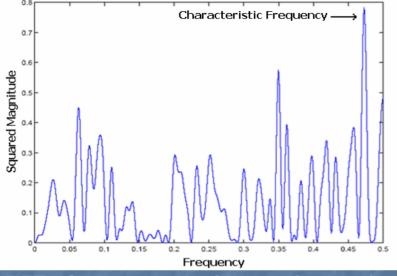
Recent Research Results on the Application of DSP to Genomics

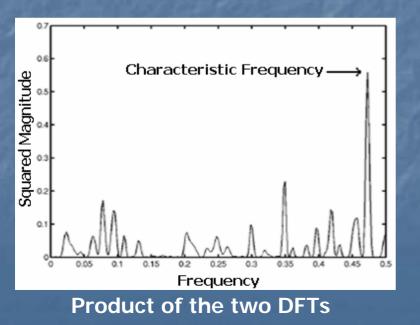
Parameswaran Ramachandran and Andreas Antoniou

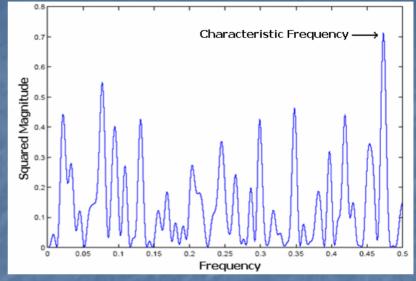
Department of Electrical Engineering, University of Victoria, BC, Canada.

Identification of Hot Spots in Proteins


 Different regions of a protein molecule interact among themselves.

- These interactions enable the string-like protein molecules to fold into complex 3-dimensional (3-D) structures.
- Protein molecules perform their function by selectively binding to other molecules by virtue of their 3-D structures.
- The regions of a protein molecule where selective bindings occur are called hot spots.

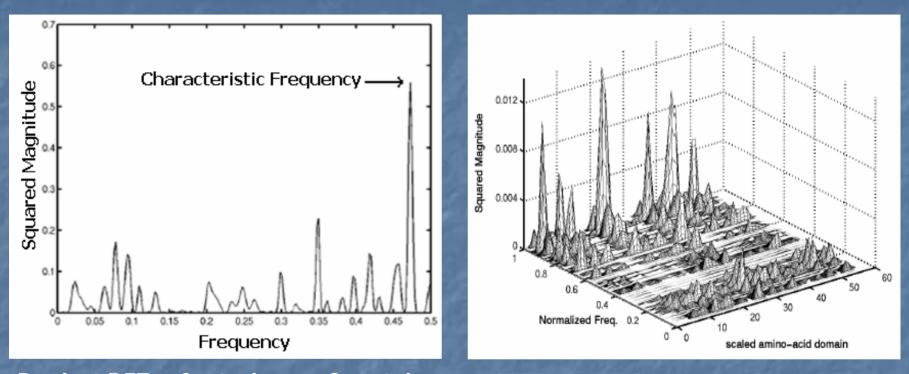

The energies of free electrons in the amino acids can be represented by numbers called EIIP (electron-ion interaction potential) values.


By assigning these numbers to the amino acids, a protein can be represented by a numerical sequence.

 The DFTs of the numerical sequences of a group of proteins performing similar functions have been observed to share a unique frequency component (see Cosic [1]).
This is called the characteristic frequency of the particular group.

DFT of mouse cytochrome C protein

DFT of tuna cytochrome C protein


The hot spots in a protein can be located by identifying the regions where the characteristic frequency is dominant.

P. Ramachandran, A. Antoniou, and P. P. Vaidyanathan, 38th Asilomar Conference on Signals, Systems, and Computers, November 2004.

Four steps:

- Convert a number of proteins of a particular functional group into numerical sequences
- Compute the DFTs of the sequences and multiply them pointwise to determine the characteristic frequency
- Compute the STFT of the protein sequence in question using a suitable window
- Multiply each column of the STFT by the DFT product

P. Ramachandran, A. Antoniou, and P. P. Vaidyanathan, *38th Asilomar Conference on Signals, Systems, and Computers,* November 2004.

Product DFTs of cytochrome C proteins

STFT of tuna heart cytochrome C protein, with peaks as the hot spots

The 3-D plots could be displayed as color-coded contour plots, just like the spectograms!

P. Ramachandran, A. Antoniou, and P. P. Vaidyanathan, *38th Asilomar Conference on Signals, Systems, and Computers,* November 2004.

Conclusions

An efficient method to identify and locate hot spots in proteins was developed.

- The hot spots identified were found to match well with other available published data.
- The method is being tried on a variety of proteins from different organisms to verify its usefulness.
- Work on improving the method in terms of its accuracy and ease of use is being carried out.
- The use of digital filters for identifying hot spots is also being explored.

References

- I. Cosic, "Macromolecular bioactivity: is it resonant interaction between macromolecules? – theory and applications," *IEEE Trans. on Biomedical Engr.*, vol. 41, no. 12, pp. 1101-1114, Dec. 1994.
- P. Ramachandran, A. Antoniou, and P. P. Vaidyanathan, 38th Asilomar Conference on Signals, Systems, and Computers, November 2004.