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Design of IIR Digital Differentiators
Using Constrained Optimization
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Abstract—A new optimization method for the design of fullband
and lowpass IIR digital differentiators is proposed. In the new
method, the passband phase-response error is minimized under
the constraint that the maximum passband amplitude-response
relative error is below a prescribed level. For lowpass IIR differen-
tiators, an additional constraint is introduced to limit the average
squared amplitude response in the stopband so as to minimize
any high-frequency noise that may be present. Extensive experi-
mental results are included, which show that the differentiators
designed using the proposed method have much smaller maximum
phase-response error for the same passband amplitude-response
error and stopband constraints when compared with several
differentiators designed using state-of-the-art competing methods.

Index Terms—Digital differentiators, IIR filter design, design of
filters by optimization.

I. INTRODUCTION

D IGITAL differentiators are used in various fields of
signal processing such as in the design of compensators

in control systems [1], extracting information about transients
in biomedical signal processing [2]–[4], analyzing signals in
radar systems [5], and for edge detection in image processing
[6]. Differentiators having perfectly linear phase response
can be easily designed using FIR filters. However, in most
applications perfectly linear phase response is not required
and differentiators having approximately linear phase are quite
acceptable. In such applications, IIR differentiators are more
attractive than FIR differentiators for two main reasons: Firstly,
they can satisfy the given filter specifications with a much lower
filter order thereby reducing the computational requirement
or the complexity of hardware in a hardware implementation
and, secondly, they usually have a much smaller group delay
thereby resulting in lower system delay.
The presence of the denominator polynomial in IIR filters

renders their design more challenging than that of FIR filters
because it results in highly nonlinear objective functions that
require highly sophisticated optimization methods. As IIR fil-
ters lack the inherent stability of FIR filters, stability constraints
must be incorporated in the design process to ensure that the
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filter is stable, which means constraining the poles to lie within
the unit circle of the plane.
Lowpass differentiators are appropriate when the signal of

interest is at the low frequency end as they provide the advan-
tage of reducing any high-frequency noise that may be present.
In [7], [8], lowpass IIR differentiators have been designed by
inverting the transfer function of lowpass integrators and then
adjusting the denominator coefficients so that the poles lie
within the unit circle. More recently in [9], two methods for
designing lowpass IIR differentiators have been presented. In
the first method, a fullband differentiator is cascaded with an
appropriate lowpass filter while in the second method the nu-
merator is realized as a linear-phase filter and the denominator
is obtained using a constrained optimization method.
Earlier examples of fullband IIR differentiators are described

in [10] although no method for their design is presented. In
[11]–[15], fullband IIR differentiators are designed by taking
the inverse of the transfer function of a fullband integrator and
appropriately adjusting the denominator coefficients so that the
poles lie within the unit circle. In [16], a sequential minimiza-
tion procedure based on second-order transfer-function updates
is used while in [17] an iterative quadratic programming ap-
proach with prescribed passband edge frequency is presented.
The method in [17] uses a restrictive stability constraint that
could affect the quality of the designs and, additionally, it re-
quires that the group delay be specified. In [18] and [19], the
differentiators are derived by taking an existing IIR differen-
tiator and optimizing its pole-zero locations to improve the per-
formance of the differentiator further.
In this paper, we propose a design method whereby the

group-delay deviation with respect to the average group delay
is minimized under the constraint that the maximum ampli-
tude-response error be below a prescribed level. For lowpass
IIR differentiators, we introduce an additional constraint to limit
the average squared amplitude response in the stopband, so as
to minimize any high-frequency noise that may be present. By
representing the filter in polar form, a non-restrictive stability
constraint characterized by a set of linear inequality constraints
can be incorporated in the optimization algorithm. The group
delay is included as an optimization variable to achieve im-
proved design specifications. Procedures for designing fullband
and lowpass IIR differentiators are then described. Experi-
mental results show that differentiators designed using the
proposed method have much smaller maximum phase-response
error for the same passband error and stopband constraint than
several known state-of-the-art methods.
The paper is organized as follows. In Section II, we formulate

the problem as an iterative constrained optimization problem. In
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Section III, we describe procedures for designing fullband and
lowpass IIR differentiators. In Section IV, performance com-
parisons between filters designed using the proposed method
and known methods are carried out. Conclusion are drawn in
Section V.

II. THE OPTIMIZATION PROBLEM

In this section, we formulate the problem at hand as an iter-
ative constrained optimization problem by approximating each
update as a linear approximation step as was done in [20] and
[21]. To this end, we derive formulas for the stability constraints,
group-delay deviation, passband error, and stopband attenua-
tion. Then, we incorporate the analytical results obtained within
the framework of a constrained optimization problem.
A digital differentiator can be represented by the transfer

function

(1)

where is the number of differentiator sections, is
the differentiator order, and is a multiplier constant. An odd-
order transfer function can be easily obtained by setting and

to zero in the first section.
The ideal response of a causal differentiator is of the form

[22]

(2)

where is the group delay. From (2), it is clear that at
the amplitude response is zero while the phase characteristic has
a discontinuity of and jumps between and as fre-
quency switches between and . Such a frequency re-
sponse at can be realized by placing a zero at [10].
With this modification, the transfer function of the differentiator
in (1) becomes

(3)

where

(4)

To ensure that the differentiator is stable, the poles of the
transfer function must lie within the unit circle [22]. If is
a stability margin of the pole radius from unity, and and

are the corresponding values of and at the start

of the th iteration of the optimization, the stability conditions
are given by

(5)

where and are the corresponding updates for
and . Note that the conditions in (5) are convex inequality
constraints and can, therefore, be incorporated within a convex
optimization problem.

A. Group Delay Deviation

The group delay corresponding to the transfer function
in (3) is given by

(6)

where

(7)

The group-delay deviation at frequency is given by

(8)

where

(9)

and is the desired group delay which may be an optimization
variable. To incorporate the norm of the group-delay devia-
tion, , in an iterative optimization problem we can approx-
imate for the th iteration by a linear approximation given
by [20]

(10)

where

... (11)

(12)

(13)

is the value of in the th iteration, is the update in
is a constant, and is the set of passband frequency sample
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points. The right-hand side of (10) is the norm of an affine
function of and, therefore, it is convex with respect to [23].

B. Passband Error

If is the desired frequency response of the differen-
tiator in the passband and is the value of vector at the start
of the th iteration, a passband error function at frequency can
be defined as

(14)

Constant absolute or relative error may be required and
can be chosen as unity or depending upon the application.
Note, however, that for constant absolute error, the relative error
of the differentiator would tend to infinity as the frequency tends
to zero; therefore, constant absolute error would not, typically,
be of much practical interest and the design of differentiators
with constant absolute error will not be considered further.
For the case of relative error, can be expressed as

(15)

where

(16)

Function becomes indeterminatewhen . To circum-
vent this problem, we set and substitute (3) in (16) to
obtain

(17)

where

(18)

Using the same approach as in Section II-A, the norm of the
passband relative error, , in (15) can be expressed in
matrix form as

(19)

where

...
... (20)

(21)

(22)

(23)

Vector in (23) is the update for is a scalar update for ,
and is a constant. The elements of the last column of
in (20) are all zeros since (19) is independent of .

C. Stopband Amplitude Response

The frequency response update for the differentiator at the
th iteration is given by

(24)

The stopband noise that may be required to be attenuated may
not always be white. If the spectrum of the stopband noise is
known in advance, a weight can be incorporated in (24)
to emphasize frequency components with higher noise power as
follows:

(25)

In such cases, can correspond to the normalized magni-
tude spectrum of the noise in the stopband. If the stopband noise
is white, as is assumed in all our experiments in Section IV, then

is set to unity.
By using the same approach as in Section II-B, the norm of

the stopband weighted frequency response can be approximated
as

(26)

where

...
...

(27)

(28)

(29)

in (28) corresponds to the set of frequency points in the stop-
band and is a constant.

D. Optimization Problem

The optimization can be carried out by minimizing the group-
delay deviation under the constraints that the passband error and
stopband attenuation are within prescribed levels. The design
of a lowpass differentiator can be obtained by solving the opti-
mization problem

(30)



1732 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 7, APRIL 1, 2014

For the case of a fullband differentiator, the stopband constraint
is not relevant and it is not included.
Using (5), (10), (19), and (26), the problem for the th itera-

tion can be expressed as

(31)

where is the optimization variable. The optimum
value of is then used to update the optimizing parameters for
the next iteration. Note that updates and are included
in the update vector .
In the design of IIR differentiators, the typical approach is to

minimize the maximum passband amplitude-response error and
maximum phase-response error. For the former, this can be done
by making the value of large when computing the norm for
the parameter in (19). However, for the latter it is more appro-
priate to use the norm of (10) since the group delay is the
negative of the derivative of the phase and minimization of the
norm of the group-delay error tends to yield more reduction

in the maximum phase-response error than the minimization of
the norm. As in [20], we include a slack variable in
the passband-error constraint in case the initialization filter does
not satisfy the maximum passband-error constraint. With these
modification, the problem in (31) becomes

(32)

where

(33)

and are optimization variables and is a positive
weighing factor for the relaxation variable.
Note that as in [20], the group delay can be fixed to a pre-

scribed value or it can be optimized. In some applications it is
desirable that the optimized group delay be small. In such cases,
we can constrain the desired group delay in (9) to be below a
prescribed upper bound . Such a constraint is given by

(34)

where slack variable is included if is greater than
during initialization. The minimization of the group-delay de-
viation instead of the phase-response error in (32) would result
in a sign ambiguity in the final solution. This can be corrected
simply by checking the sign of the final solution andmultiplying
the transfer function by if the sign is reversed.
The optimization problem in (32) can be easily expressed as

a second-order cone programming (SOCP) problem as in [21]
and solved using efficient SOCP solvers such as the one avail-
able in the SeDuMi optimization toolbox for MATLAB [24].

III. DESIGN OF DIGITAL DIFFERENTIATORS

In this section, we first describe a procedure for the design
of the lowest even- and odd-order initialization IIR filters that
would satisfy or nearly satisfy the passband amplitude-response
constraint. We then use the transfer functions of these filters to
construct initialization transfer functions for the design of dif-
ferentiators. After that we describe a procedure for the design of
digital differentiators and discuss a number of relevant practical
issues.

A. Design of Lowest-Order Initialization Filters

The design of the lowest even- and odd-order initialization
IIR filters that would satisfy or nearly satisfy the amplitude-
response constraint can be accomplished by using a modified
version of the algorithm reported in [25] in which the absolute
relative error is minimized instead of the squared amplitude-
response error.
If we let in the transfer function of an IIR filter,

namely,

(35)

the squared amplitude response can be obtained as

(36)

where and are the numerator
and denominator coefficients, respectively, of the product

such that and . If is
the desired squared passband amplitude response of the differ-
entiator, then the optimization algorithm in [25] can be used to
obtain the filter coefficients that would satisfy the constraint

(37)
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If is the maximum absolute relative error of the passband
amplitude response, then

(38)

where . Now as shown in the Appendix, we can
select and in (37) as

(39)

(40)

For the design of a lowpass differentiator, an additional require-
ment is to limit the gain above the passband edge frequency so
as to minimize any out-of-band high-frequency noise. One way
to do this is to constrain the gain at to be below a certain
threshold such that

(41)

where is the maximum allowable gain at . Since the
ideal gain of a fullband differentiator at is , we can as-
sume the upper limit for to be . Consequently, the required
IIR filters can be designed by solving the linear programming
(LP) problem

(42)

where is a small positive constant used to ensure that the
poles lie inside the unit circle. The above LP problem can be
solved for with , and as the optimization vari-
ables.
If the optimal value of is close to zero, that is, ,

then the solution would approximately satisfy the passband con-
straints and the next step is to recover the actual minimum-phase
filter from the optimal values of and . This is a straightfor-
ward step that can be carried out by using either spectral factor-
ization [26] or a procedure described in [25].
For the design of a fullband differentiator, the lowest-order

IIR filters that would satisfy the passband constraint can be de-
signed by means of the following procedure:
Step 1: Initialize the passband error, , and the passband

sampling frequencies, , to the prescribed values.
Also set the initial filter order, , to 1, and to a
sufficiently large value greater than .

Step 2: For filter order , set in (36) and solve
the LP problem in (42).

Step 3: If the optimal value of is close to zero
, the passband specification is satisfied. Set

and proceed to Step 4. Otherwise, set
and go to Step 2.

Step 4: Use the optimal values of and to obtained the
lowest-order filter and stop.
For the case of a lowpass differentiator, use steps
1 to 4 above and then continue with the following
additional steps:

Step 5: Without changing the filter order, find the smallest
value of between 0 and that would satisfy the
passband constraint (i.e., ) by solving
the LP problem in (42) for different values of
in the required range. This can be done by using a
one-dimensional optimization procedure such as the
golden-section search [23]. An accuracy of is
typically sufficient.

Step 6: Use the optimal values of and for the smallest
value of to derive the lowest-order filter that
would satisfy the passband error specification for the
lowpass differentiator.

The next step is to design a second IIR filter of order
that would have the smallest passband error, , in the range [0,
1] and satisfy the constraint while keeping
larger than . The first IIR filter would be of even or odd order.
Consequently, the second IIR filter would be of odd or even
order. It can be designed as in Step 5 in the above procedure.
If , which is the lowest possible order, the second IIR
filter can be obtained by setting the filter order to 2 and then
performing Steps 2 to 4 above for a fullband differentiator or
Steps 2 to 6 for a lowpass differentiator.
The transfer functions of the two IIR filters obtained,

and , are given by

(43)

where or and

(44)

(45)

B. Initialization Filters for Differentiators

To obtain initialization filters for differentiators of the desired
filter orders, we add a number of biquadratic transfer functions
to and .
Two types of allpass transfer functions can be used. One pos-

sibility is to use

(46)

where is the order of the transfer function,

(47)

and is a multiplier constant. The second possibility is to
use which can be obtained as follows: For an
odd-order allpass transfer function, is obtained by
rotating the pole-zero positions of by radians in
the plane; on the other hand, for an even-order allpass transfer
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function, is obtained by rotating
by radians either in the clockwise or counter-clockwise di-
rection. Note that if the order of the allpass transfer function is
a multiple of 4, it can be easily shown that and

are identical.
On the basis of the above principles, four initialization

transfer functions are possible for differentiators given by

(48)

where is the differentiator order. Note that and
are valid only if while and
are valid only if .

The above four distinct initialization transfer functions often
lead to different solutions and a good strategy would be to de-
sign a differentiator with each one of them and then select the
best solution for the application at hand.

C. Passband Phase-Response Error for Differentiators

If the average passband group delay of the differentiator is
given by

(49)

where is the passband edge frequency and is the group
delay, then the ideal phase response of the differentiator is given
by

(50)

The phase-response error can be obtained as

(51)

where is the actual phase response of the differentiator.
Consequently, the maximum peak-to-peak phase-response error
in degrees is given by

(52)

Parameter will be referred to as themaximum phase-response
error hereafter.

D. Design Procedure for Differentiators

The design of digital differentiators that would satisfy pre-
scribed specifications can be carried out by using the following
procedure:
Step 1: Compute the two lowest-order transfer functions,

and , using the proce-
dure in Section III-A.

Step 2: Set the desired differentiator order to and com-
pute the initialization filters in (48).

Step 3: Solve the optimization problem in (32) for all the ini-
tialization filters derived in Step 2. For the fullband
differentiator set to a large value, say, 10 000,
while for the lowpass differentiator set it to the pre-
scribed value.

Step 4: Select the solution that has the smallest maximum
phase-response error and at the same time sat-
isfies the passband error constraint; for the lowpass
differentiator, the solution should also satisfy the
stopband constraint.

Step 5: If a solution is found that satisfies the phase-error
specification in Step 4, stop. Otherwise, set

and go to Step 2.

E. Special Case for Differentiators With Fixed Group Delay

In general, the average group delay of fullband differentiators
with optimized group delay increases as the order of the differ-
entiator is increased. The value of the average group delay usu-
ally follows that of the ideal fullband causal differentiator where
the group delay is confined to samples where is defined as

(53)

In applications where the order of the differentiator is large, it
may be desirable to have a differentiator with a smaller group
delay at the expense of increased in amplitude- and/or phase-
response error. In such applications, a modified version of the
design method in Section III-A can be used. Rather than finding
the lowest-order filter that would satisfy the amplitude-response
constraints, for differentiators with the smallest possible group
delay we start from the opposite end by finding the prescribed
highest and second-highest order filters that would satisfy the
amplitude-response constraints and then using the procedure in
Section III-B we obtain the initialization filters. In this way, as
the desired group delay is increased, the order of the filter that
would satisfy the amplitude-response constraint is progressively
decreased.
The same approach can be used for lowpass differentiators

with fixed group delay.

F. Practical Considerations

The frequency-dependent parameters are evaluated at fre-
quency points that are sampled between and , such that
the sample points between and 0 are the negatives of
the sample points between 0 and . To reduce the number
of sample points and at the same time prevent spikes in the
passband amplitude-response error function, the nonuniform
variable sampling technique described in Chapter 16 of [22]
can be used. Unlike the passband amplitude-response error,
which is an norm, the group delay and stopband errors are
and norms, respectively, and hence the technique in [22]

is not applicable. Therefore, a uniform sampling is used for
these error functions.
The weight factor for the relaxation parameter in (32)

should not be too small, say, smaller than 100, as this couldmake
the optimization algorithm unstable and prevent it from con-
verging; at the same time, it should not be too large, say, larger
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than 10 000, as this can slow down the convergence. Values of
in the range 500 to 5000 were found to give good results.
To ensure that the optimization is not prematurely terminated,

the optimization algorithm is stopped if the relative reduction in
the Q value is less that the prescribed maximum value typically
over the 40 most recent iterations, as was done in [20].

IV. EXPERIMENTAL RESULTS

In this section, we provide comparative experimental results
to demonstrate the efficiency of the proposed method. Twelve
design examples of various differentiator types are considered.
Parameters and in (32) were set to 0.01 and 1000, re-
spectively. The allpass transfer function, , in (46)
was initialized with . The default maximum pole radius
was set to 0.98. A normalized sampling frequency of was
assumed in all design examples. The number of virtual and ac-
tual sample frequencies used in the nonuniform sampling tech-
nique [22] over the frequency range to were 2000 and
68, respectively. Eight of the actual sample frequencies were
uniformly distributed near the passband edge with a separation
of rad/s between them. The group delay and stop-
band parameters, on the other hand, were sampled and evalu-
ated using 800 uniformly sampled frequencies in the interval

.
The stopband noise for the lowpass differentiators was as-

sumed to be white Guassian and its power was proportional to
the average squared stopband amplitude response and is given
by

(54)

In Sections IV-A to IV-D below, we compare the proposed
design method with a number of state-of-the-art methods for
the design of digital differentiators including the methods in [9],
[10], [12], [13], [15], and [16].

A. Examples 1, 2, and 3

The competing differentiators for Examples 1, 2, and 3 corre-
spond to the third example in [10], the second example in [12],
and the second example in [13], respectively. The required de-
sign specifications for these differentiators are given in Tables I,
III, and V and the results obtained are summarized in Tables II,
IV, and VI. The relative amplitude- and phase-response errors
for Example 1 are plotted in Fig. 1. As can be seen in Fig. 1 and
Tables II, IV, and VI, the IIR differentiators designed using the
proposed method have much smaller maximum phase-response
error for practically the same relative error in the amplitude re-
sponse as the designs obtained with the competingmethods. The
differentiators reported in [15], [16] have poor amplitude and
phase responses close to the zero frequency due to the absence
of a zero at point (1, 0) of the plane, while the one in [14] has a
phase-response error that is very large throughout the passband.
For these reasons, we relegate the comparison of our differentia-
tors with those in [15], [16], and [14] to the weblink document
mentioned in [27].

Fig. 1. Plots of relative amplitude-response error and phase-response error for
proposed method 2 (solid curves) and the method in [10] (dashed curves) for
Example 2.

TABLE I
FULLBAND DIFFERENTIATOR SPECIFICATIONS FOR EXAMPLE 1

TABLE II
DESIGN RESULTS FOR EXAMPLE 1 (FULLBAND DIFFERENTIATOR)

TABLE III
FULLBAND DIFFERENTIATOR SPECIFICATIONS FOR EXAMPLE 2

TABLE IV
DESIGN RESULTS FOR EXAMPLE 2 (FULLBAND DIFFERENTIATOR)

TABLE V
FULLBAND DIFFERENTIATOR SPECIFICATIONS FOR EXAMPLE 3

B. Examples 4, 5, 6, and 7

The design specifications for Examples 4 to 7 are given in
Tables VII, IX, XI, and XIII, respectively. The competing dif-
ferentiators for each of the examples correspond to the fourth,
sixth, eighth, and thirteenth examples in [9], respectively.
Tables VIII, X, XII and XIV and Fig. 2 show that the IIR
differentiators designed using the proposed method have much
smaller maximum phase-response error for practically the
same passband relative amplitude-response error and average
squared-amplitude response in the stopband as the designs
obtained with the competing method in [9].



1736 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 7, APRIL 1, 2014

TABLE VI
DESIGN RESULTS FOR EXAMPLE 3 (FULLBAND DIFFERENTIATOR)

TABLE VII
LOWPASS DIFFERENTIATOR SPECIFICATIONS FOR EXAMPLE 4

Fig. 2. Plots of amplitude response, relative amplitude-response error and
phase-response error for the proposed method (solid curves) and the method
in [9] (dashed curves) for Example 4.

TABLE VIII
DESIGN RESULTS FOR EXAMPLE 4 (LOWPASS DIFFERENTIATOR)

TABLE IX
LOWPASS DIFFERENTIATOR SPECIFICATIONS FOR EXAMPLE 5

C. Examples 8, 9, and 10

In Example 8, we have designed fullband differentiators
with fixed and optimized group delays using the proposed
method and compared our designs with a competing differ-
entiator taken from ([19], (21)). The design specifications are

TABLE X
DESIGN RESULTS FOR EXAMPLE 5 (LOWPASS DIFFERENTIATOR)

TABLE XI
LOWPASS DIFFERENTIATOR SPECIFICATIONS FOR EXAMPLE 6

TABLE XII
DESIGN RESULTS FOR EXAMPLE 6 (LOWPASS DIFFERENTIATOR)

TABLE XIII
LOWPASS DIFFERENTIATOR SPECIFICATIONS FOR EXAMPLE 7

TABLE XIV
DESIGN RESULTS FOR EXAMPLE 7 (LOWPASS DIFFERENTIATOR)

given in Table XV and the results obtained are summarized in
Table XVI. From these results, we observe that differentiators
designed with the proposed method have much smaller max-
imum phase-response error for practically the same passband
relative amplitude-response error and average squared-ampli-
tude response in the stopband. Note that the differentiator with
optimized group delay has smaller phase-response error than
the differentiator with fixed group delay but larger average
group delay.
In Examples 9 and 10, we compare lowpass differentiators

where the group delay of the differentiator in the proposed
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TABLE XV
FULLBAND DIFFERENTIATOR SPECIFICATIONS FOR EXAMPLE 8

TABLE XVI
DESIGN RESULTS FOR EXAMPLE 8 (FULLBAND DIFFERENTIATOR)

TABLE XVII
DESIGN RESULTS FOR EXAMPLE 9 (LOWPASS DIFFERENTIATOR)

TABLE XVIII
DESIGN RESULTS FOR EXAMPLE 10 (LOWPASS DIFFERENTIATOR)

method is constrained to be equal to or less than that in the
competing design; this is done by incorporating the inequality
constraint in (34) in the optimization problem in (32). To
observe how the performance changes with and without the
group-delay constraint, we have used the design specifica-
tions and competing differentiators in Examples 7 and 8 for
Examples 9 and 10, respectively. The design results for these
two examples are tabulated in Tables XVII and XVIII. The
poles and zeros for our proposed designs are given in [27].
From the results, we observe that the proposed design method
yields differentiators that have smaller phase-response errors
and average group delay than the competing methods. Upon
comparing the designs in Examples 9 and 10 obtained with
our method with the corresponding designs in Examples 7 and
8 obtained with our method, we observe that the designs in
Examples 9 and 10 offer lower group delay at the expense of
increased phase-response error.

TABLE XIX
FULLBAND DIFFERENTIATOR SPECIFICATIONS FOR EXAMPLE 11

TABLE XX
EXAMPLE 11: COMPARISON BETWEEN THE IIR DIFFERENTIATORS AND AN

EQUIVALENT FIR DIFFERENTIATOR (FULLBAND DIFFERENTIATOR)

TABLE XXI
LOWPASS DIFFERENTIATOR SPECIFICATIONS FOR EXAMPLE 12

TABLE XXII
EXAMPLE 12: COMPARISON BETWEEN THE LOWPASS IIR DIFFERENTIATORS
AND AN EQUIVALENT FIR DIFFERENTIATOR (LOWPASS DIFFERENTIATOR)

D. Examples 11 and 12

In Examples 11 and 12, we compare fullband and lowpass
IIR differentiator designs with a corresponding optimal FIR de-
sign. The design specifications for these examples are given in
Tables XIX and XXI, respectively. The optimization was car-
ried out for various differentiator orders by varying the number
of additional first-order filter sections. A differentiator order of

was required to satisfy the specifications in Table XIX
for the fullband FIR differentiator and this was designed using
the Remez Exchange algorithm described in Chapter 15 of [22].
On the other hand, the specification in Table XXI for the lowpass
FIR differentiator required an order of and the number
of zeros at point in the plane was set to .
This was designed using the Selesnick-Type III design method
[28]. The results obtained and the number of arithmetic opera-
tions per sampling period are presented in Tables XX and XXII.
We have assumed a cascade realization of second-order sections
both for the IIR and FIR differentiators. For the IIR differentia-
tors, we have assumed a direct-canonic realization which would
require a total of multiplications, additions, and
unit delays per sampling period where is the differentiator
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order [22]. In the case of the FIR differentiator,
multiplications, additions, and unit delays would be re-
quired per sampling period in view of the symmetry property of
the transfer function coefficients in constant group-delay filters.
FromTables XX andXXII, we observe a clear trade-off between
filter complexity and group delay versus maximum phase-re-
sponse error. It is apparent that the IIR differentiators offer a
significant reduction in the number of arithmetic operations and
system latency but at the cost of a nonzero phase-response error.
For most applications, a perfectly linear-phase response is not
required and a value of in the range of 1 to 10, depending on
the application, would be entirely acceptable. In such applica-
tions, a significantly more economical and efficient IIR design
would be possible.

E. Examples 13 to 18

Additional comparisons of IIR fullband differentiators to
demonstrate the effectiveness of our proposed method are
included in the online document in [27]. The competing differ-
entiators also include design examples taken from [11], [14],
and [18].

V. CONCLUSION

A method for the design of fullband and lowpass IIR dig-
ital differentiators that would satisfy prescribed specifications
has been described. The passband phase-response error is min-
imized under the constraint that the maximum relative ampli-
tude-response error is below a prescribed level. For lowpass IIR
differentiators, an additional constraint is introduced to limit the
stopband average squared amplitude response so as to minimize
any high-frequency noise that may be present.
The experimental results presented show that the differ-

entiators designed using the proposed method have much
smaller maximum phase-response error for the same passband
relative amplitude-response error and stopband constraints
when compared with differentiators designed with several
state-of-the-art competing methods. Our results also show that
nearly linear-phase IIR differentiators can offer some important
advantages over their perfectly linear-phase FIR counterparts
such as substantially lower computational or hardware com-
plexity and system latency.

APPENDIX

A. Relationships Between Absolute-Relative-Error Bounds
and Squared Amplitude-Response Error Bounds

The squared amplitude-response error in (37) can also be ex-
pressed as

(55)

where is the relative error which is given by

(56)

For a differentiator, and hence (55) becomes

(57)

Substituting (57) in (37) and simplifying, we get

(58)

(59)

With the assumption that , the term is
always positive. Consequently, (58) and (59) simplify to

(60)

(61)

If is the maximum relative error, we have

(62)

(63)

Equating (60) and (61) to (62) and (63), respectively, and sim-
plifying, we get

(64)

(65)

REFERENCES

[1] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital Control
of Dynamic Systems, 2nd ed. Reading, MA, USA: Addison-Wesley,
1990.

[2] P. Laguna, N. Thakor, P. Caminal, and R. Jane, “Low-pass differen-
tiators for biological signals with known spectra: Application to ECG
signal processing,” IEEE Trans. Biomed. Eng., vol. 37, pp. 420–425,
Apr. 1990.

[3] A. E. Marble, C. M. McIntyre, R. Hastings-James, and C. W. Hor, “A
comparison of algorithms used in computing the derivative of the left
ventricular pressure,” IEEE Trans. Biomed. Eng., vol. BME-28, pp.
524–529, Jul. 1981.

[4] S. Shiro and A. Imidror, “Digital low-pass differentiation for biolog-
ical signal processing,” IEEE Trans. Biomed. Eng., vol. BME-29, pp.
686–693, Oct. 1982.

[5] M. I. Skolnik, Introduction to Radar Systems, 2nd ed. New York, NY,
USA: McGraw-Hill, 1980.

[6] V. Torre and T. A. Poggio, “On edge detection,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. PAMI-8, pp. 147–163, Mar. 1986.

[7] J. L. Bihan, “Novel class of digital integrators and differentiators,”
Electron. Lett., vol. 29, no. 11, pp. 971–973, May 1993.

[8] M. A. Al-Alaoui, “A class of second-order integrators and low-pass
differentiators,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl.,
vol. 42, no. 4, pp. 220–223, Apr. 1995.

[9] M. A. Al-Alaoui, “Linear phase low-pass IIR digital differentiators,”
IEEE Trans. Signal Process., vol. 55, no. 2, pp. 697–706, Feb. 2007.

[10] L. R. Rabiner and K. Steiglitz, “The design of wide-band recursive
and nonrecursive digital differentiators,” IEEE Trans. Audio Electroa-
coust., vol. AU-18, pp. 204–209, Jun. 1970.

[11] M. A. Al-Alaoui, “Novel digital integrator and differentiator,” Elec-
tron. Lett., vol. 29, no. 4, pp. 376–378, Feb. 1993.

[12] N. Q. Ngo, “A new approach for the design of wideband digital in-
tegrator and differentiator,” IEEE Trans. Circuits Syst. II, Exp. Briefs,
vol. 53, no. 9, pp. 936–940, Sep. 2006.

[13] M. Gupta, M. Jain, and B. Kumar, “Novel class of stable wideband
recursive digital integrators and differentiators,” IET Signal Process.,
vol. 4, no. 5, pp. 560–566, Oct. 2010.



NONGPIUR et al.: DESIGN OF IIR DIGITAL DIFFERENTIATORS USING CONSTRAINED OPTIMIZATION 1739

[14] D. K. Upadhyay and R. K. Singh, “Recursive wideband digital differ-
entiator and integrator,” Electron. Lett., vol. 47, no. 11, pp. 647–648,
May 2011.

[15] M. Jain, M. Gupta, and N. Jain, “Linear phase second order recursive
digital integrators and differentiators,” Radioengineering, vol. 21, no.
2, Jun. 2012.

[16] X. P. Lai, Z. Lin, and H. K. Kwan, “A sequential minimization pro-
cedure for minimax design of IIR filters based on second-order factor
updates,” IEEE Trans. Circuits Syst. II, vol. 58, pp. 51–55, Jan. 2011.

[17] C.-C. Tseng, “Stable IIR diferentiator design using iterative quadratic
programming approach,” Signal Process., vol. 80, no. 5, pp. 857–866,
2000.

[18] D. K. Upadhyay, “Recursive wideband digital differentiators,” Elec-
tron. Lett., vol. 46, no. 25, pp. 1661–1662, 2010.

[19] D. K. Upadhyay, “Class of recursive wideband digital differentiators
and integrators,” Radioengineering, vol. 21, no. 3, Sep. 2012.

[20] R. C. Nongpiur, D. J. Shpak, and A. Antoniou, “Improved design
method for nearly linear-phase IIR filters using constrained optimiza-
tion,” IEEE Trans. Signal Process., vol. 61, no. 4, pp. 895–906, Feb.
2013.

[21] W.-S. Lu and T. Hinamoto, “Optimal design of IIR digital filters with
robust stability using conic-quadratic-programming updates,” IEEE
Trans. Signal Process., vol. 51, no. 6, pp. 1581–1592, Jun. 2003.

[22] A. Antoniou, Digital Signal Processing: Signals, Systems, and Fil-
ters. New York, NY, USA: McGraw-Hill, 2005.

[23] A. Antoniou and W.-S. Lu, Practical Optimization: Algorithms and
Engineering Applications. New York, NY, USA: Springer, 2007.

[24] J. F. Sturm, “Using SeDuMi1.02, a MATLAB toolbox for optimization
over symmetric cones,” Optimization Methods Softw., vol. 11-12, pp.
625–653, 1999.

[25] L. Rabiner, N. Graham, and H. Helms, “Linear programming design
of IIR digital filters with arbitrary magnitude function,” IEEE Trans.
Acoust., Speech, Signal Process., vol. ASSP-22, no. 2, pp. 117–123,
Feb. 1974.

[26] A. H. Sayed and T. Kailath, “A survey of spectral factorization
methods,” Numerical Linear Algebra Appl., vol. 8, pp. 467–496, 2001.

[27] R. C. Nongpiur, D. J. Shpak, and A. Antoniou, “ Poles and zeros
for examples and additional examples and results for digital
differentiators,” [Online]. Available: http://www.ece.uvic.ca/~andreas/
JournalPapers/Poles_and_Zeros_and_Additional_Results_for_Digital_
Differentiators.pdf

[28] I. Selesnick, “Maximally flat lowpass digital differentiators,” IEEE
Trans. Circuits Syst. II, vol. 49, no. 3, pp. 219–223, Mar. 2002.

Rajeev C. Nongpiur (S’01–AM’05–M’12) received
the B.Tech. degree in electronics and communi-
cations engineering from the Indian Institute of
Technology, Kharagpur, India, in 1998 and the
Ph.D. degree from the University of Victoria, British
Columbia, Canada, in 2005. From 1998 to 2000,
he worked as a Systems Engineer at Wipro Tech-
nologies, from 2004 to 2008 as a Research Scientist
at QNX Software Systems, and from 2008 to 2010
as Senior DSP Engineer with Unication Co., Ltd.,
Vancouver, Canada. He is currently serving as a

Research Associate in the Department of Electrical and Computer Engineering,
University of Victoria, British Columbia, Canada. His research interests are
in the areas of signal processing for digital communications, multimedia, and
biomedical applications. He is the author of more than 15 patents in the area of
audio signal processing.
Dr. Nongpiur is a member of the IEEE Circuits and Systems and Signal Pro-

cessing Societies.

Dale J. Shpak (S’79–M’86–SM’09) received the
B.Sc. (Elec. Eng.) from the University of Calgary,
Canada, in 1980. From 1980 to 1982, he worked as
an engineer for the City of Calgary Electric System
while earning his M.Eng. in electronics. Between
1982 and 1987, he performed research on computer
systems, microelectronics, and DSP algorithms and
implementation. From 1987 to 1989, he received
his Ph.D. from the University of Victoria, Canada.
Starting in 1988, he served as a Professor with the
Department of Engineering, Royal Roads Military

College and returned to industry when it closed in 1995.
Since 1989 he has held a faculty position at the University of Victoria in ad-

dition to his other professional activities. As an Adjunct Professor of Electrical
and Computer Engineering, he receives ongoing NSERC funding for research
programs with his graduate students.
He joined the Department of Computer Science at Camosun College in 1999.

He has instructed over thirty different courses including object-oriented pro-
gramming, computer networks, digital circuit design, digital filters, materials
science, software engineering, and real-time and concurrent systems.
He held several positions in industry where he developed algorithms,

software, circuits, networking systems, and embedded systems. Since 1984, he
has served as a consultant and develops software and embedded systems for
products including audio processing, wireless sensing and control, and remote
sensing. He is a Principal Developer of award-winning products, including the
Filter Design Toolbox for MATLAB™.
Dr. Shpak is a Senior Member of the IEEE and a Member of the Associa-

tion of Professional Engineers of the Province of British Columbia. His prin-
cipal research interests are in the areas of signal processing for communications
and audio, design and implementation of embedded systems, and digital filter
design.
He also develops free software for music education.

Andreas Antoniou (M’69–SM’79–F’82–LF’04)
received the B.Sc.(Eng.) and Ph.D. degrees in elec-
trical engineering from the University of London in
1963 and 1966, respectively, and is a Fellow of the
IET and IEEE. He taught at Concordia University
from 1970 to 1983, was the founding Chair of the
Department of Electrical and Computer Engineering,
University of Victoria, B.C., Canada, from 1983 to
1990, and is now Professor Emeritus. His teaching
and research interests are in the area of digital signal
processing. He is the author of Digital Signal Pro-

cessing: Signals, Systems, and Filters (McGraw-Hill, 2005) and the co-author,
with Wu-Sheng Lu, of Practical Optimization: Algorithms and Engineering
Applications (Springer, 2007).
Dr. Antoniou served first as Associate Editor and after that as Chief Editor

for the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS from 1983 to 1987,
as a Distinguished Lecturer of the IEEE Signal Processing and the Circuits and
Systems Societies during 2003–2004 and 2006–2007, respectively, and as Gen-
eral Chair of the 2004 International Symposium on Circuits and Systems.
He was awarded the CAS Golden Jubilee Medal by the IEEE Circuits and

Systems Society, the B.C. Science Council Chairman’s Award for Career
Achievement for 2000, the Doctor Honoris Causa Degree by the National
Technical University, Athens, Greece, in 2002, the IEEE Circuits and Systems
Society Technical Achievement Award for 2005, the 2008 IEEE Canada Out-
standing Engineering Educator Silver Medal, the IEEE Circuits and Systems
Society Education Award for 2009, and the 2011 Craigdarroch Gold Medal for
Career Achievement and the 2011 Legacy Award for Research, both from the
University of Victoria, Victoria, Canada.


