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Main idea

Introduction

Compressive sensing(CS) is a process of representing a large signal by
a small number of measurements.
The price that must be paid for compact signal representation isa
nontrivial signal recovery process.

The recovery process can be formulated as an undetermined
least-squares problem where the solution is known to be sparse.

The solution sparsity assumption is based on the fact that most
practical signals can be represented concisely in a transform
domain.
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A method for sparse-signal recovery

Motivation

Widely known methods for signal recovery such as the`1-Magic
methodpromote sparsityby means of thè 1 norm:

Preferred sparsity promoting functions such as the`0 norm are
computationally intractable for large signals.

We propose anew signal recovery methodfor CS using the smoothly
clipped absolute deviation (SCAD) function as an alternative to the
`0 norm to promote sparsity.
The resultingnonsmoothand nonconvexconstrained optimization
problem that must be solved to perform signal recovery is relaxed by:

1 Obtaining a series oflocal linear approximationsof the SCAD,
which results in a series of nonsmoothconvexsubproblems.

2 Reformulatingeach subproblem as asmoothsecond-order cone
programming problem (SOCP).
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Signal acquisition setting

Sparse Representation

A vector f of length n represents theoriginal signal.

Vector a of the same length represents a sparse orcompressedversion
of the signal over an appropriate basis.

This representation is obtained by using the linear operationa = 	 T f
where	 2 Rn� n is orthonormal.

The operation is reversible and the original signalf can be exactly
recovered froma by using the relationf = 	 a.

Vector a has onlys nonzerovalues withs < n.
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Signal acquisition setting

Noisy Measurements

The measurementof the original signal is usually performed directly
in the 	 domain in the presence of measurementnoisez.

z has a known power bound" of the form jjzjj `2 � " .
The sensing operation in this context is given byb = � a + z.

� 2 Rq� n denotes a sensing matrix.
The entries of� are assumed to be independent and identically
distributed (i.i.d.) Gaussian random variables with zero meanand
variance 1=q.
Vector b of length q represents the noisy measurements.

The original signalf must be recovered from a signi�cantly
reducednumber of measurementsb such thatq � n.
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Sparse-Signal Recovery: Problem De�nition

Recovery Process: Goals

The goal of the recovery process is twofold:
1 To �nd the sparsestsignal.
2 To ensure that the signal found isconsistentwith the measurements.

The sparsityof f can be measured in terms of its transform
coe�cients a and a function of the form:

P� (a) =
nX

i =1

p� (jai j)

p� (jai j) quanti�es the magnitude of each individual coe�cient
of a.

The minimization ofP� (a) has a sparse solution.
For this reason, we callp� (jai j) a sparsity promoting function.
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Sparse-Signal Recovery: Problem De�nition

Sparse-Signal Recovery Problem

The problem can be approached via two di�erent formulations.
The unconstrainedformulation (or Lagrangian Form) de�ned by

minimize
a

k� a � bk` 2
+

1
�

P� (a)

The constrainedformulation de�ned by

minimize
a

P� (a) subject to: k� a � bk` 2
� "

Optimization theory asserts that the two problems are
equivalent.

1 The constrained formulation isharderto solve.
2 The relationship between" and 1=� is nontrivial.
3 It is easierto determine an appropriate" rather than a� .
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On the sparsest solution of the recovery problem

Obtaining the Sparsest Solution

The sparsest solutionfor the two problems can be obtained when
p� (jai j) = � jai jp and p = 0, i.e., by computing the`0 norm of a.

Unfortunately, the use of thè0 norm in the two problems requires an
intractablecombinatorial search for large signals.

Past work in CS has shown that when certainconditionson the
transform matrix	 and measurement matrix� are met:

We are able to recoverf from b by usingp� (jai j) = � jai j as the
sparsity promoting function, i.e., by computing thè1 norm of a.
The price that must be paid for this approximation is thatmore
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The SCAD as sparsity promoting function

SCAD Function

An interestingalternativeto the `0 norm as a sparsity-promoting
function is the smoothly clipped absolute deviation (SCAD)function.

We are interested in using the SCAD because it performs as well as
the oracle estimatorfor a problem similar to the unconstrained
formulation for sparse-signal recovery.

This means that the SCAD is asymptotically as e�cient as an ideal
estimator, namely, it performs as well as if the coe�cients that
are zero were known.

F. Teixeira, S. Bergen, A. Antoniou (UVic) A Signal Recovery Method for CS IEEE ISCAS 2011 9 / 16



Compressive Sensing Sparse-Signal Recovery Proposed Method Numerical Simulations Conclusions

The SCAD as sparsity promoting function

SCAD Function

An interestingalternativeto the `0 norm as a sparsity-promoting
function is the smoothly clipped absolute deviation (SCAD)function.

We are interested in using the SCAD because it performs as well as
the oracle estimatorfor a problem similar to the unconstrained
formulation for sparse-signal recovery.

This means that the SCAD is asymptotically as e�cient as an ideal
estimator, namely, it performs as well as if the coe�cients that
are zero were known.

F. Teixeira, S. Bergen, A. Antoniou (UVic) A Signal Recovery Method for CS IEEE ISCAS 2011 9 / 16



Compressive Sensing Sparse-Signal Recovery Proposed Method Numerical Simulations Conclusions

The SCAD as sparsity promoting function

SCAD Function

An interestingalternativeto the `0 norm as a sparsity-promoting
function is the smoothly clipped absolute deviation (SCAD)function.

We are interested in using the SCAD because it performs as well as
the oracle estimatorfor a problem similar to the unconstrained
formulation for sparse-signal recovery.

This means that the SCAD is asymptotically as e�cient as an ideal
estimator, namely, it performs as well as if the coe�cients that
are zero were known.

F. Teixeira, S. Bergen, A. Antoniou (UVic) A Signal Recovery Method for CS IEEE ISCAS 2011 9 / 16



Compressive Sensing Sparse-Signal Recovery Proposed Method Numerical Simulations Conclusions

The SCAD as sparsity promoting function

Using the SCAD in the Recovery Problem

Under the assumption that the noise level" is known in advance, it is
usually morenatural and e�cient to solve theconstrainedversion of
the recovery problem instead of the unconstrained one.
Unfortunately, use of the SCAD function on the constrained version
of the recovery problem has the following drawbacks:

The objective functionP� (a) is now concaveand nonsmooth.
The recovery problem becomes anonconvexand nonsmooth
constrained optimization problem.
This means that the recovery problem is computationally
intractable in its current form.
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Nonsmooth relaxation for the SCAD

Relaxing the Objective Function of the Recovery Problem

An e�ective convexapproximation ofP� (a) is based on a locallinear
approximation (LLA) top� (jai j) near a pointa(k) given by

La(k) (a) =
nX

i =1

�
p�

�
ja(k)

i j
�

+
d

dai
p�

�
ja(k)

i j
� �

jai j � j a(k)
i j

� �

Whena(k) � a, then La(k) (a) � P� (a).
Past work in statistical estimation proposed utilizing the LLA in the
context of penalized likelihood models:

In this context, a problem similar to theunconstrainedversion
of the recovery problem is addressed.
The least angle regression (LARS) algorithm is usually employed
in these problems for �nding the sparsest solution.
The LARS algorithm is known to havelimited applicability when
q � n.

F. Teixeira, S. Bergen, A. Antoniou (UVic) A Signal Recovery Method for CS IEEE ISCAS 2011 11 / 16



Compressive Sensing Sparse-Signal Recovery Proposed Method Numerical Simulations Conclusions

Nonsmooth relaxation for the SCAD

Relaxing the Objective Function of the Recovery Problem

An e�ective convexapproximation ofP� (a) is based on a locallinear
approximation (LLA) top� (jai j) near a pointa(k) given by

La(k) (a) =
nX

i =1

�
p�

�
ja(k)

i j
�

+
d

dai
p�

�
ja(k)

i j
� �

jai j � j a(k)
i j

� �

Whena(k) � a, then La(k) (a) � P� (a).
Past work in statistical estimation proposed utilizing the LLA in the
context of penalized likelihood models:

In this context, a problem similar to theunconstrainedversion
of the recovery problem is addressed.
The least angle regression (LARS) algorithm is usually employed
in these problems for �nding the sparsest solution.
The LARS algorithm is known to havelimited applicability when
q � n.

F. Teixeira, S. Bergen, A. Antoniou (UVic) A Signal Recovery Method for CS IEEE ISCAS 2011 11 / 16



Compressive Sensing Sparse-Signal Recovery Proposed Method Numerical Simulations Conclusions

Nonsmooth relaxation for the SCAD

Relaxing the Objective Function of the Recovery Problem

An e�ective convexapproximation ofP� (a) is based on a locallinear
approximation (LLA) top� (jai j) near a pointa(k) given by

La(k) (a) =
nX

i =1

�
p�

�
ja(k)

i j
�

+
d

dai
p�

�
ja(k)

i j
� �

jai j � j a(k)
i j

� �

Whena(k) � a, then La(k) (a) � P� (a).
Past work in statistical estimation proposed utilizing the LLA in the
context of penalized likelihood models:

In this context, a problem similar to theunconstrainedversion
of the recovery problem is addressed.
The least angle regression (LARS) algorithm is usually employed
in these problems for �nding the sparsest solution.
The LARS algorithm is known to havelimited applicability when
q � n.

F. Teixeira, S. Bergen, A. Antoniou (UVic) A Signal Recovery Method for CS IEEE ISCAS 2011 11 / 16



Compressive Sensing Sparse-Signal Recovery Proposed Method Numerical Simulations Conclusions

Nonsmooth relaxation for the SCAD

Relaxing the Objective Function of the Recovery Problem

An e�ective convexapproximation ofP� (a) is based on a locallinear
approximation (LLA) top� (jai j) near a pointa(k) given by

La(k) (a) =
nX

i =1

�
p�

�
ja(k)

i j
�

+
d

dai
p�

�
ja(k)

i j
� �

jai j � j a(k)
i j

� �

Whena(k) � a, then La(k) (a) � P� (a).
Past work in statistical estimation proposed utilizing the LLA in the
context of penalized likelihood models:

In this context, a problem similar to theunconstrainedversion
of the recovery problem is addressed.
The least angle regression (LARS) algorithm is usually employed
in these problems for �nding the sparsest solution.
The LARS algorithm is known to havelimited applicability when
q � n.

F. Teixeira, S. Bergen, A. Antoniou (UVic) A Signal Recovery Method for CS IEEE ISCAS 2011 11 / 16



Compressive Sensing Sparse-Signal Recovery Proposed Method Numerical Simulations Conclusions

Nonsmooth relaxation for the SCAD

Relaxing the Objective Function of the Recovery Problem

An e�ective convexapproximation ofP� (a) is based on a locallinear
approximation (LLA) top� (jai j) near a pointa(k) given by

La(k) (a) =
nX

i =1

�
p�

�
ja(k)

i j
�

+
d

dai
p�

�
ja(k)

i j
� �

jai j � j a(k)
i j

� �

Whena(k) � a, then La(k) (a) � P� (a).
Past work in statistical estimation proposed utilizing the LLA in the
context of penalized likelihood models:

In this context, a problem similar to theunconstrainedversion
of the recovery problem is addressed.
The least angle regression (LARS) algorithm is usually employed
in these problems for �nding the sparsest solution.
The LARS algorithm is known to havelimited applicability when
q � n.

F. Teixeira, S. Bergen, A. Antoniou (UVic) A Signal Recovery Method for CS IEEE ISCAS 2011 11 / 16



Compressive Sensing Sparse-Signal Recovery Proposed Method Numerical Simulations Conclusions

Nonsmooth relaxation for the SCAD

Relaxing the Objective Function of the Recovery Problem

An e�ective convexapproximation ofP� (a) is based on a locallinear
approximation (LLA) top� (jai j) near a pointa(k) given by

La(k) (a) =
nX

i =1

�
p�

�
ja(k)

i j
�

+
d

dai
p�

�
ja(k)

i j
� �

jai j � j a(k)
i j

� �

Whena(k) � a, then La(k) (a) � P� (a).
Past work in statistical estimation proposed utilizing the LLA in the
context of penalized likelihood models:

In this context, a problem similar to theunconstrainedversion
of the recovery problem is addressed.
The least angle regression (LARS) algorithm is usually employed
in these problems for �nding the sparsest solution.
The LARS algorithm is known to havelimited applicability when
q � n.

F. Teixeira, S. Bergen, A. Antoniou (UVic) A Signal Recovery Method for CS IEEE ISCAS 2011 11 / 16



Compressive Sensing Sparse-Signal Recovery Proposed Method Numerical Simulations Conclusions

A signal recovery method: LLA and SOCP subproblems

Proposed Method for Signal Recovery

We propose a new signal recovery method that uses the SCAD as
sparsity promoting function in the constrained version of the recovery
problem.
In order to overcomenonconvexity, we relax the concave objective
function P� (a) to its convexlinear approximation:

This problem setting results in a sequence of convexnonsmooth
constrainedsubproblems.
The sequence ofsolutionsof these subproblems generates a
monotonicallydecreasingsequence ofvaluesof the original concave
objective functionP� (a).

We show that the resultingnonsmoothconstrained subproblems
can be formulated assmoothsecond-order cone programming
(SOCP) subproblems.

This formulation is handy since each SOCP subproblem can be
solvede�ciently using standard state-of-the-art solvers such as
SeDuMi.
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Estimating the probability of perfect recovery

Reconstruction Performance of the Proposed Method

Reconstructionperformanceis usually compared in terms of the
probability of perfect signal recovery (PPSR).

Perfect signal recovery is declared when the solution obtained for the
recovery problema0 is close to the true known solutiona� .
Closeness is measured in the`1 sense, i.e.,jja0 � a� jj ` 1 � 10� 3.
The PPSR is estimated by performingr recovery trials for a range ofs.

The performanceof the proposed method wascomparedto:
The `1-Magic suite of algorithms which uses thè1 norm as the
sparsity promoting function.
Our previous methodwhich solves the unconstrained version of
the recovery problem with a local quadratic approximation
(LQA) of the SCAD.
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Results for the probability of perfect signal recovery simulation

Numerical Simulations

For a typical PPSR setup such asn = 512, q = 100, and r = 250:
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A marked improvementin signal recovery is achieved over the
two competing methods.
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Results for the probability of perfect signal recovery simulation

Numerical Simulations, cont.

For a typical PPSR setup such asn = 512, q = 100, and r = 250:
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The averageCPU time is roughly thesameas those for the two
competing methods fors � 20, i.e., when the event of a sparse
signal being perfectly recovered occurs with probability one.
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Conclusions

In this presentation we have:
Addressed acentral problemin CS, which involves therecoveryof the
original signal from its compressed samples.
Proposed anew methodfor sparse-signal recovery that when compared
with two competing methods:

Exhibits superior reconstructionperformance.
O�ers approximately the samecomputational cost when the signal is
always perfectly recovered.
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Thank you for your attention.
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