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Part I of this article dealt with the mathematical
methodology of antiquity which was essentially of a dis-
crete character whereby a circle was deemed to be a
multi-sided polygon whose perimeter or area could be
more easily deduced by considering the multi-sided
polygon to be made up of a finite set of elemental trian-
gles. Then the emergence of numerical methods during
the 1700s as a tool for interpolating numerical data was
explored. Part II deals with certain spectacular mathe-
matical discoveries made in France just before, during,
and after the French Revolution by Laplace, Fourier,
Poisson, and Laurent, which form the foundation of mod-
ern spectral analysis. Then the contributions of Nyquist
and Shannon to the sampling theorem are examined. The
article also reviews the work of Babbage from the per-
spective of a DSP practitioner and examines the histori-
cal circumstances that eventually led to the invention of
digital computers and their application as general-
purpose inexpensive components in DSP systems. The
article concludes with a summary of some of the innova-
tions of the sixties that led to the emergence of what we
now call digital signal processing.
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I. Introduction

P
art I of this article [1] has highlighted the landmark
events in mathematics from the perspective of the
DSP practitioner starting with the great work of

Archimedes on the evaluation of π , continuing with the
contributions of Wallis, Gregory, and Newton on the evo-
lution of calculus, and concluding with the emergence of
numerical methods during the 18th century as a tool for
the interpolation of numerical data.

Part II of this review deals with some key break-
throughs made by Laplace, Fourier, Poisson, and Laurent
in France just before, during, and soon after the French
Revolution. These achievements along with the contri-
butions of Nyquist and Shannon led to frequency-domain
characterizations for continuous- and discrete-time sig-
nals and the discovery of the sampling theorem. Since a
bandlimited continuous-time signal can be reconstruct-
ed from a set of samples of the signal, a continuous-time
signal can be represented by a sampled version which
can be processed by a discrete-time system. By applying
interpolation to a processed sampled signal, a continu-
ous-time signal can be constructed, which can be
deemed to be a processed version of the original contin-
uous-time signal. In effect, the sampling theorem may be
deemed to be the basis of a large segment of today’s DSP
methodology.

The rapid advancements in mathematics and most
other sciences during the Renaissance led to com-
mensurate advancements in engineering, manufactur-
ing, transportation, navigation, trade, banking, etc.
Consequently, a great need for numerical calculations
emerged be it to estimate the position of a ship using
astronomical measurements, to establish the trajecto-
ry of a heavenly body, or to design a bridge or steam
engine. To expedite such calculations, published
numerical tables, such as logarithm and trigonometric
tables, had been in use since the 1600s. The calcula-
tions necessary to construct numerical tables were
carried out by people who spent endless monotonous

hours performing manual calculations. The tables
were then set to print by people who had little or no
knowledge or interest in the numerical calculations
involved. The end result was that published tables
contained numerous errata. From the 17th century on,
a number of notable scientists and engineers, includ-
ing Pascal and Leibniz, attempted to construct calcu-
lating machines to alleviate the burden of numerical
calculations. The most ambitious of these individuals
was Babbage who attempted to construct machines he
called difference engines that would perform the nec-
essary computations as well as print the numerical
tables without human intervention thus resolving the
crisis of the tables [2]–[4]. In due course, during and
soon after World War II, renewed interest in construct-
ing efficient computing machines emerged, and again
the principal motivation was to construct numerical
tables. In fact, the most renown of the computers of
the 1940s, the Electronic Numerical Integrator and
Computer (ENIAC), was actually built to construct
numerical tables just like Babbage’s numerical differ-
ence engines. In Sec. VII of this article, the work of
Babbage is reviewed in the context of DSP and, as will
be shown, what he spent the largest part of his pro-
fessional life on was to design and build a mechanical
discrete system rather than a general-purpose com-
puting machine.

II. Fourier

One of the most substantial contributions to the math-
ematics of signal analysis must be attributed to Jean
Baptiste Joseph Fourier (1768–1830) who proposed the
Fourier series as part of a paper on heat transfer.

Although very interested in mathematics during his
teenage years, Fourier decided in 1787 to train for the
priesthood.1 However, he continued to be interested in
mathematics and in 1790 he abandoned his religious
ambitions to become a teacher at the school where he
completed his secondary education. In due course, he
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got involved in the politics of the French Revolution and
was imprisoned as a consequence of a speech he gave in
Orleans but was later released. In 1794 he was nominat-
ed to study at École Normale in Paris where he was
taught by Lagrange (1736–1813) and Laplace
(1749–1827). Soon after he was appointed at the École
Centrale des Travaux Publiques which was soon to be
renamed École Polytechnique. His earlier political prob-
lems resurfaced and caused him to be imprisoned again
but he was later released, some say through the pleas of
Lagrange and Laplace, to resume his teaching at École
Polytechnique in 1795. In 1797 he succeeded Lagrange
as Chair of Analysis and Mechanics. In 1798 Fourier was
selected to accompany Napoleon’s army in its invasion
of Egypt as scientific advisor. His duties included the
establishment of educational facilities in Egypt and in
this capacity he was appointed Secretary of the Institut
d’ Egypte.

In 1801, Fourier returned with what remained of
Napoleon’s expeditionary force to France to take up his
post at École Polytechnique. Soon after he was appoint-
ed by Napoleon as the Prefect of the Department of Isere
in Grenoble. In this capacity, he had to supervise the
draining of the swamps of Bourgoin and the construc-
tion of a new highway from Grenoble to Turin. During
the period 1804–1807, he also found time to carry out
research work, presumably in his spare time, on heat
transfer. He presented his results in a paper (memoir)
entitled On the Propagation of Heat in Solid Bodies which
was read to the Institut de France in 1807. The paper
caused controversy from the start. The committee
appointed to report on the work, which included Fouri-
er’s past teachers Lagrange and Laplace as members,
opposed the work on account of ‘analytic difficulty’ in
the derivation of the heat transfer equations involved
and the extensive use of trigonometric series, now
known universally as the Fourier series, in the deriva-
tions; on the other hand, a certain Biot complained that
Fourier did not give due reference to his paper on the
derivation of the equations which, incidentally, was
found to be in error in recent years! To resolve the issue
once and for all, the Institut de France made the propa-
gation of heat the subject of the Grand Prize in mathe-
matics for 1811. There was another candidate in
addition to Fourier and the committee set up to select

the winning submission, which included Lagrange and
Laplace, awarded the prize to Fourier. Nevertheless, the
written report of the committee expressed reservation
about the generality and rigor of the work. Formal pub-
lication of the work did not take place until 1822 when a
treatise Théorie Analytique de la Chaleur, authored by
Fourier, was finally published by the Academie des Sci-
ences. The controversy continued among mathemati-
cians for some years until Dirichlet, a student of Fourier,
published a convergence theorem for the Fourier series
in 1829 [7].

The Fourier series together with the Fourier trans-
form, i.e.,

X ( jω) =
∫ ∞

−∞
x(t )e− jωt dt

provide a complete frequency-domain description of peri-
odic and nonperiodic signals. On the other hand, the ana-
lytic continuation of the Fourier transform into the s
domain, which amounts to replacing jω by a complex
variable s, gives the Laplace transform

X (s) =
∫ ∞

−∞
x(t )e−st dt

The Laplace transform of the impulse response of a con-
tinuous-time system gives the transfer function of the
system and by converting the continuous- into a dis-
crete-time transfer function, a great variety of digital fil-
ters can be obtained from analog filters (see Chaps. 11,
12, and 17 in [8]).

III. Poisson

Another student of Lagrange and Laplace who made sub-
stantial contributions to science and mathematics was
Siméon Denis Poisson (1781–1840). His name is associat-
ed with an integral in potential theory, a probability dis-
tribution, a summation formula, a ratio in elasticity, and
a constant in electricity.

His father wanted Siméon to become a surgeon and
sent him off to serve as an apprentice surgeon under
the tutelage of an uncle. Handicapped by a dreadful lack
of dexterity not to mention a lack of motivation for the
medical profession, Siméon soon failed is his attempt.
With his father’s consent, he began to study his favorite
subject, mathematics, at École Polytechnique in 1798.
In 1800 he became lecturer, advanced to deputy profes-
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sor in 1802, and was appointed in 1806 to the profes-
sorship vacated by Fourier upon his departure for
Grenoble.

The one of Poisson’s contributions that is of fundamental
importance to DSP is his summation formula which is a gen-
eral mathematical result associated with the Fourier series.
In the context of signal analysis, it can be expressed as

∞∑

n =−∞
x(t + nT ) = 1

T

∞∑

n =−∞
X ( jnωs)e jωst

where x(t ) is a signal, X ( jω) is its Fourier transform or
frequency spectrum, T is a period in s, and ωs = 2π/T is
a frequency in rad/s. By using the Poisson summation for-
mula, one can show that the spectrum of a sampled sig-
nal x̂(t ) is given by

X̂ ( jω) = XD(e jωT ) = 1
T

∞∑

n =−∞
X ( jω + jnωs) (1)

where XD(e jωT ) is the z transform of x(nT ) evaluated on
the unit circle z = e jωT of the z plane, T is the sampling
period, and ωs is the sampling frequency (see pp. 290–291
[8] for derivation). In effect, given the frequency spectrum
X ( jω) of a continuous-time signal x(t ), the spectrum of the
corresponding discrete-time signal x(nT) can be readily
obtained.

Given a continuous-time signal

x(t ) = u(t )e−at sin ω0t (2)

with a frequency spectrum X ( jω), the frequency spec-
trum of discrete-time signal x(nT ) can be obtained from
X ( jω) by summing an infinite series of shifted copies of
X ( jω) and then multiplying the sum so obtained by the
factor 1/T according to Eq. (1). The usefulness of Eq. (1)
can be illustrated by plotting the amplitude spectra of
x(t ) and x(nT ) for the sampling frequencies of 15, 25, and
40 rad/s as illustrated in Fig. 1(a) to (c).

The shifted copies of X ( jω) or sidebands, namely, . . . ,
X ( jω − j2ωs), X ( jω − jωs), X ( jω + jωs), X ( jω + j2ωs),
. . . overlap with the baseband −ωs/2 < ω < ωs/2 and,
therefore, the sum in Eq. (1) can be expressed as

X̂ ( jω) = 1
T

[X ( jω) + E( jω)] (3)

where

E( jω) =
∞∑

k=−∞
k �= 0

X ( jω + jkωs)

is the contribution of the sidebands to the baseband.

Now if we filter the sampled version of the signal in
Eq. (2), namely, x̂(t ), using an ideal lowpass filter with a
frequency response
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Figure 1. Spectra of continuous- and discrete-time signals
(solid and dashed curves, respectively): (a) ωs = 15, (b)
ωs = 25, (c) ωs = 40 rad/s.



H( jω) =
{

T for − ωs/2 < ω < ωs/2
0 otherwise

(4)

we will get a signal y(t ) whose spectrum is given by

Y( jω) = H( jω)X̂ ( jω)

= H( jω) · 1
T

∞∑
n =−∞

X ( jω + jnωs)

= X ( jω) + E( jω)

according to Eqs. (1)–(4). In other words, the output of
the filter will be signal x(t ) plus an error e(t ) given by

e(t ) = F−1E( jω)

which is commonly referred to as the aliasing error. With
a sampling frequency of 15 rad/s, the magnitude of E( jω),
i.e., the discrepancy between the solid and dashed curves
in Fig. 1(a) is large. As the sampling frequency is
increased to 25, the sidebands are spread out and |E( jω)|
will be decreased quite a bit as shown in Fig. 1(b), and a
further increase to 40 rad/s will render |E( jω)| for all
practical purposes negligible as shown in Fig. 1(c). Evi-
dently, a bandlimited signal can be recovered from a sam-
pled version of the signal by using an ideal lowpass filter
provided that a sufficiently large sampling frequency is
used. This simple application of Poisson’s summation for-
mula demonstrates the essence of the sampling theorem.

Poisson’s passion for mathematics is illustrated by a
remark he used to make on occasion: life is good for only
two things, discovering mathematics and teaching it.

IV. Laurent

Like Fourier and Poisson, Pierre Alphonse Laurent
(1813–1854) studied at École Polytechnique. He started
his studies in 1830 and graduated in 1832 ranking among
the best students of his class. Upon graduation, he joined
the engineering corps of his country as a second lieu-
tenant and before too long he was sent to Algeria where
an armed conflict was taking place between the French
and Algerians. Laurent returned to France around 1840 to
spend the next six years directing operations for the
enlargement of the port of Le Havre. It is at that point in
time when he began to write some mathematical work for
publication.

He submitted a paper entitled “Mémoire sur le Calcul
des Variations” for the Grand Prize of the Academie des
Sciences for 1842, unfortunately, after the deadline for
submission. The paper was reviewed by Cauchy but as it
was not submitted on time, it was not considered seri-
ously for the Grand Prize. Convinced of its value, Cauchy

recommended later on to the Academie des Sciences that
the contribution be published in the academy’s Recueil de
Savants Étrangers but that attempt also failed. Laurent
wrote one more mathematical paper later on but, unfor-
tunately, that too received the same fate. Disappointed
with his inability to have his mathematical papers accept-
ed by the Academie, Laurent turned his attention to the
theory of light waves.

The one mathematical contribution of Laurent that
survived is the Laurent series which was part of the
paper he had submitted for the Grand Prize but the
work was not published until after his early death at the
age of 41.

The Laurent series is nowadays treated as part of a
theorem of complex analysis, the Laurent theorem [9],
which specifies the conditions under which an analytic
function of a complex variable, F (z), can be expanded
into a Laurent series of the form

F (z) =
∞∑

n =−∞
an(z − a)−n (5)

where a is an arbitrary complex constant. According
to the Laurent theorem, F (z) has as many Laurent
series as there are annuli of convergence in the z plane
but each series is unique in its annulus of conver-
gence. The coefficients an for each series are given by
a contour integral of the form

an = 1
2π j

∮
�

F (z)(z − a)n−1 dz (6)

where � is a closed contour in the annulus of conver-
gence that encircles point z = a. The series is a general-
ization of the Taylor series and includes the Maclaurin
and bionomial series as special cases.

If we compare the z transform of a signal x(nT ), which
is defined as

X (z) =
∞∑

n =−∞
x(nT )z−n

with the Laurent series in Eq. (5), the relevance of the
Laurent series to DSP becomes immediately obvious. We
note that the z transform is a Laurent series with
an = x(nT ) and a = 0. From the Laurent theorem, this is
the unique Laurent series of X (z) about the origin of the
z plane that converges in the annulus

R < |z| < ∞

where R is the radius of a circle that encloses all the sin-
gularities2 of X (z) (see p. 85 in [8]). Therefore, a signal
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x(nT ) can be uniquely obtained from its z transform by
using Eq. (6).

Fourier and Laurent are related through their associa-
tion with École Polytechnique in Paris, the first having
served as a teacher and the second having studied at that
institution some 30 years later. Interestingly, their respec-
tive contributions to DSP are also related. The Fourier
transform of an impulse-modulated signal such as that in
Fig. 2(a) is numerically equal to the z transform of the cor-
responding discrete-time signal shown in Fig. 2(b) evalu-
ated on the unit circle z = e jωT of the z plane (see p. 288
of [8]).3

V. Nyquist

The next chapter on the spectral representation of signals
began to be written during the early part of the 20th cen-
tury, and a notable contributor of that period was Harry
Nyquist (1889–1976). Born in Nilsy, Sweden, he emigrated
to the USA in 1907. Having received a bachelor’s degree
and a master’s degree in electrical engineering from the
University of North Dakota in 1914 and 1915, respectively,
he moved to Yale University in 1917 from where he
received a PhD. He spent his professional life until his
retirement in 1954 at Bell Telephone Laboratories [10].

He made many contributions to circuits and systems
and is known for the Nyquist plot which is constructed as
part of the Nyquist stability criterion to determine
whether an amplifier is stable or not. He also carried out
important work on thermal noise which is often referred
to as Johnson-Nyquist noise.

The connection of Nyquist to DSP relates to the sam-
pling theorem. What he did was to show that a periodic
pulse signal constructed from a sequence of N equally
spaced rectangular pulses of arbitrary amplitudes, such
as the one illustrated in Fig. 3, can be uniquely deter-
mined from the amplitudes and phase angles of the first
N/2 sinusoidal components of the Fourier series of the
periodic signal by solving a set of N simultaneous equa-
tions [11]. The fundamental of such a signal in Hz is given
by

f0 = 1
T

= 1
Nτ

(7)

where T is the period of the pulse signal and τ is the
duration of each rectangular pulse. If B is the bandwidth
from 0 up to and including harmonic N/2, then from Eq.

(7), we have

B = N
2

f0 = N
2

· 1
Nτ

= 1
2τ

and if we let 1/τ = fs, we get

B = fs
2

in Hz or
ωs

2
in rad/s

where ωs = 2πfs. In other words, the pulse signal can be
uniquely determined from the spectrum of the signal over
the frequency range 0 to fs/2 where fs/2 is known as the
Nyquist frequency.
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The above conclusion was deduced in the context of
telegraphy whereby ‘intelligence’, in Nyquist’s termi-
nology, was to be transmitted over a telegraph line. The
sampling of a continuous-time signal in the modern con-
text or the recovery of such a signal from a sampled
version was not involved. Nevertheless, if we make τ in
Fig. 3 approach a very small value, say, ε, the pulse signal
would for all practical purposes represent the continu-
ous-time signal x(t ) shown in terms of the dashed curve
in Fig. 3. Under these circumstances, the pulse signal
can be deemed to be a sampled signal and, in turn, fs
and fs/2 would be the sampling and Nyquist frequencies,
respectively, as we know them today. However, deduc-
ing the signal by solving a set of N simultaneous equa-
tions would be of little practical value because the
number of pulses involved, N , and, as a consequence,
the number of equations required would be very large if
τ were very small.

Since Nyquist deduced his result by using the Fourier
series, what he demonstrated was that the bandwidth
condition that carries his name is applicable to periodic
signals. In an effort to extend the validity of the condition
to nonperiodic signals, he suggested that T could be
made very large, a day or year, in his words, presumably
by adding pulses of zero amplitude as shown in Fig. 3.
Unfortunately, if one were to attempt to make T infinite,
the analysis would break down because all the Fourier-
series coefficients would become zero (see Eqs.
(2.10a)–(2.10c) in [8]).

VI. Shannon

A more general proof that a signal which satisfies the
Nyquist condition can be recovered from a set of uni-
formly spaced values of the signal was described by Shan-
non in 1949 [12]. He demonstrated the validity of the
Nyquist condition by showing that if a bandlimited signal
x(t ) that satisfies the condition is passed through an ideal
channel with a frequency response

H( jω) =
{

1 for − ωs/2 < ω < ωs/2
0 otherwise

then a signal of the form

x(t ) =
∞∑

n =−∞
x(nT )

sin[ωs(t − nT )/2]
ωs(t − nT )/2

(8)

would be obtained at the receiving end. Since the channel
would not disturb the spectrum of the signal, he conclud-
ed that the received signal must be an alternative repre-
sentation of the original signal. The formula in Eq. (8) is
essentially an interpolation formula that reconstructs 
the original signal from its values x(nT ), for

n = . . . ,−2,−1, 0, 1, 2, . . . . Shannon used the Fourier
transform in his proof and, in effect, he has shown that the
Nyquist condition applies to periodic as well as nonperi-
odic signals that have a Fourier transform.

Evidently, like Nyquist, Shannon was not concerned
with sampled signals in today’s context. However, given
a continuous-time signal x(t ) with a spectrum X ( jω)

that satisfies the Nyquist condition, the shifted copies of
X ( jω) in Eq. (1), i.e., X ( jω + jnωs) for −∞ < n < ∞,
would not overlap with X ( jω) and, therefore, the spec-
trum of the sampled signal with respect to the baseband
would simply be X ( jω)/T according to Eq. (1). There-
fore, Shannon’s proof applies equally well to the situa-
tion where a sampled signal is passed through an ideal
lowpass filter with a frequency response such as that in
Eq. (4) whereby the passband gain of the filter, T , would
cancel the scaling factor 1/T introduced by the sam-
pling process. In effect, unlike Nyquist’s deduction,
Shannon’s proof essentially incorporates a practical
technique that can be used to recover continuous-time
signals from their sampled versions. In practice, we just
use a lowpass filter whose frequency response is suffi-
ciently close to that in Eq. (4) to meet the requirements
of the application under consideration.

It should be mentioned that Shannon pointed out in
his paper that the theorem was common knowledge in
the art of communications and that it had been given
previously in other forms by mathematicians; in fact, he
cites a mathematical treatise by Whittaker [13]. In recent
years it has been found out that the sampling theorem
was ‘discovered’ independently by several others, e.g.,
Kotelnikov in 1933, Raabe in 1939, and Someya in 1949,
according to a recent article by Lüke [14]. Furthermore,
the underlying mathematical principles of the theorem
are strongly related to the work of Lagrange on interpo-
lation, who, as may be recalled from Secs. II–III, was one
of the teachers of Fourier and Poisson.

Claude Elwood Shannon (1916–2001) studied at the
University of Michigan graduating with two Bachelor of
Science degrees, one in electrical engineering and the
other in mathematics in 1936. He pursued graduate stud-
ies at the Massachusetts Institute of Technology earning
a master’s degree in electrical engineering and a PhD in
mathematics in 1940. He joined the mathematics depart-
ment at Bell Labs in 1941 and remained affiliated with Bell
Labs until 1972. He was offered a visiting position at MIT
in 1956, became a permanent member of the faculty as
Donner Professor of Science in 1958, and continued from
1978 on as professor emeritus [15].

It should be mentioned that the proof of the sampling
theorem was no more than one of Shannon’s minor con-
tributions relative to his monumental achievements in
other fields of electrical engineering. As part of his mas-
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ter’s thesis, he proposed the application of Boolean alge-
bra for the description of switching circuits, which
became in due course the standard design methodology
for digital circuits and computers, and from 1940 on he
began to be involved with the emerging field of commu-
nication theory. Over the years, he laid the foundation of
what is now known as information theory and, in fact, he
is regarded by many as the ‘father’ of that branch of
communication theory. More information on Shannon’s
accomplishments can be found in [15].

VII. Babbage

Charles Babbage (1791–1871) studied at Trinity and Peter-
house Colleges, Cambridge University, during 1810–1814
earning a BA degree. He got married in 1814 and a year
later the Babbages moved from Cambridge to London
where they would spend the rest of their lives. During the
period 1815–1819, Babbage kept himself busy writing a
number of papers on a variety of mathematical topics.
Some of these papers were meritorious enough to get him
elected member of the Royal Society of London in 1816 at
the early age of 24 and of the Royal Society of Edinburgh
in 1820. In 1819 he embarked on the quest of his life to
design and build a machine he called a difference engine,
that would, as mentioned in the introduction, calculate
the entries of numerical tables and also print the tables
without human intervention. He completed a small model
by 1822 which helped him get a grant from the British gov-
ernment in 1823 in the amount of £1500 [5].

He hired an engineer and immediately embarked on
the design of Difference Engine No. 1. The machine
would require 25,000 high-precision mechanical parts.
The initial grant soon ran out and Babbage kept return-
ing to the British government for additional funding.
In the absence of tangible progress towards a working
model by 1834, the British government stopped its
support having spent an estimated amount of £17,470,
a huge amount in those days that would buy some 22
British-made steam locomotives. The project was for-
mally abandoned by the British government in 1842
after several years of indecision [3].

Convinced about the ultimate success of his endeavor,
Babbage soldiered on with his personal resources and
between 1847 and 1849, he completed detailed drawings
of a simpler and more economical difference engine, Dif-
ference Engine No. 2. Later on, in 1852, he tried to sell the
drawings of his new design to the British government but
they were not interested for obvious reasons [3].

Babbage’s difference engine was based on a simple
numerical extrapolation technique illustrated in terms of
the difference table given in Fig. 4 for the function

y(n) = n3

The first and second columns of the difference table
give the values of independent variable n and the corre-
sponding values of the function for −3 ≤ n ≤ 3 whereas
the third, fourth, and fifth columns give the first, second,
and third backward differences which are defined as

∇y(n) = y(n) − y(n − 1)

∇2y(n) = ∇[∇y(n)]

∇3y(n) = ∇[∇2y(n)]

We note that the entries in the fifth column, namely, the
third backward differences, are all equal to 6. In fact, if we
were to continue the table for larger values of n we would
find out that all the entries in the fifth column would be
equal to 6. The reason behind this phenomenon is con-
nected to the fact that the third derivative of n3 is a con-
stant. On the basis of this fact, we can generate a new set
of differences for the table by starting with the next entry
in the fifth column, which is known to be 6, and progress-
ing towards the left ending with the next value of the func-
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−1

0

Figure 4. Difference table for y(n) = x3: rows −3 to +4.



tion in the second column. Thus the next entry in the
fourth column can be obtained as 18 by adding 6 to 12; the
next entry in the third column can be obtained as 37 by
adding 18 to 19; and, finally, the next value of the function
in the second column can be obtained as 64 by adding 37
to 27. Repeating this simple algorithm, an arbitrarily long
table for the cubes of integers can be readily constructed.

Extending the above principles, one can show that the
n th backward differences of an n th-order polynomial are
also all equal to a constant. Therefore, the extrapolation
technique just described can be used to evaluate arbi-
trary polynomials, and this was what Babbage’s differ-
ence engines were designed to do.

Let us now apply the above procedure for the evalua-
tion of the cube of n. From the extension of the difference
table in Fig. 4 to entries n − 3, n − 2, n − 1, n, as shown in
Fig. 5, we obtain

∇2y(n) = 6 + ∇2y(n − 1)

∇y(n) = ∇2y(n) + ∇y(n − 1)

y(n) = ∇y(n) + y(n − 1)

and by solving for y(n), we get the recursive equation

y(n) = 6x(n) + 3y(n − 1) − 3y(n − 2) + y(n − 3) (9)

where x(n) = u(nT ) and u(nT ) is the unit-step func-

tion. Equation 9 represents the system in Fig. 6, as can
be readily verified, and, in effect, what Babbage was
trying to build was actually a discrete system in
today’s terminology. It should be mentioned that the
system in Fig. 6 will give the correct values for the
cubes of n only if the initial values of y(−3), y(−2),
y(−1), y(−0), i.e., −27, −8, −1, and 0, are supplied, and,
presumably, the operator of a Babbage difference
engine would have to preset certain dials before the
engine is put into operation.

As an aside, the response of the system in Fig. 6 to a
unit-step would become unbounded as n → ∞ and hence
the system would be regarded as bounded-input bound-
ed-output unstable nowadays! Nevertheless, it would
serve its intended purpose of producing the cubes of any
range of integers.

Babbage was not able to build a working difference
engine, and friend and foe alike, not to mention the
British government of the time, considered the project
an abysmal failure.4 All that was left to posterity is an
almost complete set of drawings of Difference Engine
No. 2 and certain parts that escaped recycling. Howev-
er, he was fully vindicated when a team led by Donald
D. Swade, sponsored by the Science Museum in Lon-
don, actually built a working model of Difference
Engine No. 2, minus the printing mechanism, based on
Babbage’s drawings using as far as possible technology
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that was accessible during Victorian times [2]–[4]. The
project was completed, despite numerous adversities,
just in time to celebrate the bicentennial of Babbage’s
birth in 1991. The finished difference engine, shown in
Fig. 7, continues to attract thousands of visitors as one
of the ground-floor exhibits at the Science Museum. It
is made up of 4000 parts, measures 2.1 × 3.4 × 0.5 m,
weighs 3 tons, and calculates differences up to the sev-
enth order. Each turn of the handle at the right pro-
duces a 30-digit value in the table of differences and
prepares the machine for the next calculation.

After his failed attempt to build Difference Engine
No. 1, Babbage conceived a more advanced machine in
1834, the Analytical Engine, which would be program-
mable to perform additions, subtractions, multiplica-
tions, and divisions on command in any order. The
machine would comprise a ‘mill’ and a ‘store’, the coun-
terparts of the CPU and memory in a modern digital
computer, and its programming would be done by
means of punched cards. He worked on this project on
and off during the rest of his life but did not attempt to
build such a machine.

Sophisticated calculating machines that could per-
form the full range of arithmetic operations from addition
to division made their appearance in the marketplace at
the end of the 19th century and successive models
served the heavy demand for automated calculations.

The pressures of World War II during the 1940s rekin-
dled strong interest in constructing machines that would
perform calculations accurately and efficiently and sever-
al machines were built during that period based on the
new emerging electronics technology. The most notable of
these machines, as is well known, is the Electronic Numer-
ical Integrator and Computer, or ENIAC for short, which
was conceived and designed by John Mauchly and J. Pres-
per Eckert of the University of Pennsylvania [16], [17].
ENIAC bears no ancestral relationship to Babbage’s differ-
ence and analytical engines, but it is of interest to note
that just like the difference engines, ENIAC was designed
to construct numerical tables, actually artillery firing
tables for the U.S. Army’s Ballistics Research Laboratory.

VIII. Emergence of the Modern Era

Numerical methods found their perfect niche in the
modern digital computer and considerable progress was
achieved through the fifties and sixties in the develop-

ment of algorithms that can be used to process signals
represented in terms of numerical data. By the late
fifties, a cohesive collection of techniques referred to as
‘data smoothing and prediction’ began to emerge through
the efforts of pioneers such as Blackman, Bode, Shan-
non, Tukey [18], [19], and others. During the early six-
ties, an entity referred to as the ‘digital filter’ began to
appear in the literature to describe a collection of algo-
rithms that could be used for spectral analysis and data
processing [20]–[25].5 In 1965, Blackman described the
state-of-the-art of this new technology in his seminal
book on data smoothing and prediction [26], and includ-
ed in this work certain techniques which he referred to
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Figure 7. Babbage’s Difference Engine No. 2 (courtesy of the
Science Museum, London, UK).

Numerical methods found their perfect niche in the modern digital computer and
considerable progress was achieved through the fifties and sixties in the development 
of algorithms that can be used to process signals represented in terms of numerical data.

4See [4] for the probable reasons for Babbage’s failure.



as ‘numerical filtering’. Within a year, in 1966, Kaiser
authored a landmark chapter, entitled Digital Filters [27]
in which he presented a collection of signal processing
techniques that could be applied for the simulation of
dynamic systems and analog filters. Digital filters in
hardware form began to appear during the late sixties
and an early design was reported by Jackson, Kaiser,
and McDonald in 1968 [28]. During this very productive
period, the discrete Fourier transform was formalized
and efficient algorithms for its computation, usually
referred to as Fast Fourier Transforms, were proposed by
Cooley, Tukey, and others [29]–[33].

From the middle sixties on, the analysis and pro-
cessing of signals in the form of numerical data began
to be referred to as digital signal processing, and algo-
rithms, computer programs, or systems that could be
used for the processing of these signals became firm-
ly established as digital filters. The state-of-the-art of
the emerging technologies of signal analysis, system
analysis and design, digital filters, digital signal pro-
cessing, and related mathematics was described in
the classic textbooks of Papoulis [34], Jury [35],
Schwarz and Friedland [36], Gold and Rader [37], and
others. In due course, digital computers in the form of
inexpensive VLSI chips began to be used as compo-
nents in DSP systems of considerable complexity.

More recently, DSP has mushroomed into a multifac-
eted collection of related areas with applications in most
disciplines of science and technology. A great variety of
digital filters has emerged including

■ (FIR) nonrecursive filters
■ (IIR) recursive filters
■ two- and multi-dimensional filters
■ fan filters
■ adaptive filters
■ multirate systems
On the other hand, DSP methodologies have found

applications in numerous areas such as
■ digital communication systems such as long-dis-

tance and cellular telephone systems
■ high-definition TVs
■ audio systems such as stereo systems, CD players,

and iPods
■ speech synthesis
■ image processing and enhancement
■ the Internet
■ instrumentation
■ photography
■ processing of biological signals such as ECGs

■ processing of seismic and other geophysical signals
■ artificial cochleas
■ remote sensing
■ astronomy
■ economics
■ genetic and proteomic signal processing
■ movie making

to name just a few, and new breakthroughs are
announced almost daily.

IX. Conclusions

Part II of this article has shown that a small number
of mathematicians who taught or studied at École
Polytechique in Paris laid the mathematical founda-
tions of modern spectral analysis. The contributions
of Nyquist and Shannon to the sampling theorem
have been examined from a modern perspective.
Nyquist has shown that a bandlimited periodic pulse
signal comprising N pulses can be recovered from
the amplitudes and angles of the first N/2 sinusoidal
components of the Fourier series of the signal by
solving a set of N simultaneous equations. On the
other hand, Shannon has shown that an arbitrary
bandlimited continuous-time signal that has a Fouri-
er transform can be reconstructed from a set of val-
ues of the signal. Although this important theorem
has been referred to as the Nyquist, Shannon,
Nyquist-Shannon, or Shannon-Nyquist sampling theo-
rem in the past, it is now known that it was actually
proposed independently by several engineers or sci-
entists and it seems that mathematicians were well
aware of the underlying principle going back to the
great Lagrange himself, the teacher of Fourier and
Poisson at École Polytechique.

The work of Babbage has then been examined in the
context of DSP. Although Babbage’s programmable Ana-
lytical Engine comprised a mill and a store which are
analogous to the CPU and memory of a modern digital
computer, that machine remained an incomplete con-
ceptual design. What Babbage spent the greatest part of
his professional life on was to design and build a mechan-
ical discrete system that would perform the necessary
computations and print numerical tables without human
intervention, which would, presumably, be free of numer-
ical errors. With the emergence of electronics as the
technology of choice during World War II and soon after,
interest in building fast and efficient computing
machines was reignited and ENIAC was the outcome.
Curiously, though, the principal purpose of ENIAC was to
construct numerical tables. As it turned out, digital com-
puters can do many more things than just construct
numerical tables. In fact, life would not be the same with-
out them.
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presumably as the digital counterpart of analog filters.
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