
Compressive Sensing Sparse-Signal Recovery Proposed Method Numerical Simulations Conclusions

Signal Recovery Method for Compressive Sensing Using

Relaxation and Second-Order Cone Programming

Flávio C. A. Teixeira Stuart W. A. Bergen Andreas Antoniou

Department of Electrical and Computer Engineering
University of Victoria
Victoria, BC, Canada

2011 IEEE International Symposium on Circuits and Systems

F. Teixeira, S. Bergen, A. Antoniou (UVic) A Signal Recovery Method for CS IEEE ISCAS 2011 1 / 16



Compressive Sensing Sparse-Signal Recovery Proposed Method Numerical Simulations Conclusions

Main idea

Introduction

Compressive sensing (CS) is a process of representing a large signal by
a small number of measurements.

The price that must be paid for compact signal representation is a
nontrivial signal recovery process.

The recovery process can be formulated as an undetermined
least-squares problem where the solution is known to be sparse.

The solution sparsity assumption is based on the fact that most
practical signals can be represented concisely in a transform
domain.
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A method for sparse-signal recovery

Motivation

Widely known methods for signal recovery such as the ℓ1-Magic
method promote sparsity by means of the ℓ1 norm:

Preferred sparsity promoting functions such as the ℓ0 norm are
computationally intractable for large signals.

We propose a new signal recovery method for CS using the smoothly
clipped absolute deviation (SCAD) function as an alternative to the
ℓ0 norm to promote sparsity.

The resulting nonsmooth and nonconvex constrained optimization
problem that must be solved to perform signal recovery is relaxed by:

1 Obtaining a series of local linear approximations of the SCAD,
which results in a series of nonsmooth convex subproblems.

2 Reformulating each subproblem as a smooth second-order cone
programming problem (SOCP).
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Signal acquisition setting

Sparse Representation

A vector f of length n represents the original signal.

Vector a of the same length represents a sparse or compressed version
of the signal over an appropriate basis.

This representation is obtained by using the linear operation a = Ψ
T
f

where Ψ ∈ R
n×n is orthonormal.

The operation is reversible and the original signal f can be exactly
recovered from a by using the relation f = Ψa.

Vector a has only s nonzero values with s < n.
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Signal acquisition setting

Noisy Measurements

The measurement of the original signal is usually performed directly
in the Ψ domain in the presence of measurement noise z.

z has a known power bound ε of the form ||z||ℓ2 ≤ ε.

The sensing operation in this context is given by b = Θa + z.

Θ ∈ R
q×n denotes a sensing matrix.

The entries of Θ are assumed to be independent and identically
distributed (i.i.d.) Gaussian random variables with zero mean and
variance 1/q.
Vector b of length q represents the noisy measurements.

The original signal f must be recovered from a significantly
reduced number of measurements b such that q ≪ n.
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Sparse-Signal Recovery: Problem Definition

Recovery Process: Goals

The goal of the recovery process is twofold:
1 To find the sparsest signal.
2 To ensure that the signal found is consistent with the measurements.

The sparsity of f can be measured in terms of its transform
coefficients a and a function of the form:

Pτ (a) =

n
∑

i=1

pτ (|ai |)

pτ (|ai |) quantifies the magnitude of each individual coefficient
of a.

The minimization of Pτ (a) has a sparse solution.

For this reason, we call pτ (|ai |) a sparsity promoting function.
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Sparse-Signal Recovery: Problem Definition

Sparse-Signal Recovery Problem

The problem can be approached via two different formulations.

The unconstrained formulation (or Lagrangian Form) defined by

minimize
a

‖Θa− b‖
ℓ2
+

1

λ
Pτ (a)

The constrained formulation defined by

minimize
a

Pτ (a) subject to: ‖Θa− b‖
ℓ2
≤ ε

Optimization theory asserts that the two problems are
equivalent.

1 The constrained formulation is harder to solve.
2 The relationship between ε and 1/λ is nontrivial.
3 It is easier to determine an appropriate ε rather than a λ.
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On the sparsest solution of the recovery problem

Obtaining the Sparsest Solution

The sparsest solution for the two problems can be obtained when
pτ (|ai |) = τ |ai |

p and p = 0, i.e., by computing the ℓ0 norm of a.

Unfortunately, the use of the ℓ0 norm in the two problems requires an
intractable combinatorial search for large signals.

Past work in CS has shown that when certain conditions on the
transform matrix Ψ and measurement matrix Θ are met:

We are able to recover f from b by using pτ (|ai |) = τ |ai | as the
sparsity promoting function, i.e., by computing the ℓ1 norm of a.
The price that must be paid for this approximation is that more
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The SCAD as sparsity promoting function

SCAD Function

An interesting alternative to the ℓ0 norm as a sparsity-promoting
function is the smoothly clipped absolute deviation (SCAD) function.

We are interested in using the SCAD because it performs as well as
the oracle estimator for a problem similar to the unconstrained
formulation for sparse-signal recovery.

This means that the SCAD is asymptotically as efficient as an ideal
estimator, namely, it performs as well as if the coefficients that
are zero were known.
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The SCAD as sparsity promoting function

Using the SCAD in the Recovery Problem

Under the assumption that the noise level ε is known in advance, it is
usually more natural and efficient to solve the constrained version of
the recovery problem instead of the unconstrained one.

Unfortunately, use of the SCAD function on the constrained version
of the recovery problem has the following drawbacks:

The objective function Pτ (a) is now concave and nonsmooth.
The recovery problem becomes a nonconvex and nonsmooth
constrained optimization problem.
This means that the recovery problem is computationally
intractable in its current form.
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Nonsmooth relaxation for the SCAD

Relaxing the Objective Function of the Recovery Problem

An effective convex approximation of Pτ (a) is based on a local linear
approximation (LLA) to pτ (|ai |) near a point a(k) given by

L
a(k)

(a) =
n

∑

i=1

[

pτ

(

|a
(k)
i |

)

+
d

dai
pτ

(

|a
(k)
i |

)(

|ai | − |a
(k)
i |

)

]

When a
(k) ≈ a, then L

a(k)
(a) ≈ Pτ (a).

Past work in statistical estimation proposed utilizing the LLA in the
context of penalized likelihood models:

In this context, a problem similar to the unconstrained version
of the recovery problem is addressed.
The least angle regression (LARS) algorithm is usually employed
in these problems for finding the sparsest solution.
The LARS algorithm is known to have limited applicability when
q ≪ n.
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A signal recovery method: LLA and SOCP subproblems

Proposed Method for Signal Recovery

We propose a new signal recovery method that uses the SCAD as
sparsity promoting function in the constrained version of the recovery
problem.
In order to overcome nonconvexity, we relax the concave objective
function Pτ (a) to its convex linear approximation:

This problem setting results in a sequence of convex nonsmooth
constrained subproblems.
The sequence of solutions of these subproblems generates a
monotonically decreasing sequence of values of the original concave
objective function Pτ (a).

We show that the resulting nonsmooth constrained subproblems
can be formulated as smooth second-order cone programming
(SOCP) subproblems.

This formulation is handy since each SOCP subproblem can be
solved efficiently using standard state-of-the-art solvers such as
SeDuMi.
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Estimating the probability of perfect recovery

Reconstruction Performance of the Proposed Method

Reconstruction performance is usually compared in terms of the
probability of perfect signal recovery (PPSR).

Perfect signal recovery is declared when the solution obtained for the
recovery problem a

′ is close to the true known solution a
∗.

Closeness is measured in the ℓ∞ sense, i.e., ||a′ − a
∗||ℓ∞ ≤ 10−3.

The PPSR is estimated by performing r recovery trials for a range of s.

The performance of the proposed method was compared to:

The ℓ1-Magic suite of algorithms which uses the ℓ1 norm as the
sparsity promoting function.
Our previous method which solves the unconstrained version of
the recovery problem with a local quadratic approximation
(LQA) of the SCAD.
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the recovery problem with a local quadratic approximation
(LQA) of the SCAD.
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Results for the probability of perfect signal recovery simulation

Numerical Simulations

For a typical PPSR setup such as n = 512, q = 100, and r = 250:

5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

Sparsity s

P
r(

re
co

v
er

y
)

 

 

SCAD: LLA + SOCP Subproblems
SCAD: LQA + UNLP Suproblems

ℓ1 Norm

A marked improvement in signal recovery is achieved over the
two competing methods.
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Results for the probability of perfect signal recovery simulation

Numerical Simulations, cont.

For a typical PPSR setup such as n = 512, q = 100, and r = 250:
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The average CPU time is roughly the same as those for the two
competing methods for s ≤ 20, i.e., when the event of a sparse
signal being perfectly recovered occurs with probability one.
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Conclusions

In this presentation we have:

Addressed a central problem in CS, which involves the recovery of the
original signal from its compressed samples.
Proposed a new method for sparse-signal recovery that when compared
with two competing methods:

Exhibits superior reconstruction performance.

Offers approximately the same computational cost when the signal is

always perfectly recovered.
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Thank you for your attention.
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