2D Transformations Cont.

- Last class we looked at transforms for scaling, skewing, reflection, and rotation
- We did not look at translation matrices

Why?

- To implement translation of a figure, matrix addition or subtraction must be performed
- All the other operations require matrix multiplication

Therefore, to make computer algorithms easier for CAD lets introduce a coordinate system that allows matrix multiplication for all operations.

Homogeneous Coordinate System:

- a cartesian pt. (x,y) becomes (x,y,1) in homogeneous coordinates.
- Unfortunately, a third components in the point position vector means alteration of all our transformation matrices from 2x2 to 3x3.
- The general 3x3 matrix for transforming 2-D points using h.c. notation is:

$$\begin{bmatrix} a & b \mid p \\ c & d \mid q \\ \hline m & n \mid s \end{bmatrix}$$

- the upper left section (a,b,c,d) performs the rotations, scaling, reflections, and shearing
- the lower left section (m,n) performs translations
- generally p = q = 0, s = 1

Example 1:

Translate the point (4,3) by 6 x-units and 3 y-units.

$$\begin{bmatrix} 4 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 6 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 10 & 6 & 1 \end{bmatrix}$$

Example 2:

Find the new coordinates of point $P = (\sqrt{2}, 0)$ if it is rotated 90° CCW about the origin and then translated by (-0.5, 0.5)

$$P' = \begin{bmatrix} \sqrt{2} & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -0.5 & 0.5 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} -0.5 & 1.914 & 1 \end{bmatrix}$$

Composite Transformations about Arbitrary Points/Axes

- 1. Scaling a Plane Object
 - If we simply scale the polygon below by 2 then the polygon's position will also change

• This apparent translation occurs because we are scaling the position vectors (i.e a point at (1,1) is scale to the point (2,2))

Question: How do we scale the polygon without having it translated?

- Well, if one of the points on the polygon is at the origin then that point will not be translated.
- ... The steps required to scale the polygon without translation are:
 - 1. Translate a point on the polygon to the origin (i.e vertex 2)
 - 2. Scale the polygon by 2x in the x and y directions
 - 3. Translate the vertex 2 back to its original position.
- The composite transform is: $P' = T(-\Delta x, -\Delta y) S(2, 2) T(+\Delta x, +\Delta y)$

2. Rotation about an Arbitrary Axis

• Rotate a point about an axis parallel to the z-axis & passing through the point $C(x_c, y_c)$

· We already know how to do rotations about the origin, therefore,

1. Move point C to (0,0)
$$T(-x_c, -y_c) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -x_c & -y_c & 1 \end{bmatrix}$$

2. Rotate by angle $\frac{1}{a}$ about the z-axis $R(\alpha) = \begin{bmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$

3. Move C back to the original position
$$T(+x_c, +y_c) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ x_c & y_c & 1 \end{bmatrix}$$

:. the composite transform matrix is $T = T(-x_c, -y_c) R(\alpha) T(x_c, y_c)$

3. Reflections About an Arbitrary Line

Reflect point P about the line ab which intercepts the y-axis at c

 We know how to do reflections about the x and y axes, therefore transform the line ab onto one of the axes, perform the reflection, and then translate back.

- 1. Translate ab to pass through the origin: $T(0, -c) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -c & 1 \end{bmatrix}$
- 2. Rotate ab through $-\alpha$ about origin so it coincides with the x-axis

$$R(-\alpha) = \begin{bmatrix} \cos \alpha - \sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- the composite transform matrix is $T = T(0, -c) R(-\alpha) M(x) R(\alpha) T(0, c)$ and so, P''' = PT

In-Class Problems:

Problem 1:

· Find the composite matrix which maps planar object ABC to abc

Problem 2:

• A box is mapped from position 1 to position 2. Find a composite transformation matrix to perform the mapping. Verify it.

3D Transformations

- · Now we increase the complexity by adding a dimension
- · However, the transformation matrices are similar

1. Translation

$$\{x', y', z', 1\} = [x, y, z, 1] T(\Delta x, \Delta y, \Delta z)$$

$$T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \Delta x & \Delta y & \Delta z & 1 \end{bmatrix}$$

2. Rotation

- about x-axis $R(x, \alpha) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha & 0 \\ 0 & -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
- about y-axis $R(y, \beta) = \begin{bmatrix} \cos \beta & 0 & -\sin \beta & 0 \\ 0 & 1 & 0 & 0 \\ \sin \beta & 0 & \cos \beta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
- about z-axis $R(z, \gamma) = \begin{bmatrix} \cos \gamma & \sin \gamma & 0 & 0 \\ -\sin \gamma & \cos \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
- In all the above rotations, **POSITIVE** angles are CCW as viewed from the positive end of the subject axis

3. Scaling

$$S(s_x, s_y, s_z) = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• about an arbitrary point use:

$$[X_2] = [X_1] [T_1] [S] [T_2]$$

 $[T_1]$ - translates object to the origin

 $[T_2]$ - translates the object back to its original position

4. Reflection

Here we reflect points (objects) about planes (e.g. xy, xz, yz)

• about xy plane
$$M(x, y) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• about xz plane
$$M(x, z) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• about yz plane
$$M(y, z) = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Note: 3-D transforms are concatenated just as before

5. Rotations about Arbitrary Axes

Case 1: Axis of Rotation is Parallel to a Coordinate Axis

• Simple - translate rotation axis to the coordinate axis it is parallel with, perform the rotation, and translate back

$$[X_2] = [X_1] [T_1] [R] [T_2]$$

 $[T_1]$ - translates body until axis of rotation is coincident with the desired coordinate axis (i.e x, y or z axis)

[R] - rotates the body about the x, y or z axis

 $[T_2]$ - translates the object back

Case 2: Axis of Rotation is not Parallel to a Coordinate Axis

 This is a bit more complicated case since we now must rotate the given axis to make it coincident with one of the coordinate axes.

• Identify the axis $P(p_x, p_y, p_z)$ $Q(q_x, q_y, q_z)$ by the direction cosines. The cosines of the angles the line PQ makes with the principle axes.

$$\cos \alpha = \frac{q_x - p_x}{L} \qquad \cos \beta = \frac{q_y - p_y}{L} \qquad \cos \gamma = \frac{q_z - p_z}{L}$$

$$L = \sqrt{(q_x - p_x)^2 + (q_y - p_y)^2 + (q_z - p_z)^2}$$

- Assume we wish to rotate point R(x, y, z) around line PQ by θ CCW
 - 1. Move P, Q and R so that P is at the origin

$$TR1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -p_x - p_y - p_z & 1 \end{bmatrix}$$

2. Rotate about y-axis in a CW sense through θ_1 so that PQ lies in the yz plane

$$R(y, -\theta_1) = \begin{bmatrix} \cos \theta_1 & 0 & \sin \theta_1 & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta_1 & 0 & \cos \theta_1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\sin \theta_1 = \frac{q_x - p_x}{L1}$$
 $\cos \theta_1 = \frac{q_z - p_z}{L1}$ $L1 = \sqrt{(q_x - p_x)^2 + (q_z - p_z)^2}$

3. Now rotate CCW about x axis through θ_2

- Line PQ is now coincident with the z axis
- 4. Now perform the CCW rotation by θ about the line PQ

$$R(z,\theta) = \begin{bmatrix} \cos\theta & \sin\theta & 0 & 0 \\ -\sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 The rotation is now affected. However we should now move PQ back to where it was originally. Essentially reverse steps 3, 2, & 1

Briefly,
$$R(x, -\theta_2)$$

 $R(y, \theta_1)$
 $TR2(p_x, p_y, p_z)$

In total,

$$T = [TR1] [R(y, -\theta_1)] [R(x, \theta_2)] [R(z, \theta)] [R(x, -\theta_2)] [R(y, \theta_1)] [TR2]$$

6. Reflection about an Arbitrary Plane

· Assume we want to reflect point P about the plane ABC

- We know how to do reflections about a principle planes (xy, xz, or yz). So we need to make ABC coincident with one of these principle planes.
- One way to do this is to make the **normal** to ABC coincident with one of the principle axes.
- The normal of a plane can be found by taking the cross product of two vectors that are on the plane

$$n = \overrightarrow{AB} \times \overrightarrow{BC}$$

Normalizing n, $\hat{n} = \frac{n}{\|n\|} = \frac{n}{\sqrt{n_x^2 + n_y^2 + n_z^2}}$

Note:
$$\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \times \begin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix} = \begin{bmatrix} (x_2y_3 - x_3y_2) & (x_3y_1 - x_1y_3) & (x_1y_2 - x_2y_1) \end{bmatrix}$$

 Once we have found the normal vector, the problem is now one of making an arbitrary axis (given by vertex B and n̂) coincident with one of the principle axes. This is what we did in the previous section (Revolution about an arbitrary axis - Case 2).

- ... The steps involved in reflecting P about ABC are:
 - 1. Translate vertex B to the origin TR1
 - 2. Rotate \hat{n} by $-\theta_1$ to place it in the zy plane $R(y, -\theta_1)$
 - 3. Rotate \hat{n} by θ_2 to make it coincident with the z-axis $R(x, \theta_2)$
 - 4. Now perform the reflection M(x, y)
 - 5. Now reverse steps 3, 2 & 1 to put ABC back to its original position
- :. The composite transform is:

$$T = [TR1] [R(y, -\theta_1)] [R(x, \theta_2)] [M(x, y)] [R(x, -\theta_2)] [R(y, \theta_1)] [TR2]$$

In-Class Problems:

Problem 1:

• Given vector $\overline{P_1P_2}$, $P_1 = (0,0,0)$ and $P_2 = (1,1,1)$. Find the composite transform that maps $\overline{P_1P_2}$ onto the negative y-axis. show all intermediate matrices.

Problem 2:

• Reflect the sphere about the given plane

