noise has an upper bound
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Fig. 3. Learning curves, stationary environment (a) ��� � �� �� (b) ��� � 	� �� (c) ��� � 
�� �� (d) ��� � 
�� ��.

TABLE II
COMPARISON OF PROPOSED WITH KNOWN QN ALGORITHM.

[24] and in such applications the PQN algorithm can be readily
applied.

IV. SIMULATION RESULTS

In order to evaluate the performance of the proposed QN al-
gorithm several experiments were carried out as detailed below.

In the first experiment, an adaptive filter was used to iden-
tify a 36th-order lowpass FIR filter with a cutoff frequency of

, where is the sampling frequency, using normalized
coefficients to assure that the total power is unity. The input
signal was a sinusoid of amplitude 1 and frequency of
and was contaminated by a Gaussian noise signal of zero mean
and variance 0.1. The contaminating Gaussian noise signal was
colored using a 10th-order lowpass FIR filter with a cutoff fre-
quency of . A sinusoidal signal was chosen because it
causes the input signal to be severely ill-conditioned. With such
a system identification problem, the convergence behavior of
Newton-type algorithms can be better understood as their con-
vergence speed would be low enough to facilitate comparison.
The measurement noise added to the desired signal was white
Gaussian with zero mean and variance of ,

and to achieve signal-to-noise ratios (SNRs) of 20, 60,
100, and 140 dB, respectively. The prespecified error bound was
chosen as where is the variance of the measure-
ment noise. The initial weight vector was assumed to be the zero
vector and the estimate of the inverse of the autocorrelation ma-
trix was assumed to be the identity matrix in all experiments in
the PQN as well as the KQN algorithms. The tolerance factor
used in the fixed-point implementations was [2]. The
learning curves obtained for different SNRs from 1000 indepen-
dent trials by using the PQN and the KQN algorithms in a sta-
tionary environment are illustrated Figs. 3(a)–3(d). The number
of iterations required for convergence, the steady-state misalign-
ment, the number of weight updates required by the PQN and
KQN algorithms in the above experiment in 3000 iterations, and
the reductions in the number of updates achieved are given in
Table II.

The second experiment was identical to the first experiment
except that a nonstationarity was introduced in the filter taps
according to the first-order Markov model

(36)
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Fig. 4. Learning curves, nonstationary environment (a) ��� � �� �� (b) ��� � 	� ��. (c) ��� � 
�� �� (d) ��� � 
�� ��.

TABLE III
COMPARISON OF PROPOSED WITH KNOWN QN ALGORITHM.

where the entries of were the samples of a white Gaussian
noise sequence with zero mean and variance equal to

, and . The prespecified error bound
in nonstationary environments was chosen as . With
a smaller error bound, the number of adaptations is increased
and, therefore, the tracking of the changes in as given in (36)
improves after reaching steady state. The learning curves for
different SNRs obtained from 1000 independent trials by using
the PQN and KQN algorithms in a nonstationary environment
are illustrated Figs. 4(a)–4(d). The number of iterations to con-
verge, the steady-state misalignment, and the number of weight
updates required by the PQN and KQN algorithms in 3000
iterations and the reductions achieved are given in Table III.
As can be seen in Figs. 3 and 4 and Tables II and III, the PQN
algorithm yields reduced misalignment while requiring fewer
iterations to converge than the KQN algorithm for stationary
and nonstationary environments. As in the KQN algorithm,
the learning curves at steady-state in the PQN algorithm are
not noisy. The improvement in the steady-state misalignment
becomes more prominent for high SNRs in the PQN algorithm
because in the KQN algorithm adaptation of the inverse of

the autocorrelation matrix stops prior to reaching steady state.
Tables II and III also show that the required numbers of weight
updates in the PQN algorithm are only a fraction of those
required by the KQN algorithm.

In the third and fourth experiments, we verified the formulas
in (31) and (33) for the excess MSE for different system or-
ders and different values of the error bound. The input signal
was white Gaussian noise with zero mean and variance 0.1.
The limiting values of for the error bound for

, were obtained using (34). The results presented
in Table IV are the outcome of an ensemble of 100 runs where

and are the limiting values of and and de-
note the variance of the measurement noise and system order,
respectively. As can be seen in Table IV, the excess MSE ob-
tained form simulation lies within the range of the excess MSE
obtained by using and in (31) for stationary environ-
ments as expected. In addition, the excess MSE reduces as the
error bound is increased as discussed in the Section III.

The fourth experiment was the same as the third except that a
nonstationarity was introduced as in the second experiment. The
results obtained are given in Table V where is the variance of
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TABLE IV
EXCESS MSE IN DB IN PROPOSED QN ALGORITHM.

TABLE V
EXCESS MSE IN DB IN PROPOSED QN ALGORITHM.

the Gaussian noise added to the weight vector. In nonstationary
environments, the excess MSE obtained by simulation may not
be within the range of the excess MSE obtained by using (33)
since this formula remains nonlinear at steady state. However,
the simulation results given in Table V are very close to the
theoretical results.

The last and final experiment was carried out to demonstrate
the robustness of the proposed algorithm in the case of a fixed-
point implementation. The system to be identified was the same
as that used in the first experiment. Here the input signal was
a zero-mean white Gaussian noise with a variance of unity and

was colored using an 10th-order lowpass FIR filter with a cutoff
frequency of . The error bound was chosen as
where is the variance of the measurement noise. Fixed-point
arithmetic was assumed using a word length of 20 bits with
no scaling or rescuing procedures and overflow was handled
using saturation arithmetic. The error signal, error bound, and
the desired signal were quantized and the learning curves were
not smoothed. The learning curves obtained by using the PQN
and KQN algorithms in 100 trials with and ,
and SNRs of 40 and 80 dB are illustrated in Fig. 5. These re-
sults are consistent with the results obtained with floating-point
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Fig. 5. MSE for a fixed-point implementation.

arithmetic. Furthermore, Fig. 5 shows that when implemented
in fixed-point arithmetic the PQN algorithm is as robust as the
KQN algorithm.

V. CONCLUSIONS

An improved QN algorithm for adaptive filtering that incor-
porates data selective adaptation for the weight vector and the
inverse of the autocorrelation matrix has been proposed. The
proposed algorithm was developed on the basis of the frame-
work of classical QN optimization algorithms and in this way
an improved estimator of the autocorrelation matrix was de-
duced. Analysis has shown that the PQN algorithm should per-
form better than the KQN algorithm in terms of convergence
speed and steady-state misalignment. This expectation has been
substantiated by simulations which have shown that the pro-
posed algorithm requires fewer iterations to converge, fewer
weight updates, and yields reduced steady-state misalignment
when compared with the KQN algorithm in stationary as well as
nonstationary environments. In addition, analytical results ob-
tained by using closed-form formulas for the steady-state mis-
alignment agree well with those obtained by simulations. The
PQN algorithm was also found to be as robust as the KQN al-
gorithm in the case of fixed-point implementations.
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