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a small number of measurements.
@ The price that must be paid for compact signal representatiorais
nontrivial signal recovery process
@ The recovery process can be formulated as an undetermined
least-squares problem where the solution is known to be spar
@ The solution sparsity assumption is based on the fact that mos
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o We propose anew signal recovery methddr CS using the smoothly
clipped absolute deviation (SCAD) function as an alternatito the
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@ The resultingnonsmoothand nonconvexconstrained optimization
problem that must be solved to perform signal recovery is relaxed b

@ Obtaining a series olbcal linear approximationef the SCAD,
which results in a series of nonsmoathnvexsubproblems.

@ Reformulatingeach subproblem as smoothsecond-order cone j_%?T
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A vectorf of lengthn represents theoriginal signal.
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Vector a of the same length represents a sparsecompressed/ersion
of the signal over an appropriate basis.

e This representation is obtained by using the linear operation T f
where 2 R" " is orthonormal.

The operation is reversible and the original sighalan be exactly
recovered frona by using the relatiorf = a.

Vector a has onlys nonzerovalues withs < n.
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Signal acquisition setting

Noisy Measurements

@ The measuremenbof the original signal is usually performed directly
in the  domain in the presence of measuremerttisez.

@ z has a known power bound of the formjjzjj-, ".

@ The sensing operation in this context is given by= a+ z.

e 2 RY "denotes a sensing matrix.

o The entries of are assumed to be independent and identically
distributed (i.i.d.) Gaussian random variables with zero meaml
variance £q.

o Vector b of length q represents the noisy measurements.

@ The original signaf must be recovered from a signi cantly
reducednumber of measurements such thatq n.
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Recovery Process: Goals

e The goal of the recovery process is twofold:
© To nd the sparsestsignal.
@ To ensure that the signal found isonsistentwith the measurements.

o The sparsityof f can be measured in terms of its transform
coe cients a and a function of the form:

X1 . -
P (a)= p (jaj)
i=1

e p (jaj) quanti es the magnitude of each individual coe cient
of a.

@ The minimization ofP (a) has a sparse solution.
@ For this reason, we calp (jaj) a sparsity promoting function
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Sparse-Signal Recovery Problem

@ The problem can be approached via two di erent formulations.
o The unconstrainedormulation (or Lagrangian Form) de ned by

miniamize k a bk + EP (a)

o The constrainedformulation de ned by

mianize P (a) subjectto: k a bk, "

@ Optimization theory asserts that the two problems are
equivalent
@ The constrained formulation i®arderto solve.
@ The relationship betweet and 1= is nontrivial.
@ It is easierto determine an appropriaté rather than a .
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o Unfortunately, the use of théy norm in the two problems requires an
intractable combinatorial search for large signals.

o Past work in CS has shown that when certainnditionson the
transform matrix and measurement matrix are met

o We are able to recovelr from b by usingp (jaj) = jaj as the
sparsity promoting function, i.e., by computing thg norm of a.

@ The pricethat must be paid for this approximation is thanore
measurements] are required to recovefr than when using the
o horm.
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The SCAD as sparsity promoting function

SCAD Function

@ An interestingalternativeto the "o norm as a sparsity-promoting
function is the smoothly clipped absolute deviation (SCAD)ction.

@ We are interested in using the SCAD because it performs as well a
the oracle estimatoifor a problem similar to the unconstrained
formulation for sparse-signal recovery.

@ This means that the SCAD is asymptotically as e cient as areg
estimator, namely, it performs as well as if the coe cients that
are zero were known.
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Using the SCAD in the Recovery Problem

e Under the assumption that the noise leveis known in advance, it is
usually morenatural and e cient to solve theconstrainedversion of
the recovery problem instead of the unconstrained one.
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e Unfortunately, use of the SCAD function on the constrained vens
of the recovery problem has the following drawbacks:

@ The objective functionP (a) is now concaveand nonsmooth

o The recovery problem becomesnanconvexand nonsmooth
constrained optimization problem.

o This means that the recovery problem is computationally
intractablein its current form.
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@ An e ective convexapproximation ofP (a) is based on a locdinear
approximation (LLA) top (jaj) near a pointa® given by
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Relaxing the Objective Function of the Recovery Proble

@ An e ective convexapproximation ofP (a) is based on a locdinear
approximation (LLA) top (jaj) near a pointa® given by
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o Whena® @, thenL q(a) P (a).
e Past work in statistical estimation proposed utilizing the Alin the
context of penalized likelihood models:
o In this context, a problem similar to thenconstrainedversion
of the recovery problem is addressed.
@ The least angle regression (LARS) algorithm is usually exygd
in these problems for nding the sparsest solution.
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Relaxing the Objective Function of the Recovery Proble

@ An e ective convexapproximation ofP (a) is based on a locdinear
approximation (LLA) top (jaj) near a pointa® given by
X d
- i A(K)
L (a) = ®j + =
a0 () ~ pola da

p a9 jaj j &

o Whena® @, thenL q(a) P (a).
e Past work in statistical estimation proposed utilizing the Alin the
context of penalized likelihood models:
o In this context, a problem similar to thenconstrainedversion
of the recovery problem is addressed.
@ The least angle regression (LARS) algorithm is usually exygd
in these problems for nding the sparsest solution.
o The LARS algorithm is known to haviemited applicability when

q n
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Proposed Method for Signal Recovery

@ We propose a new signal recovery method that uses the SCAD as

sparsity promoting function in the constrained version of theaeery
problem.
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Proposed Method for Signal Recovery

@ We propose a new signal recovery method that uses the SCAD as
sparsity promoting function in the constrained version of theaeery
problem.

e In order to overcomenonconvexity we relaxthe concave objective
function P (a) to its convexlinear approximation:

o This problem setting results in a sequence of conwexsmooth
constrainedsubproblems
e The sequence ofolutionsof these subproblems generates a

monotonicallydecreasingequence ofaluesof the original concave
objective functionP (a).
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Proposed Method for Signal Recovery

@ We propose a new signal recovery method that uses the SCAD as
sparsity promoting function in the constrained version of theaeery
problem.

e In order to overcomenonconvexity we relaxthe concave objective
function P (a) to its convexlinear approximation:

o This problem setting results in a sequence of conwexsmooth
constrainedsubproblems

e The sequence ofolutionsof these subproblems generates a
monotonicallydecreasingequence ofaluesof the original concave
objective functionP (a).

@ We show that the resultingionsmoothconstrained subproblems
can be formulated asmooth second-order cone programming
(SOCP) subproblems.
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A signal recovery method: LLA and SOCP subproblems

Proposed Method for Signal Recovery

@ We propose a new signal recovery method that uses the SCAD as
sparsity promoting function in the constrained version of theaeery
problem.

e In order to overcomenonconvexity we relaxthe concave objective
function P (a) to its convexlinear approximation:

o This problem setting results in a sequence of conwexsmooth
constrainedsubproblems

e The sequence ofolutionsof these subproblems generates a
monotonicallydecreasingequence ofaluesof the original concave
objective functionP (a).

@ We show that the resultingionsmoothconstrained subproblems
can be formulated asmooth second-order cone programming
(SOCP) subproblems.

o This formulation is handy since each SOCP subproblem can be
solvede ciently using standard state-of-the-art solvers such as
SeDuMi.
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Reconstruction Performance of the Proposed Method

@ Reconstructionperformanceis usually compared in terms of the
probability of perfect signal recoveryPPSR.
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recovery problena® is close to the true known solutioa .
o Closeness is measured in the sense, i.ejja’® ajj, 10 3.
e The PPSR is estimated by performirrgrecovery trials for a range «.
o The performanceof the proposed method wasomparedto:
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sparsity promoting function.
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Estimating the probability of perfect recovery

Reconstruction Performance of the Proposed Method

@ Reconstructionperformanceis usually compared in terms of the
probability of perfect signal recoveryPPSR.
o Perfect signal recovery is declared when the solution atstdifor the
recovery problena® is close to the true known solutioa .
o Closeness is measured in the sense, i.ejja’® ajj, 10 3.
e The PPSR is estimated by performirrgrecovery trials for a range «.
o The performanceof the proposed method wasomparedto:
o The ";-Magic suite of algorithms which uses thg norm as the
sparsity promoting function.
@ Our previous methodvhich solves the unconstrained version of

the recovery problem with a local quadratic approximation
(LQA) of the SCAD.
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Results for the probability of perfect signal recovery simiation

Numerical Simulations

e For a typical PPSR setup such as= 512, q = 100, and r = 250:
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e A marked improvemenin signal recovery is achieved over the
two competing methods.
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Results for the probability of perfect signal recovery simiation

Numerical Simulations, cont.

e For a typical PPSR setup such as= 512, q = 100, and r = 250:
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Results for the probability of perfect signal recovery simuation

Numerical Simulations, cont.

e For a typical PPSR setup such as= 512, q = 100, and r = 250:
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o The averageCPU timeis roughly thesameas those for the two
competing methods fos 20, i.e., when the event of a sparse
signal being perfectly recovered occurs with probabilibeo
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Conclusions

@ In this presentation we have:

e Addressed aentral problemin CS, which involves thescoveryof the
original signal from its compressed samples.
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@ In this presentation we have:

e Addressed aentral problemin CS, which involves thescoveryof the
original signal from its compressed samples.

o Proposed anew methodfor sparse-signal recovery that when compare
with two competing methods:

@ Exhibits superior reconstructionperformance.

F. Teixeira, S. Bergen, A. Antoniou (UVic) A Signal Recovery Method for CS IEEE ISCAS 2011 16/ 16



Compressive Sensing

Sparse-Signal Recovery
0000

Proposed Method
000

Numerical Simulations
0000

Conclusions
000

Conclusions

@ In this presentation we have:

e Addressed aentral problemin CS, which involves thescoveryof the
original signal from its compressed samples.

o Proposed anew methodfor sparse-signal recovery that when compare
with two competing methods:

@ Exhibits superior reconstructionperformance.

@ O ers approximately the samecomputational cost when the signal is
always perfectly recovered.
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