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Compressive Sensing
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CS exploits the signal’s sparsity or compressibility of its transform
coefficients to achieve a compact signal representation.

The price that must be paid for compact signal representation is a
nontrivial recovery process, i.e., finding a sparse solution to an
underdetermined system of equations.

CS finds many application, e.g.,

- Data compression.
- Medical imaging.
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Compressive Sensing (cont.)

The robust recovery process is carried out by minimizing a term that
penalizes in the least-square sense the unknown noise signal plus
another regularization term that promotes a sparse solution.
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The robust recovery process is carried out by minimizing a term that
penalizes in the least-square sense the unknown noise signal plus
another regularization term that promotes a sparse solution.

Widely used methods usually promote sparsity by means of the ℓ1
norm:

- ℓ1-Magic suite of algorithms.
- Gradient projection for sparse reconstruction (GSPR).
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Motivation

Sparsity promoting functions such as the ℓ0 norm can outperform the
ℓ1 norm.
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Sparsity promoting functions such as the ℓ0 norm can outperform the
ℓ1 norm.

However, the ℓ0 norm is generally of little practical use because its
computation is intractable.

We propose a robust signal recovery approach for compressive sensing
using unconstrained optimization.

We employ a convex and differentiable quadratic approximation of the
smoothly clipped absolute deviation (SCAD) as the sparsity
promoting function.
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a = Ψ
T
f

- Ψ is the N ×N wavelet matrix formed by setting ψi as the ith
column of Ψ.

- The set {ψi : i = 1, 2, . . . ,N} is the collection of orthonormal wavelet
bases.

- The signal’s transform coefficient vector a =
[

a1 a2 · · · aN
]

is
obtained by computing inner products ai = 〈f ,ψi〉.

The coefficient vector a is assumed to be sparse in the sense that it
has only S nonzero values and S < N .
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Θ =
[

θ1 θ2 · · · θN
]

- Sensing vector is θk =
[

θ1 θ2 · · · θQ
]T

.
- In the CS theory, θk is usually a Gaussian vector with independent
standard normal entries.

The combination of Θ and Ψ define a near-optimal acquisition

scheme, i.e., UCS = ΘΨ
T .

The Q linear measurements are the components of vector b given by

b = UCS (f)

The incoherence µ (Θ,Ψ) is low.
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b̃ = UCS(f) + e

- Vector e is some unknown bounded perturbation such that ||e||ℓ2 ≤ ǫ
where ǫ is a small positive constant.

The process of recovering f is challenging because the available
information is severely incomplete and the few available observations
are also inaccurate.

It has been shown by Candès et al. that we can recover f with an
error that is at most proportional to the noise level by using the
recovery process

minimize
f

||ΨT
f||ℓ1 subject to ||b̃− UCS(f)||ℓ2 ≤ ǫ
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known sparsity-promoting function.

Other types of sparsity-promoting functions are now under active
investigation.

The ℓp norm, given by ||a||ℓp = (|a1|
p + |a2|

p + · · ·+ |aN |p)
1
p gives

the number of nonzero entries in a when p = 0.

We would then be inclined to replace the ℓ1 by the ℓ0 norm in robust
signal recovery process.

The solution of the new optimization problem could recover sparse
solutions with much fewer measurements Q.

This is of little practical use as the optimization problem becomes
nonconvex requiring an intractable combinatorial search.
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It is used in our proposed robust recovery process for two main
reasons:

- The SCAD performs as well as the oracle estimator, i.e., as if the
coefficients which are zero were known.

- Fan and Li proposed a local quadratic approximation (LQA) of the
SCAD which renders the problem computationally tractable.
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Proposed Approach for Robust Recovery (cont.)

The problem of minimizing the objective function F(a) is an
unconstrained nonlinear programming problem (UNLP).
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Proposed Approach for Robust Recovery (cont.)

Two issues must be addressed in the proposed approach:
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λGCV = argmin
λ

{

||b̃−Θa||2
ℓ2

[

1−tr
(

Θ(ΘTΘ+EP
λ
)
−1

ΘT
)]2

}
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Numerical Simulations

We compare the signal recovery process of our proposed approach
with two competing methods:
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Numerical Simulations (cont.)

Proposed Robust Recovery (σ = 10−4)
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Solid lines correspond to the probability of “perfect” signal recovery,
such that ||a− a

∗||ℓ∞ ≤ 10−3.
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Numerical Simulations (cont.)

Proposed Robust Recovery (σ = 10−4)
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Marked improvement in signal recovery with proposed UNLP over the
SOCP and BCQP formulations for a good choice of λ.

F. Teixeira, S. Bergen, A. Antoniou (UVic) Robust Recovery Approach for CS IEEE ISCAS 2010 16 / 19



Numerical Simulations (cont.)

Proposed Robust Recovery (σ = 10−4)
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These improvements come with an added computational cost of
roughly 2 to 3 times that required for the SOCP and BCQP.
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Conclusions

A robust signal recovery approach for compressive sensing using
unconstrained minimization was proposed.
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Thank you for your attention.
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