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INTRODUCTIONINTRODUCTION

• The design of digital filters 
by means of optimization 
involves multiple and often 
conflicting design criteria 
and specifications.

• The optimization problem is 
complex, highly nonlinear, 
and multimodal in nature.
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CLASSICAL OPTIMIZATION ALGORITHMSCLASSICAL OPTIMIZATION ALGORITHMS

• Fast and efficient

• Very good in obtaining local solutions

• Unbeatable for the solution of convex (concave) 
problems

• In multimodal problems, they tend to zoom to a 
solution in the locale of the initialization point. 

• Not equipped to discard inferior local solutions in 
favour of better solutions.

4
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CLASSICAL OPTIMIZATION ALGORITHMS CLASSICAL OPTIMIZATION ALGORITHMS (Cont(Cont’’d)d)

• Constraints can be imposed on the objective function 
but the mathematical complexity of the optimization 
problem is increased often by several orders of 
magnitude.

• Increased mathematical complexity usually introduces 
ill-conditioning and on occasion it renders the problem 
intractable.
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GENETIC ALGORITHMS (GAs)GENETIC ALGORITHMS (GAs)

• Are very flexible, non-problem specific, and robust. 

• Can explore multiple regions of the parameter 
space for solutions simultaneously. 

• Can discard suboptimal solutions in favour of more 
promising subsequent local solutions. 

• They are more likely to obtain better solutions for 
multimodal problems.
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GENETIC ALGORITHMS (ContGENETIC ALGORITHMS (Cont’’d)d)

• Owing to the heuristic nature of GAs, arbitrary 
constraints can be imposed on the objective 
function without increasing the mathematical 
complexity of the problem.

• They require a very large amount of computation. 
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GENETIC ALGORITHMS (ContGENETIC ALGORITHMS (Cont’’d)d)

•• GA milestonesGA milestones::

– Influenced by Darwin’s Origin of 
Species

– Introduced by Holland in 1962

– Investigated further by Rechenberg 
and Schwefel in 1965

– First textbook on GAs with detailed 
analysis: Goldberg,1989

– First GA paper on filter design: 
Etter and Masukawa,1981
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FUNDAMENTAL STEPS OF GA FUNDAMENTAL STEPS OF GA 

• In a nutshell, a GA entails four fundamental steps as 
follows:

–– Step 1Step 1: Create an initial population of random 
solutions (chromosomeschromosomes) by some means. 

–– Step 2Step 2: Assess the chromosomes for fitness using 
the criteria imposed on the required solution and 
create an elite set of chromosomes by selecting a 
number of chromosomes that best satisfy the 
requirements imposed on the solution.
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FUNDAMENTAL STEPS OF GA (ContFUNDAMENTAL STEPS OF GA (Cont’’d)d)

–– Step 3Step 3: If the top-ranking chromosome in the elite 
set satisfies fully the requirements imposed on the 
solution, output that chromosome as the required 
solution, and stop. Otherwise, continue to Step 4.

–– Step 4Step 4: Apply crossover between pairs of 
chromosomes in the elite set to generate more 
chromosomes and subject certain chromosomes 
chosen at random to mutations, and repeat from 
Step 2. 
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ESSENTIAL FEATURES OF GAsESSENTIAL FEATURES OF GAs

• As in the natural evolution of living organisms, 

– Chromosomes with new traits are generated, 

– chromosomes with better traits tend to survive and 
transfer those traits to their descendant 
chromosomes, and 

– after a certain period of CPU time, a chromosome 
will emerge that best satisfies the requirements 
imposed on the solution.
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CONCEPTUAL REPRESENTATION OF GAsCONCEPTUAL REPRESENTATION OF GAs

Selection
criteria

Genetic
operators

Initialization
Chromosome

coding
Objective function

formulation

Optimization problem

Crossover

Selection Mutation

Fitness test

Generation

counter

Genetic

cycle

Optimized solution
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OBJECTIVE FUNCTIONOBJECTIVE FUNCTION

• The objective function for GAs is formulated as in 
classical optimization algorithms.

• GAs do not need gradient information. Therefore, 
the mathematical structure of these algorithms is 
simple and flexible.

• Multiobjective variants of GAs can handle problems 
with multiple, often conflicting, optimization goals.
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INITIALIZATIONINITIALIZATION

• The initial population can be created in various ways 
as follows:

– Through random selection

– Through a deterministic uniformly distribution

– By creating a seed such as a solution obtained by 
classical optimization and then applying random 
perturbations to it.

– Using a combination of two or more of the above 
schemes.
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CHROMOSOME CODING CHROMOSOME CODING 

• Chromosome coding is the way of representing the 
design variables.

• GAs use various coding schemes such as:

– binary coding 

– integer coding

– Gray coding

– decimal coding
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CHROMOSOME CODING (ContCHROMOSOME CODING (Cont’’d)d)

•• Binary codingBinary coding : Each variable is encoded into a bit 
string of predefined length.

•• Integer codingInteger coding : The elements of chromosome vectors 
are integers.

•• Gray codingGray coding : A binary coding with minimum Hamming 
distance between adjacent numbers (adjacent 
numbers differ in one bit). 

•• Decimal codingDecimal coding : The elements of chromosome vectors 
are decimal numbers.
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CHROMOSOME CODING (ContCHROMOSOME CODING (Cont’’d)d)

• The choice of coding scheme depends on the 
optimization problem at hand, e.g.,

– binary coding is useful for discrete variables.

– decimal coding might be necessary when high-
precision is required.
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GENETIC OPERATORSGENETIC OPERATORS

•• CrossoverCrossover and mutationmutation are used to produce new 
individuals from the parent chromosomes.

• There are many ways of performing crossover: 

– One-point, two-point, or uniform crossover is used 
with binary coding.

– Simulated binary crossover or perturbation is used 
with decimal coding. (Simulated binary crossover is 
designed to imitate one-point binary crossover.)

• Mutation randomly changes an offspring after crossover.

– Mutation is treated as supporting operator for the 
purpose of restoring lost genetic material.
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GENETIC OPERATORS (ContGENETIC OPERATORS (Cont’’d)d)
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GENETIC OPERATORS (ContGENETIC OPERATORS (Cont’’d)d)

• Both crossover and mutation are probabilistic operations 
and their frequencies of occurrence are controlled by 
predefined probabilites.

• As crossover plays the key role in improving the 
solution, it is assigned a high frequency of occurrence 
(typically 80-90%).

• The frequency of occurrence of mutation is kept fairly 
low (typically 5-10%) to prevent the GA from producing a 
large number of random solutions.
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SELECTION METHODS SELECTION METHODS 

• Chromosomes are selected from the population based 
on the requirements imposed on the solutions in order 
to create a new population on the principle of the 
"survival of the fittest". 

• The common selection methods used are

• roulette-wheel selection

• tournament selection

• rank selection

• Elitist selection
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SELECTION METHODS (ContSELECTION METHODS (Cont’’d)d)

•• RouletteRoulette--wheelwheel selectionselection : Each individual's probability 
of being selected is proportional to its fitness value. 

•• Rank selectionRank selection : The individuals are ranked from 'best' 
to 'worst' on the basis of their measured fitness values 
and new fitness values are then assigned to the 
individuals that are inversely related to their ranking.

•• Tournament selectionTournament selection : A group of individuals are 
chosen at random from the population and the one 
with the best fitness value is selected.

•• ElitistElitist selectionselection : A number of individuals deemed to be 
the best are always passed on to the next generation 
unchanged.
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APPLICATION 1: FRACTIONALAPPLICATION 1: FRACTIONAL--DELAY FILTER DESIGNDELAY FILTER DESIGN

• Fractional-delay FIR filters are needed for many DSP 
applications that require a tunable fractional delay 
(FD), e.g.,

– speech coding and synthesis, 

– sampling-rate conversion, 

– time-delay estimation, 

– analog-to-digital conversion.
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FRACTIONALFRACTIONAL--DELAY FILTER (ContDELAY FILTER (Cont’’d)d)

• Three approaches are available for the design: 

– Recompute the coefficients.

– Use lookup tables.

– Design an FD filter based on the Farrow structure.

• The FS was introduced by Farrow in1988.

– An FD is tunable on line without redesigning the filter.
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FRACTIONAL DELAY APPROXIMATIONFRACTIONAL DELAY APPROXIMATION

• Fractional delay (FD) filter:

• The impulse response of an ideal fractional delay 
filter can be represented by a sinc function shifted by 
the amount of FD.

is the integer delay and      is the fractional delayd

( )x n )()( dnxny)(dz
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FD FILTERS BASED ON FARROW STUCTURE  (FDFS)FD FILTERS BASED ON FARROW STUCTURE  (FDFS)

• An FS consists of (P +1) parallel FIR subfilters, each

of length N.

• Transfer function is 

where
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THE GA APPROACHTHE GA APPROACH

•• GA structureGA structure::

– A population of potential solutions is created from 
an initial least-squares solution.

– Adaptive crossovers and mutations are applied.

– The objective function used to evaluate the fitness 
of the individual solutions is based on both the 
amplitude response and delay errors.

– A two-stage termination criterion is used.
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CHROMOSOME STRUCTURECHROMOSOME STRUCTURE

•• ChromosomeChromosome ((candidate solutioncandidate solution) :) :

– Matrix BB consists of decimal-valued coefficients. 

– Is called the phenotype representation.

– The phenotype representation along with the 
objective function are used for fitness evaluation.
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ENCODING SCHEME ENCODING SCHEME 

•• Binary encodingBinary encoding::

– Uses a fixed number of bits.

– Is called the genotype representation.

– The genotype representation is used for genetic 
operations, i.e., crossover and mutation.

•• ExampleExample :

– Subfilter (SF) length = 5

– No. of subfilters = 3 

– 4-bit binary coefficients
100110111001

110001001111

001011000100

010110110010

110001101011

N

SF3SF2SF1
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INITIALIZATIONINITIALIZATION

•• Initialization of the GA:Initialization of the GA:

– An LS solution is used as seed  for the initial 
population.

– Half of the population is generated from points in 
the neighborhood of the seed.

– The remaining is generated randomly (to maintain 
diversity).

•• Subsequent generations:Subsequent generations:

– Two-thirds of the population is selected from the 
previous generation.

– One-third is generated randomly.
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CROSSOVERCROSSOVER

• Two complementary offspring chromosomes are   
generated from two randomly selected parent 
chromosomes.

– The frequency of crossover is controlled by the 
crossover probability, Px.

– A randomly created mask  is used to select 
genes from the two parents.

Parent A Parent B Random mask Offspring 1 Offspring 2
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MUTATIONMUTATION

– Uses random bit inversion.

– The frequency of mutation is controlled by the 
mutation probability, Pm .

– Pm is much smaller than Px.

– Serves as supporting operator for restoring lost 
genetic materials.

– Less effective than crossover in reducing the 
objective function.
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ADAPTIVE RATES OF GENETIC OPERATORSADAPTIVE RATES OF GENETIC OPERATORS

•• Adaptive crossover and mutation rates:Adaptive crossover and mutation rates:

– Adaptivity enables the GA to explore new areas of 
the parameter space when progress toward a 
solution is slow.

– Initially Px and Pm are set to relatively low values. 

– If no improvement is achieved in the solution after 
a number of generations, Px and Pm are increased 
by letting

Px = 1.05Px and Pm = 1.1Pm
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OBJECTIVE FUNCTIONOBJECTIVE FUNCTION

•• Objective function: Objective function: 

– Peak amplitude-response error:

– Peak phase-delay error:  

– and        are positive weighting factors.
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SELECTIONSELECTION

•• Ranking processRanking process

– Chromosomes are ranked on the basis of fitness.

– A small number of top-ranked chromosomes are 

recorded as elite chromosomes. 

– A fixed number of best-fit chromosomes are 

selected for the next generation.

The best fitness value in a generation is defined as

for

where Np is the population size.

)(min i PNi ...,,1
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TERMINATION CRITERIONTERMINATION CRITERION

•• The GA terminatesThe GA terminates

– when a predefined maximum number of 
generations is exceeded, or

– if it does not improve the solution after a 
prespecified number of ‘unproductive’ generations.

•• TwoTwo--stage terminationstage termination

– In early stages, a larger number of unproductive 
generations is allowed before termination.

– In later stages, a smaller number of unproductive 
generations is allowed before termination.
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EXAMPLE OF FDFS FILTER DESIGNEXAMPLE OF FDFS FILTER DESIGN

Amplitude response

• Passband p = 0.5, Farrow structure designed with 3 

subfilter, each of length 9. 

Phase delay
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COMPARISON WITH LS METHODCOMPARISON WITH LS METHOD

Max amplitude-response error 

Maximum error Maximum error vsvs fractional delay plotsfractional delay plots

Delay error
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EVOLUTION OF OBJECTIVE FUNCTIONEVOLUTION OF OBJECTIVE FUNCTION

Reduction in objective function through the 

evolution of the GA
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REMARKS ON APPLICATION  # 1REMARKS ON APPLICATION  # 1

• The GA yields quantization-error-free FD filters.

• An objective function based on the amplitude-
response and delay errors criteria offers 
flexibility.

• The GA yields an improved design with respect 
to the initial LS design.

• GA requires a large amount of computation.
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APPLICATION 2: DELAY EQUALIZER DESIGNAPPLICATION 2: DELAY EQUALIZER DESIGN

• Linear-phase filters are usually designed as FIR or 
IIR filters.

• For highly selective filters, equalized IIR filters are 
often preferred.

– An IIR filter is first designed to meet the 
amplitude response specifications.

– A delay equalizer is constructed to equalize the 
group delay of the IIR filter.

– Allpass filters are used as delay equalizers.



DSP GroupDSP Group 42

DELAY EQUALIZER DESIGN (ContDELAY EQUALIZER DESIGN (Cont’’d)d)

• Delay equalizers are usually designed by using 
gradient-based optimization methods (quasi-Newton 
methods work very well).

• The stability of the equalizer obtained cannot be 
guaranteed.

• To assure stability constrained optimization is often 
used which causes the objective function to become 
highly nonlinear.
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DELAY EQUALIZER TRANSFER FUNCTIONDELAY EQUALIZER TRANSFER FUNCTION

/ 2L N
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A delay equalizer can be characterized by a transfer 

function of the form

where is the number of equalizer sections.

The equalizer coefficient vector can be written as

The stability condition for an equalizer is
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OBJECTIVE FUNCTIONOBJECTIVE FUNCTION

The group-delay flatness of the equalized filter can be 

measured in terms of a parameter Q which is given 

by

where

=  Max group delay

=  Min group delay

and

• Q is used as the objective functionobjective function
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THE GA APPROACHTHE GA APPROACH

•• GA structure:GA structure:

– The initialization, crossovers, and mutations are 
done as in the design of FD filters.

– The objective function used to evaluate the fitness 
of the individual solutions is based on the flatness 
of the group delay of the filter-equalizer 
combination.

– A sequential optimization is used.
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CHROMOSOME STRUCTURECHROMOSOME STRUCTURE

•• ChromosomeChromosome ((candidate solutioncandidate solution) :) :

– The coefficient vector x expressed in matrix form is 
used as the candidate solution:

– Each column represents an equalizer section.

– To avoid very long binary strings, a floating-point 
representation is used in encoding the 
chromosomes.

c1L…c13c12c11

c0L…c03c02c01
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INITIALIZATIONINITIALIZATION

•• Initialization of the GA:Initialization of the GA:

– The initial population is created randomly.

•• Subsequent generations:Subsequent generations:

– Two-thirds of the population is selected from the 
previous generation.

– One-third is generated randomly (to maintain 
diversity).
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ADAPTIVE PERTURBATIONADAPTIVE PERTURBATION

– CCrossovers are replaced by an adaptive perturbation 

technique.

– Initially, a relatively large perturbation is applied.

– As time advances, the level of perturbation is 

reduced exponentially using the control factor

– When no improvement is achieved after a specified 
number of generations, K is increased by one.

– MMutations are replaced with fixed but occasional 
perturbations.

/150.4 Ke
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SELECTIONSELECTION

•• Ranking processRanking process

– Only stable solutions are involved in the ranking.

– A fixed number of best-fit chromosomes are 

selected for the next generation.

The best fitness value in a generation is defined as

for

where Np is the population size.

)(min iQ
PNi ...,,1
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SEQUENTIAL DESIGNSEQUENTIAL DESIGN

– The required equalizer order cannot be predicted.

– New equalizer sections are added sequentially.

– The best solution for the k-section design is used 
to construct an initial (k +1)-section design that 
can be used as seed for the next design. Random 
values are used for the coefficients of the new 
section.



DSP GroupDSP Group 51

DESIGN EXAMPLE: BANDPASS FILTERDESIGN EXAMPLE: BANDPASS FILTER

p

Filter specs.: Filter specs.: 

= 1, = 40 dB

a1 = 0.2, p1 = 0.3

a2 = 0.7, p2 = 0.5

s = 2 rad/s

Maximum delay error: 2%

a
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DESIGN EXAMPLE (ContDESIGN EXAMPLE (Cont’’d)d)

Reduction in objective function through the 

evolution of the GA.

Results:Results:

• Number of equalizer sections required: 5.

•The value of Q was reduced from 52.46% to 1.95%.

2-section equalizer 5-section equalizer
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REMARKS ON APPLICATION  # 2REMARKS ON APPLICATION  # 2

• The GA can minimize an objective function based 
on the passband filter-equalizer group delay 
deviation.

• It discards unstable solutions.

• Equalizers can be designed that would satisfy 
arbitrary prescribed specifications.
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OTHER APPLICATIONSOTHER APPLICATIONS

• Design of cascade-form multiplierless FIR filters

• Design of asymmetric FIR filters

• Hybrid GA–LS approach for IIR filters
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CASCADECASCADE--FORM MULTIPLIERLESS FIR FILTER DESIGNFORM MULTIPLIERLESS FIR FILTER DESIGN

– The approach uses a recently introduced GA called 
orthogonal GA (OGA).

– OGA is based on the so-called experimental design 
technique.

– A fixed-point design of a linear-phase FIR filter is 
obtained.

– The effects of a finite word length are minimized by 
considering the filter as a cascade of two subfilters.
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DESIGN EXAMPLEDESIGN EXAMPLE

Amplitude Response

•• Lowpass filter specs.:Lowpass filter specs.:

p = 0.35, a = 0.5 rad/s, Cascade sections: N = 15+13

The initial cascade and direct-form designs were both 
obtained with the Remez exchange algorithm except that 
in the first design the transfer function was factorized 

before coefficient quantization.

30.1537.7034.30(dB)

0.1740.1050.229(dB)

Direct-
form

(Remez)

Design
by

OGA

Initial
cascade
design

S

p
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DESIGN OF ASYMMETRIC FIR FILTERSDESIGN OF ASYMMETRIC FIR FILTERS

• SSymmetric Coefficients

– Efficient design methods, e.g., window method, 
Remez algorithm.

– Large group delay.

• AAsymmetric Coefficients

– Approximately linear phase response in passband

– Arbitrary amplitude response in the baseband

– Relatively small group delay

– Can be designed by using classical optimization 
methods with a multiobjective formulation.

– Can also be designed by using a variant of 
multiobjective GA known as elitist non-dominated 
sorted GA (ENSGA).
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MULTIOBJECTIVE OPTIMIZATIONMULTIOBJECTIVE OPTIMIZATION

• The design problem requires simultaneous optimization 
of several objective functions.

• The approach yields a set of compromise solutions 
known as Pareto optimal solutions.

Minimize

)](...,),(),([)( 21 xxxxf kfff
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Xx
M
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DESIGN EXAMPLEDESIGN EXAMPLE

•• Design specs.:Design specs.: p = 0.25, a = 0.4 rad/s, N = 23

• A weighted LS (WLS) solution was used as seed for 
the initial set of solutions.

Amplitude Response Passband Group Delay
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DESIGN EXAMPLE (ContDESIGN EXAMPLE (Cont’’d)d)

Results:Results:

0.7738.070.58NSGA

2.3136.741.06WLS

(%)(dB)(dB)p S
Q

3-D plot of Pareto optimal solutions
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HYBRID GAHYBRID GA––LS APPROACH FOR IIR FILTERSLS APPROACH FOR IIR FILTERS

• Two types of algorithms, a GA and a least-squares 
quasi-Newton algorithm, are used in a hybrid 
algorithm that combines the advantages of the two 
algorithms and avoids their limitations. The objective 
is to 

– achieve a robust optimization method for IIR filters, 

– reduce the computational effort associated with the 
GA.

• A GA is used for global search.

• A quasi-Newton algorithm is used for the local search.
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DESIGN EXAMPLEDESIGN EXAMPLE

•• IIR bandpass filter specs.: IIR bandpass filter specs.: 

a1 = 120, p1 = 175, p2 = 220, a2 = 320, s = 1000 rad/s

Amplitude Response
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Passband Error Stopband Error

DESIGN EXAMPLE (ContDESIGN EXAMPLE (Cont’’d)d)
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CONCLUSIONSCONCLUSIONS

• The design of digital filters and equalizers through the 
use of GAs has been explored.

• Five different types of classical design problems have 
been investigated.

• In all projects, improved designs have been achieved 
relative to designs produced by well-known state-of-
the-art techniques.

• Evolution is a very slow process. Consequently GAs 
require a large amount of computation. However, this is 
not a critical demerit nowadays unless the filter design 
needs to be carried out in real or quasi-real time.
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