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Abstract—A new optimization method for the design of nearly
linear-phase IIR digital filters that satisfy prescribed specifications
is proposed. The group-delay deviation is minimized under the
constraint that the passband ripple and stopband attenuation are
within the prescribed specifications and either a prescribed or an
optimized group delay can be achieved. By representing the filter
in terms of a cascade of second-order sections, a non-restrictive
stability constraint characterized by a set of linear inequality
constraints can be incorporated in the optimization algorithm. An
additional feature of the method, which is very useful in certain
applications, is that it provides the capability of constraining
the maximum gain in transition bands to be below a prescribed
level. Experimental results show that filters designed using the
proposed method have much lower group-delay deviation for the
same passband ripple and stopband attenuation when compared
with corresponding filters designed with several state-of-the-art
competing methods.

Index Terms—Delay equalization of filters, design of filters by
optimization, IIR filter design, nearly linear-phase filters.

I. INTRODUCTION

L INEAR-PHASE filters are important in applications
where a flat delay characteristic is necessary. Applica-

tions of such filters can be found in the field of audio signal
processing where it is important to minimize the relative delay
between the frequency components to prevent perceptible audio
distortion and in digital communications where nonlinear phase
can result in signal spreading thereby causing inter-symbol
interference between time-concentrated information symbols.
Perfectly linear-phase filters can be easily achieved using FIR
filters. However, in most applications a perfectly linear phase
response is not required and filters that have approximately
linear phase response are quite acceptable. In such cases, IIR
filters are more attractive than FIR filters for two main reasons.
Firstly, they can satisfy the given filter specifications with a
much lower filter order thereby reducing the computational
requirement and/or the complexity of hardware and, secondly,
they have a much smaller group delay.
The presence of the denominator polynomial in IIR filters

makes their design more challenging than that of FIR filters
because it results in a highly nonlinear objective function that
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requires highly sophisticated optimization methods. As IIR fil-
ters lack the inherent stability of FIR filters, stability constraints
must be incorporated in the design process to ensure that the
filter is stable, which means constraining the poles to lie within
the unit circle of the plane.
In applications where the phase response is not important, a

fairly large choice of methods is available to the filter designer
ranging from closed-form methods based on classical analog
filter approximations to numerous optimization methods. In
[1], unconstrained algorithms of the quasi-Newton family are
used in a least- formulation. Filter stability is achieved
by means of a well-known stabilization technique whereby
poles outside the unit circle are replaced by their reciprocals.
MATLAB™ function in [2] implements an uncon-
strained least- quasi-Newton algorithm of the type found
in [3]. On the other hand, MATLAB™ function
in [2] implements a least- Newton method that uses barrier
constraints to assure the stability of the resulting filter and also
provides for a specified stability margin.
Nearly linear-phase IIR filters can be designed by using the

classical whereby an IIR filter satisfying
prescribed amplitude-response specifications is designed and is
then cascaded with an IIR delay equalizer to approximately lin-
earize the phase response [4]. More recent methods typically in-
volve designing IIR filters that simultaneously satisfy both the
amplitude- and phase-response constraints, as it results in filters
of lower order [5]–[14]. In [8], the frequency-response error is
minimized under the constraint that the group-delay deviation
is within a prescribed level, while in [5] the design problem is
formulated as a cascade of filter sections where each section is
represented by a biquadratic transfer function either in the con-
ventional polynomial form or in the polar form and the design
problem is solved using a constrained Newton method. An im-
portant advantage of this method is the nonrestrictive stability
constraint that it uses coupled with the capability of controlling
the maximum pole radius. Since the objective function used in
[5] is nonconvex, the performance of the algorithm is critically
dependent on the initialization point. To overcome difficulties
with the nonlinear objective function, iterative methods based
on the Steiglitz-McBride (SM) and the Gauss-Newton (GN) al-
gorithms have been employed [15]–[17]. Although convergence
cannot be guaranteed in these methods, solutions that are sat-
isfactory for the intended applications are usually obtained. A
drawback of the methods in [15]–[17] is the use of restrictive
stability constraints that could prevent better designs.
In [18], a minimax design of IIR filters is formulated as

a conic quadratic programming problem by approximating
each update as a linear approximation step. An advantage
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of the method is that it incorporates a nonrestrictive stability
constraint using a set of linear inequality constraints; another
important advantage is that the final solution is not critically
dependent on the initialization point. However, the method has
certain drawbacks: it requires the group delay to be specified
and, furthermore, it does not provide the option of controlling
the relative degree of minimization between the group-delay
deviation and the maximum passband ripple.
In this paper, we propose a design method where the group-

delay deviation is minimized under the constraints that the pass-
band ripple and stopband attenuation are maintained within the
prescribed specifications. The method also provides the option
of keeping the group delay fixed at a prescribed value or al-
lowing it to be a free parameter that can be optimized in order
to achieve improved filter performance. By designing the filter
as a cascade of second-order sections, a necessary and sufficient
nonrestrictive stability constraint can be incorporated in the op-
timization problem as a set of linear inequality constraints. The
method eliminates the drawbacks of the method in [18] as it
does not require the group delay to be specified, while at the
same time it provides the capability of controling the relative
quality between the group-delay deviation and the maximum
passband ripple. Although the transition region is usually treated
as a “don’t care” region, in many practical applications exces-
sive gain in this region could be undesirable. Our method pro-
vides the capability of controlling the maximum gain in transi-
tion bands. Experimental results show that numerous filters de-
signed with the proposed method have much lower group-delay
deviation for the same passband ripple and stopband attenuation
than corresponding filters designed with several known com-
peting state-of-the-art methods.
The paper is organized as follows. In Section II, we frame

the problem as an iterative constrained optimization problem.
Then, in Section III we describe a procedure for designing
nearly linear-phase IIR filters. In Section IV, performance
comparisons between the filters designed using the proposed
method and the existing methods are carried out. Conclusions
are drawn in Section V.

II. THE OPTIMIZATION PROBLEM

In this section, we frame the design problem at hand as a
constrained optimization problem. To this end, we derive for-
mulations for the stability constraints, group-delay deviation,
passband ripple, stopband attenuation, and transition-band gain
constraints. Then, we incorporate the formulations within the
framework of a constrained optimization problem.
We assume that the filter comprises a cascade of second-order

sections (SOSs), which can be represented by a product of bi-
quadratic transfer functions of the form

(1)

where

(2)

is the number of filter sections, is the filter order,
and is a positive multiplier constant. An odd-order transfer
function can be readily obtained by setting coefficients and

to zero in one SOS.

A. Group-Delay Deviation

The group delay corresponding to transfer function
in (1) is given by [4]

(3)

where

(4)

(5)

(6)

(7)

The group-delay deviation at frequency is given by

(8)

where

(9)

and is the group delay, which may be an optimization variable.
If is the value of at the start of the iteration and is
the update to , the updated value of the group-delay deviation
can be estimated by using the linear approximation

(10)

which becomes more accurate as gets smaller.
If and are the lower and upper edges of the passband,

the -norm of the passband group-delay deviation for the
iteration is given by

(11)

where is the set of passband frequency sample
points and is a constant. Expressing (11) in matrix form, we
get

(12)
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where

... (13)

(14)

(15)

The right-hand side of (12) is the -norm of an affine function
of and, therefore, it is convex with respect to [1].
The quality of the group-delay characteristic of the filter can

be measured by using the normalized maximum variation of the
filter group delay, , over the passband as a percentage, i.e., [3]

(16)

where

(17)

(18)

(19)

Hence,

(20)

will be referred to as the maximum group-delay deviation
hereafter.

B. Passband Error

If is the desired frequency response of the filter and
is the value of vector at the start of the iteration, a

passband error function at frequency can be defined as

(21)

Without loss of generality, we can assume that the desired am-
plitude response is unity in the passband. Therefore, the pass-
band error function becomes

(22)

Using the same approach as in Section II-A, the -norm of
the passband error function, , in matrix form can be
approximated as

(23)

where

...
... (24)

(25)

(26)

(27)

In the above equations, is the vector update for , is the
scalar update for , and is a constant. The elements of the
last column of in (24) are all zeros since (23) is indepen-
dent of .

C. Amplitude Response in the Stopband and Transition Band

The frequency response update for the filter at the itera-
tion is given by

(28)

By using the same approach as in Section II-B, the -norm of
the frequency response in the stopband and transition band can
be approximated as

(29)

(30)

where

...
... (31)

...
... (32)

(33)

(34)

(35)

(36)

In the above equations, and are the sets of frequency
sample points in the stopband and transition band, respectively,
and and are constants. Note that , , and may ex-
tend over two ormore passbands, stopbands, or transition bands,
respectively, in the case of multiband filters.

D. Filter Stability

To ensure that the filter is stable, the poles of the transfer
function must lie within the unit circle [3]. If is a stability
margin defined as where is the maximum
pole radius allowed, the coefficients of the denominator should
satisfy the stability conditions given by [5]

(37)

(38)

(39)

where [18]

(40)

Incorporating stability margin would ensure that roundoff er-
rors would not cause filter instability, particularly in fixed-point
implementations.
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The stability conditions in (37)–(39) for the iteration can
be expressed in matrix form as

(41)

where

...
...
. . .

...
... (42)

(43)

... (44)

(45)

E. Optimization Problem

The optimization is carried out by minimizing the group-
delay deviation under the constraints that the passband error,
stopband attenuation, and transition band attenuation are within
prescribed levels. This can be done by solving the optimization
problem

(46)

where , , and are the maximum prescribed levels for
the passband error, stopband gain, and transition band gain, re-
spectively.
Using (12), (23), (29), (30), and (41) the problem to be solved

in the iteration can be expressed as

(47)

where is the optimization variable. The optimum value of
is then used to update the optimizing parameters for the next
iteration. The bound on the norm of the update vector assures
the validity of the linear approximation and at the same time
eliminates the need for a line search step that is required in most
optimization algorithms [18].
The value of in the above optimization problem can be any

positive integer. The most significant values for are 2 and .

In the first case, the -norm would be minimized, which would
result in a least-squares solution, whereas, in the second case,
the -norm would be minimized, which would result in a
minimax solution. In a least-squares solution, the squares of the
passband and stoband errors would be minimized whereas in a
minimax solution the maxima of the absolute values of the pass-
band and stopband errors would be minimized. In this paper, we
explore the use of the -norm.
The optimization problem in (47) can be solved by starting

with an initialization filter that satisfies at least some of the spec-
ifications, if at all possible, in order to reduce the amount of
computation required. The initialization filter may satisfy only
the stopband and transition band constraints but not the pass-
band constraint. In order to handle such scenarios, we relax the
constraints for the passband and the norm of the parameter up-
date by adding a variable which is also minimized while
its value is constrained to be positive; when , the orig-
inal constraints are restored. The relaxation of the norm of the
parameter update is to facilitate a greater change between it-
erations so that all constraints are quickly satisfied and is
reduced to a small value. With this modification, the problem in
(47) for the case becomes

(48)

where and are optimization variables, and is a
weighing factor for the relaxation variable. It should be noted
that if the initialization filter is feasible, the use of the relax-
ation parameter is not necessary although in some cases
it has been found to speed up the convergence. For the situa-
tion where the numerator and denominator orders are required
to be different, the appropriate numerator or denominator coef-
ficients in some of the SOSs can be set to zero by initializing
them with zero and correspondingly constraining their updated
values to zero. That is, if corresponds to a coefficient in an
SOS that is required to be zero in every iteration , we intialize

and correspondingly include the additional constraint
on the corresponding updated value, i.e., .
The optimization problem in (48) can be easily expressed as

a second-order cone programmming (SOCP) problem as in [18]
and solved using efficient SOCP solvers such as the one avail-
able in the SeDuMi optimization toolbox [19] for MATLAB™.
The various -norms in (48) are efficiently evaluated by the
SOCP solver.

III. DESIGN PROCEDURE

Two general strategies for the design of digital filters have
been developed to deal with design problems where the group
delay is not specified or with problems where a prescribed group
delay is required. In the former case, the group delay can be used
as an additional independent variable that can be optimized in
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order to bring about additional improvements to the filter being
designed.

A. Optimized Group Delay

When the group delay is assumed to be an independent vari-
able, it is important that the initialization filter be chosen to be
close to the desired optimal filter in order to assure fast con-
vergence. To this end, a good first step would be to design the
lowest-order IIR filter that would satisfy only the amplitude-re-
sponse specifications. An elliptic filter would be the most suit-
able choice since it gives the lowest-order IIR filter for any given
amplitude-response specifications because of the optimality of
the elliptic approximation. Such a filter can be obtained by using
the design method described in Chap. 12 of [3].
To reduce the group-delay deviation of the filter in the pass-

band, a number of additional general biquadratic SOSs are in-
cluded depending on the degree of linearity required in the phase
response. To achieve fast convergence, the additional SOSs are
initialized as allpass sections. The poles and zeros of the addi-
tional SOSs are initially distributed in the passband sector of the
plane, namely, the sector bounded by the passband edge fre-

quencies. Under these circumstances, the transfer function as-
sumes the form

(49)

where is the transfer function of the elliptic filter, is
a normalizing gain factor, is the number of additional allpass
SOSs, and . An initialization group delay that was
found to workwell is the average of the passband filter-equalizer
combination, which can be estimated as

(50)

Although using the initializaton group delay in (50) always
results in solutions that are comparable or better than those
achieved with existing methods, we have found some instances
where starting with the maximum or minimum passband group
delay can yield a better solution. Therefore, to maximize the
possibility for obtaining the best solution, the optimization can
also be initialized with the minimum and maximum passband
group-delays given by

(51)

(52)

and then selecting the best solution from among the three results.
However, if there is a need to reduce the amount of computation
required, the filter can be designed by using only the initializa-
tion group delay in (50).

The required filter can be designed by using the following
algorithm:

Step 1: Obtain the transfer function of the required
elliptic filter, , that satisfies the re-
quired amplitude response specifications; e.g.,
by using the D-Filter software package [20].

Step 2: Set the number of additional general bi-
quadratic SOSs to and select and to
construct the transfer function as in
(49); from , compute the initialization
group delay using (50). This can be easily
done by using D-Filter [20].

Step 3a: Using and for initialization,
solve the optimization problem in (48).

Step 3b
(optional):

Solve the optimization problem in (48) using
and

for initialization and then select the solution
that has the smallest value of in Steps 3a
and 3b.

Step 4: Using (20), compute the maximum group-
delay deviation of the filter, , obtained
in Step 3. If is less than the prescribed
value, the filter specifications are satisfied and
the algorithm is terminated; otherwise, set

and go to Step 2.

The optional step, Step 3b, can be carried out if the amount of
computation required is not a critical factor, in order to increase
the possibility for obtaining a better solution.

B. Prescribed Group Delay

When a prescribed group delay is required, the initializa-
tion procedure described in Section III-A is not appropriate. A
more appropriate initialization scheme would be to use the bal-
ance model truncation (BMT) method described in [21], [22].
The main steps of the BMT involve converting a high-order
FIR filter into a state-space balanced model, then reducing the
model order, and finally converting the lower-order model to a
reduced-order IIR filter.
To ensure that the IIR filter obtained with the BMT method

has a group delay that is close to the prescribed value, the initial-
ization linear-phase FIR filter is designed to have a group delay,
, that is close to the prescribed value. This can be done by

selecting the filter length as

(53)

where is the ceiling operator. The transfer function of the
IIR filter can be expressed as

(54)

where the normalizing gain factor is chosen to ensure that
the average passband gain of the filter is unity.
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Sometimes, the filter obtained with the BMT method may
have one or more zeros that are located far away from the
origin. Such zeros can slow down the optimization algorithm.
Experimental results have shown that faster convergence can
be achieved by moving any zeros with a radius greater than a
prescribed maximum to the origin of the plane by letting

if
otherwise.

(55)

With the group delay fixed, the problem in (48) can be sim-
plified to

(56)

where is the optimization variable and is given by

...
...
. . .

... (57)

The required filter can then be designed by using the following
procedure:
Step 1: Design a linear-phase FIR filter of length given

by (53) with the prescribed passband- and stop-
band-edge frequencies, by using D-Filter or the
MATLAB™ function fir1 or some other way.

Step 2: If the total number of SOSs is , the IIR filter
order is . Using the BMT method, transform
the FIR filter obtained in Step 1 to an IIR filter of
order .

Step 3: Form the transfer function in (54).
Step 4: Using in (54) for initialization, solve the op-

timization problem in (56) for the prescribed group
delay of .

Step 5: Using (20) compute the group-delay deviation, ,
of the filter obtained in Step 4. If is less than the
maximum prescribed value, the filter specifications
are satisfied and the algorithm is terminated; other-
wise, set and go to Step 2.

C. Practical Considerations

The computational effort required to complete a design is
directly proportional to the number of frequency sample points
used in sets , , and . To reduce the number of sample
points and at the same time prevent spikes in the error function,
the nonuniform variable sampling (NVS) technique described
in [23] (see also Chapter 16 of [3]) was used for the choice
of sample points. When compared with the standard uniform

sampling method, the NVS technique not only reduces the
computational effort by around an order of magnitude but it also
reduces the passband ripple and improves the convergence of
our algorithms.
The weight for the relaxation parameter, , in (48)

should not be too small as this can make the optimization
algorithm unstable and prevent it from converging; at the same
time, it should also not be too large as this can slow down
the convergence process. Typical values of that have been
found to work well range between 500 to 5000.
The computational efficiency of the algorithm is also depen-

dent on two other aspects: the efficiency of the SOCP solver
and the number of iterations required to achieve convergence.
For the former, most SOCP solvers, including the one in the Se-
DuMi toolbox for MATLAB™, are polynomial-time type algo-
rithms which can be easily run on inexpensive computers such
as a laptop. For the latter, the number of iterations to achieve
convergence is determined by how close the initialization point
is to the final solution. Sometimes, the solution keeps improving
with each iteration, but beyond a certain point the degree of im-
provement is too small to be of practical significance and the
optimization can be terminated. Sometimes, the objective func-
tion may at some point show very small improvement, or even
increase for several iterations before rapidly decreasing again.
To ensure that the optimization is not prematurely terminated,
the values of the objective function for the most recent iter-
ations are compared with the minimum value achieved before
and if each of these values is larger than the minimum value, the
optimization is terminated. A value of 40 for was found to
work well.

IV. EXPERIMENTAL RESULTS

In order to compare our method with other state-of-the-art
competing methods, we have designed and tested many nearly
linear-phase IIR filters satisfying a diverse range of specifica-
tions. Ten examples are included in this paper.
Parameters and in (48) were set to 0.01 and 1000,

respectively, while in (55) was set to 2.5. The poles
of the allpass part of the transfer function in (49) were initial-
ized with and uniformly distributed in the pass-
band of the required filter. The default maximum pole radius
was set to 0.98 except in Example 10 where it was set to a
value slightly higher than the maximum pole radius of the el-
liptic filter, namely, 0.991.
The frequency sets , , and were determined by using

the NVS technique [23] with a dense set of 2000 uniformly-
spaced virtual frequencies and 68 actual sample frequencies
for each passband and stopband, respectively. Six of the actual
sample frequencies located near the passband edge in and
stopband edge in were fixed with a separation of
radians between them. For each transition band, 500 virtual
sample frequencies and 18 actual sample frequencies were used.
In some of the design examples, namely, in Examples 1, 2,

and 3, the passband gain of the competing filter used for compar-
ison was constrained to have a maximum value of 1. To achieve
consistency between our filters and the competing filters, we
normalized the multiplier constant in some of the competing
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designs to achieve an average passband gain of unity. This was
done by adjusting the multiplier constant so that

(58)

where and are the maximum and minimum passband
gains, respectively.
In the experiments, the optimization was first carried out by

allowing the group delay to be variable without imposing a con-
straint on the maximum gain in transition bands. In some de-
signs, the filter obtained had an anomaly in a transition band
whereby the gain increased above unity. This may not be a
problem in many applications but if the anomaly is undesirable
it can be eliminated by imposing a constraint on the maximum
gain for the transition band with the anomaly. In such situations,
a second design was carried out to ensure that the gain in tran-
sition bands is always equal to or less than unity.
Our method can be used to design filters with optimized or

fixed group delay. However, some of the competing methods
do not provide for an optimized group delay. In such examples,
we have designed two filters, one with fixed and the other with
optimized group delay for the sake of comparison.
To deal with the above possibilities, some of the following

four design variants have been carried out for the examples
considered:
1) Design A-1 The group delay is optimized and no constraint
is applied on the transition-band gain.

2) Design A-2 The group delay is optimized and a constraint
is applied on the transition-band gain with .

3) Design B-1 The group delay is fixed and no constraint is
applied on the transition-band gain.

4) Design B-2 The group delay is fixed and a constraint is
applied on the transition-band gain with .

5) Design B-3 The group delay is fixed and is adjusted so
as to ensure that the transition band gain is close to that of
the competing filter.

Examples 1 to 3 involve a lowpass, a highpass, and a band-
pass filter and the designs obtained are compared with designs
based on the classical equalizer approach described in [4]. Ex-
amples 4, 5, 6, 8, and 9 concern different lowpass filters and
Example 7 concerns a highpass filter. The designs obtained with
the proposed method are compared with corresponding designs
obtained by using the methods in [5], [8], [12]–[14], [17], [18],
and [11], respectively. Example 10 is concerned with a selective
IIR bandpass-filter design which is compared with an optimal
FIR filter satisfying the same specifications.
It should be noted that the optional design step, Step 3b, in

Section III-A for the design of filters with optimized group delay
was included in all of the design examples except Example 10.

A. Examples 1, 2, and 3

The required design specifications for the filters of Examples
1, 2, and 3 are given in Table I, Table III, and Table V, the results
obtained are summarized in Table II, Table IV, and Table VI and
the amplitude responses and delay characteristics are plotted in
Figs. 1–3, respectively. The poles and zeros of our designs for
Examples 1 to 3 and also 4 to 9 are given in [24]. In designs
where a transition-band anomaly occurred both designs A-1 and
A-2 were carried out as seen in the tables.

Fig. 1. Overall, passband, and stopband amplitude responses and group-delay
characteristic for Design A-1 of the proposed method (solid curves) and the
method in [4] (dashed curves) for Example 1.

Fig. 2. Overall, passband, and stopband amplitude responses and group-delay
characteristic for Design A-1 of the proposed method (solid curves) and the
method in [4] (dashed curves) for Example 2.

The competing filters for Examples 1 and 2 correspond to
the first and second examples in [4], while that of Example 3 is
obtained from p. 761 of [3].
As can be seen in Table II, Table IV, and Table VI and

Figs. 1–3, the IIR filters designed using the proposed method
have much smaller maximum group-delay deviation for prac-
tically the same passband ripple and minimum stopband
attenuation as the designs obtained with the classical equalizer
method.

B. Examples 4, 5, 6, 7, and 8

The competing filters for Examples 4, 5, and 6 correspond
to the fourth example in [5], the first example in [18], and the
first example in [17], respectively. For Example 7 there are two
competing filters, namely, the second example in [12] and the
fourth example in [13], while for Example 8 the two competing
filters were taken from the third example in [14].
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Fig. 3. Overall, stopband, and passband amplitude responses and group-delay
characteristic for Design A-1 of the proposed method (solid curves) and the
method in [3] (dashed curves) for Example 3.

TABLE I
LOWPASS DIGITAL FILTER SPECIFICATIONS FOR EXAMPLE 1

TABLE II
DESIGN RESULTS FOR EXAMPLE 1 (LOWPASS FILTER)

For Examples 5, 7, and 8, the group delay was prescribed by
the competing methods and, therefore, both designs A and B
were carried out.
In Example 6, we considered the design of a lowpass filter

following a strategy reported in [17] whereby the filter is de-
signed as a cascade combination of an IIR filter and an FIR
filter. For the comparison, we considered two filter structures
for the proposed method: the first is similar to the structure used
in [17] and comprises a 4th-order IIR filter in cascade with an

TABLE III
HIGHPASS DIGITAL FILTER SPECIFICATIONS FOR EXAMPLE 2

TABLE IV
DESIGN RESULTS FOR EXAMPLE 2 (HIGHPASS FILTER)

TABLE V
BANDPASS DIGITAL FILTER SPECIFICATIONS FOR EXAMPLE 3

TABLE VI
DESIGN RESULTS FOR EXAMPLE 3 (BANDPASS FILTER)

11th-order FIR filter; the second is a 10th-order IIR filter which
is equivalent to the first structure in terms of the number of
multipliers.
The prescribed specifications for the filters in Examples 4 to

8 are given in Table VII, Table IX, Table XII, Table XV, and
Table XVIII, respectively. The results obtained are summarized
in Table VIII, Table X, Table XI, Table XIII, Table XIV,
Table XVI, Table XVII, Table XIX, and Table XX and the
frequency responses obtained are plotted in Figs. 4, 5, and
Fig. 6. As can be seen in these tables and figures, the IIR
filters designed using the proposed method have much smaller
maximum group-delay deviation for practically the same pass-
band ripple and minimum stopband attenuation as the designs
obtained with the competing methods in [5], [12], [13], [17],
[18], and [14] except that our method also yields increased
minimum stopband attenuation relative to that achieved with
the method in [17].
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Fig. 4. Overall, passband, and stopband amplitude responses and group-delay
characteristic for Design A-1 of the proposed method (solid curves) and the
method in [5] (dashed curves) for Example 4.

Fig. 5. Overall, passband, and stopband amplitude responses and group-delay
characteristic for Design A-1 of the proposed method (solid curves) and the
method in [18] (dashed curves) for Example 5.

C. Example 9

We also carried out comparisons with lowpass filter 1-iii
in the first example of [8]. Our designs A-1, A-2, and B-1
have slightly better amplitude-response specifications and, in
addition, offer reduced values of relative to that achieved
in [8], namely, 0.00043, 0.00089, 0.086 for designs A-1, A-2,
and B-1, respectively, versus 0.13 for the design in [8]. We
then compared the same designs with filter MMPE(2) in the
first example of [11] and again found that our designs offer
slightly better amplitude-response specifications and much
lower values of relative to that for the design in [11]
which was 0.11. The poles and zeros and additional results
for these filters are given in [24]. It should be noted that no
filter coefficients are provided in [11] but from the design
results reported in [11] we were able to estimate all the per-

Fig. 6. Overall, passband, and stopband amplitude responses and group-delay
characteristic for Design A-1 of the all-IIR filter structure of the proposed
method (solid curves) and the method in [17] (dashed curves) for Example 6.

TABLE VII
LOWPASS DIGITAL FILTER SPECIFICATIONS FOR EXAMPLE 4

TABLE VIII
DESIGN RESULTS FOR EXAMPLE 4 (LOWPASS FILTER)

TABLE IX
LOWPASS DIGITAL FILTER SPECIFICATIONS FOR EXAMPLE 5

TABLE X
DESIGN RESULTS FOR EXAMPLE 5 FOR VARIABLE

GROUP DELAY (LOWPASS FILTER)

formance parameters except for the maximum transition-band
gain.
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TABLE XI
DESIGN RESULTS FOR EXAMPLE 5 FOR FIXED GROUP DELAY (LOWPASS FILTER)

TABLE XII
LOWPASS DIGITAL FILTER SPECIFICATIONS FOR EXAMPLE 6

TABLE XIII
DESIGN RESULTS FOR EXAMPLE 6 WHERE THE PROPOSED FILTER IS AN

ALL-IIR FILTER STRUCTURE (LOWPASS FILTER)

TABLE XIV
DESIGN RESULTS FOR EXAMPLE 6 WHERE THE PROPOSED FILTER IS AN

IIR-FIR FILTER COMBINATION (LOWPASS FILTER)

TABLE XV
HIGHPASS DIGITAL FILTER SPECIFICATIONS FOR EXAMPLE 7

D. Example 10

The prescribed specifications for the high-selectivity band-
pass filter are given in Table XXI. For this filter, we obtained
type A-1 and A-2 IIR designs and also a corresponding optimal

TABLE XVI
DESIGN RESULTS FOR EXAMPLE 7 FOR VARIABLE

GROUP DELAY (HIGHPASS FILTER)

TABLE XVII
DESIGN RESULTS FOR EXAMPLE 7 FOR FIXED

GROUP DELAY (HIGHPASS FILTER)

TABLE XVIII
LOWPASS DIGITAL FILTER SPECIFICATIONS FOR EXAMPLE 8

TABLE XIX
DESIGN RESULTS FOR EXAMPLE 8 FOR VARIABLE

GROUP DELAY (LOWPASS FILTER)
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TABLE XX
DESIGN RESULTS FOR EXAMPLE 8 FOR FIXED GROUP DELAY (LOWPASS FILTER)

TABLE XXI
BANDPASS DIGITAL FILTER SPECIFICATIONS FOR EXAMPLE 10

TABLE XXII
COMPARISON BETWEEN DESIGN A-1 OF THE IIR FILTERS AND AN

EQUIVALENT FIR FILTER (EXAMPLE 10)

TABLE XXIII
COMPARISON BETWEEN DESIGN A-2 OF THE IIR FILTERS AND AN

EQUIVALENT FIR FILTER (EXAMPLE 10)

FIR design that satisfies the same specifications. The optimiza-
tion was carried out for various IIR-filter orders by varying
the number of additional biquadratic sections. The FIR filter
was designed using the weighted-Chebyshev method described
in Chapter 15 of [3]. The results obtained are presented in
Tables XXII and XXIII . In these tables, we also include the
numbers of multiplications, additions, and unit delays per sam-
pling period required by each design. These numerical values
correspond to a metric of the computational effort required in
a software implementation or the complexity of the hardware
in a hardware implementation since multiplications, additions,
and unit delays translate directly into multipliers, adders, and
unit-delay elements, respectively. We have assumed a cascade
realization of SOSs both for the IIR and FIR filters. For the
IIR filters we have assumed a direct canonic realization which
would require a total of multiplications, additions,

and unit delays in general where is the number of sections
[3]. In the case of the FIR filter, multiplications,
additions, and unit delays would be required in view of
the symmetry property of the transfer function coefficients.
From Tables XXII and XXIII , we observe a clear trade-off
between filter complexity and group delay versus maximum
group-delay deviation. Evidently, an IIR design would offer
significant reduction in the number of arithmetic operations
and group delay of the filter but at the cost of a higher max-
imum group-delay deviation. For most applications, a perfectly
linear-phase response is not required and a value of in
the range of 1 to 10, depending on the application, would be
entirely acceptable. In such applications, an IIR design that is
much more economical than an FIR design would be possible.
Note that the complexity of the IIR design is reduced and its ef-
ficiency is increased as the allowable value of is increased.
This constitutes a most valuable trade-off that would allow a
filter designer to design the most economical filter that would
satisfy the required specifications for the intended application.
The above design examples have shown that the proposed de-

sign method yields filters that satisfy arbitrary prescribed ampli-
tude-response specifications with the lowest maximum group-
delay deviation compared to those achieved with the competing
design methods considered. The solution obtained sometimes
depends on the initialization filter and group delay used, which
implies that global convergence cannot be guaranteed. In effect,
the proposed method gives quality suboptimal designs that may
sometimes be globally optimal.

V. CONCLUSION

A method for the design of nearly linear-phase IIR digital
filters that satisfy prescribed specifications has been described.
In the proposed method, the group-delay deviation is minimized
under the constraints that the passband ripple andminimumstop-
band attenuation meet the specifications and either a prescribed
or an optimized group delay can be achieved. By designing the
filter as a cascade of second-order sections, a nonrestrictive
stability constraint characterized by a set of linear inequality
constraints can be incorporated in the optimization algorithm.
An additional feature of the method, which is very useful in
certain applications, is the inherent capability of constraining
the maximum gain in transition bands to be below a prescribed
value. This facilitates the elimination of transition-band anoma-
lies which sometimes occur in filters designed by optimization.
Experimental results have shown that the nearly linear-phase

IIR filters designed using the proposed method have a much
lower maximum group-delay deviation for the same passband
ripple and minimum stopband attenuation when compared
with several filters designed with state-of-the-art competing
methods. It has also been demonstrated that nearly linear-phase
IIR filters offer some substantial advantages when compared
with their exact linear-phase FIR counterparts such as lower
group delay and filter complexity without compromising the
required amplitude-response specifications.

ACKNOWLEDGMENT

The authors are grateful to the Natural Sciences and Engi-
neering Research Council of Canada for supporting this work.



906 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 4, FEBRUARY 15, 2013

REFERENCES
[1] A. Antoniou and W.-S. Lu, Practical Optimization: Algorithms And

Engineering Applications. New York: Springer, 2007.
[2] D. J. Shpak, MATLAB™ functions iirlpnorm and iirlpnormc in the

MATLAB™ Filter Design Toolbox. Natick, MA, USA: The Math-
Works, 2002.

[3] A. Antoniou, Digital Signal Processing: Signals, Systems, and Fil-
ters. New York: McGraw-Hill, 2005.

[4] C. Charalambous and A. Antoniou, “Equalisation of recursive digital
filters,” Proc. Inst. Elect. Eng., vol. 127, no. 5, pp. 219–225, Oct. 1980.

[5] D. Guindon, D. J. Shpak, and A. Antoniou, “Design methodology for
nearly linear-phase recursive digital filters by constrained optimiza-
tion,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 7, pp.
1719–1731, Jul. 2010.

[6] W.-S. Lu, “Design of recursive digital filters with prescribed stability
margin: A parameterization approach,” IEEE Trans. Circuits Syst. I:
Fund. Theory Appl., vol. 45, pp. 1289–1298, Sep. 1998.

[7] W.-S. Lu, “An argument-principle based stability criterion and appli-
cation to the design of IIR digital filters,” in Proc. IEEE Intern. Symp.
Circuits Syst., 2006, pp. 4431–4434.

[8] J. L. Sullivan and J. W. Adams, “PCLS IIR digital filters with simulta-
neous frequency response magnitude and group delay specifications,”
IEEE Trans. Signal Process, vol. 46, no. 11, pp. 2853–2861, Nov. 1998.

[9] A. Jiang and H. K. Kwan, “IIR digital filter design with new stability
constraint based on argument principle,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 56, pp. 583–593, Mar. 2009.

[10] X. Lai and Z. Lin, “Minimax design of IIR digital filters using a sequen-
tial constrained least-squares method,” IEEE Trans. Signal Process.,
vol. 58, no. 7, pp. 3901–3906, Jul. 2010.

[11] X. Lai and Z. Lin, “Minimax phase error design of IIR digital filters
with prescribed magnitude and phase responses,” IEEE Trans. Signal
Process., vol. 60, no. 2, pp. 980–986, Feb. 2012.

[12] A. Jiang and H. K. Kwan, “Minimax design of IIR digital filters using
iterative SOCP,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no.
6, pp. 1326–1337, Jun. 2010.

[13] A. Jiang and H. K. Kwan, “Minimax design of IIR digital filters using
SDP relaxation technique,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 57, pp. 378–390, Feb. 2010.

[14] X. Lai, Z. Lin, and H. K. Kwan, “A sequential minimization proce-
dure for minimax design of IIR filters based on second-order factor
updates,” IEEE Trans. Circuits Syst.-II: Exp. Briefs, vol. 58, no. 1, pp.
51–55, Jan. 2011.

[15] W.-S. Lu and A. Antoniou, “Design of digital filters and filter banks by
optimization: A state of the art review,” in Proc. Eur. Signal Process.
Conf. (EUSIPCO), Tampere, Finland, Sep. 2000, pp. 351–354.

[16] B. Dumitrescu and R. Niemist, “Multistage IIR filter design using
convex stability domains defined by positive realness,” IEEE Trans.
Signal Process., vol. 52, no. 4, pp. 962–974, Apr. 2004.

[17] M. C. Lang, “Least-squares design of IIR filters with prescribed mag-
nitude and phase responses and a pole radius constraint,” IEEE Trans.
Signal Process., vol. 48, no. 11, pp. 3109–3121, Nov. 2000.

[18] W.-S. Lu and T. Hinamoto, “Optimal design of IIR digital filters with
robust stability using conic-quadratic-programming updates,” IEEE
Trans. Signal Process., vol. 51, no. 6, pp. 1581–1592, Jun. 2003.

[19] J. F. Sturm, “Using SeDuMi1.02, a MATLAB™ toolbox for optimiza-
tion over symmetric cones,” Optimiz. Methods Softw., vol. 11-12, pp.
625–653, 1999.

[20] [Online]. Available: http://www.ece.uvic.ca/~dsp/
[21] I. Kale, J. Gryka, G. D. Cain, and B. Beliczynski, “FIR filter order re-

duction: Balancedmodel truncation and Hankel-norm optimal approxi-
mation,” IEEE Proc. Vis. Image Signal Process., vol. 141, pp. 168–174,
Jun. 1994.

[22] L. Prenobo and L. M. Silverman, “Model reduction via balanced state
space representation,” IEEE Trans. Autom. Control, vol. AC-27, no. 4,
pp. 382–387, Apr. 1982.

[23] A. Antoniou, “Improved minimax optimization algorithms and their
application in the design of recursive digital filters,” IEE Proc., vol.
138, no. 6, pp. 724–730, Dec. 1991.

[24] [Online]. Available: http://www.ece.uvic.ca/~andreas/JournalPapers/
Poles_and_Zeros_and_Additional_Results.pdf

Rajeev C. Nongpiur (S’01–A’05–M’12) received
the B.Tech. degree in electronics and communi-
cations engineering from the Indian Institute of
Technology, Kharagpur, in 1998 and the Ph.D.
degree from the University of Victoria, British
Columbia, Canada, in 2005.
From 1998 to 2000, he worked as a systems en-

gineer at Wipro Technologies, from 2004 to 2008 as
a Research Scientist at QNX Software Systems, and
from 2008 to 2010 as Senior DSP Engineer with Uni-
cation Co., Ltd., Vancouver, Canada. He is currently

serving as Research Associate in the Department of Electrical and Computer
Engineering, University of Victoria, British Columbia, Canada. His research in-
terests are in the areas of signal processing for digital communications, speech,
audio, and biomedical applications. He is the author of more than 15 patents in
the area of audio signal processing.
Dr. Nongpiur is a member of the IEEE Circuits and Systems and Signal Pro-

cessing Societies.

Dale J. Shpak (S’79–M’86–SM’09) received the
B.Sc. (electrical engineering) degree from the Uni-
versity of Calgary, Canada, in 1980. From 1980 to
1982, he was an engineer for the City of Calgary
Electric System while he received the M.Eng. degree
in electronics also from the University of Calgary.
In 1989, he received the Ph.D. degree from the
University of Victoria, Canada.
In 1988, he joined the Department of Engineering,

Royal Roads Military College, as a Professor and re-
turned to industry when it closed in 1995. Between

1982 and 1987, he performed research on computer systems, microelectronics,
and DSP algorithms and implementation. Since 1989, he has held a faculty po-
sition with the University of Victoria in addition to his other professional ac-
tivities. As an Adjunct Professor of Electrical and Computer Engineering, he
receives ongoing NSERC funding for research programs with his graduate stu-
dents. He joined the Department of Computer Science, Camosun College, in
1999. He has instructed more than 30 different courses including object-ori-
ented programming, computer networks, digital circuit design, digital filters,
materials science, software engineering, and real-time and concurrent systems.
He held several positions in industry where he developed algorithms, software,
circuits, networking systems, and embedded systems. Since 1984, he has served
as a consultant and develops software and embedded systems for products in-
cluding audio processing, wireless sensing and control, and remote sensing. He
is a principal developer of award-winning products, including the Filter Design
Toolbox for MATLAB. His principal research interests are in the areas of signal
processing for communications and audio, design and implementation of em-
bedded systems, and digital filter design. He also develops free software for
music education.
Dr. Shpak is a Member of the Association of Professional Engineers of the

Province of British Columbia.

Andreas Antoniou (M’69–SM’79–F’82–LF’04) re-
ceived the B.Sc.(Eng.) and Ph.D. degrees in electrical
engineering from the University of London, U.K., in
1963 and 1966, respectively.
He taught at Concordia University from 1970 to

1983, was the founding Chair of the Department of
Electrical and Computer Engineering, University of
Victoria, B.C., Canada, from 1983 to 1990, and is cur-
rently Professor Emeritus. His teaching and research
interests are in the area of digital signal processing.
He is the author of Digital Signal Processing: Sig-

nals, Systems, and Filters (New York: McGraw-Hill, 2005), and coauthor with
Wu-Sheng Lu of Practical Optimization: Algorithms and Engineering Applica-
tions (New York: Springer, 20070.
Dr. Antoniou is a Fellow of the IET. He served first as an Associate Ed-

itor and after, as Editor–in-Chief for the IEEE TRANSACTIONS ON CIRCUITS
AND SYSTEMS from 1983 to 1987, as a Distinguished Lecturer of the IEEE
Signal Processing and the Circuits and Systems Societies during 2003–2004
and 2006–2007, respectively, and as General Chair of the 2004 International
Symposium on Circuits and Systems. He was awarded the CAS Golden Jubilee
Medal by the IEEE Circuits and Systems Society, the B.C. Science Council
Chairman’s Award for Career Achievement for 2000, the Doctor Honoris Causa
degree by the National Technical University, Athens, Greece, in 2002, the 2005
IEEE Circuits and Systems Society Technical Achievement Award, the 2008
IEEE Canada Outstanding Engineering Educator Silver Medal, the 2009 IEEE
Circuits and Systems Society Education Award, the 2011 Craigdarroch Gold
Medal for Career Achievement and the 2011 Legacy Award for Research both
from the University of Victoria.


