Engr 150 Spring ‘96 Lecture 18

( Bezier Curves )

* Up to this point we have been dealing with just points, straight lines and
simple curves (arcs) since they are easily specified.

* We now want to look at how more complex, “free-form” surfaces can be
described.

* These type of surfaces occur commonly in things such as car bodies, ship
hulls, blades, etc.

One approach would be to describe the curve as a single high order polynomial.

* In practice, this approach doesn’t work well since it usually extremely dif-

ficult to find a single polynomial which accurately models the entire sur-
face.

* The polynomial may provide an accurate model in some areas of the sur-
face but it highly inaccurate in other areas.

A much better approach is to use series of low order polynomials to model small

sections of the surface and blend these polynomials together to form a description
of the entire surface.

To simplify the mathematics, these low order polynomials are typically given in
their parametric representations.

Parametric Representation

* A parametric representation is a way of representing a function in terms
parameter, for example u, which spans a given interval, typically [0, 1]

For example:

A circle in the xy plane with center at (0,0) is defined parametrically by:

x(u) = rcos (2nu)
y(u) = rsin (2nu)
if u =0 then x(0) = r and y(0) = 0

ifu=1thenx(1) =randy(l) =0

if u = 0.5 then x(0.5) = -r and y(0.5) = 0
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P
NP

* the circle is produced as « is evaluated from O to 1.

u=0
u=1l x

Control Points

* In general, we want to specify the parametric curve using only a small
number of control point4

There are two possible ways that the control points define the curve:

* The parametric curve can pass through the control points, in which case it
interpolates between the points

* Or the parametric curve can pass near the control point, in which case it
approximates them

Interpolation Approximation
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/Bezier Curves \

» The particular class parametric curves that we are interested in are the
Bezier Curves

* This is a group of approximating polynomial curves based on the Bezier
Polynomial which were developed by Pierre Bezier a Renault design
engineer.

Given, n + 1 control points designated by the vectors
};: = (Xk,yk,zk) k=0 .,n

The order n Bezier curve P (u) is given by

P() = Y P8y, (1)
k=0

* B, ,(u) are called blending functions (or basis functions) since they
blend the control points together at each particular value of « and they are

given by:
Bi‘,n(“) = C(ﬂ,k)uk(l —u)H*k
S S R L
where C(n, k) = (J - Mo D

Properties of Bezier Curves:
1. The degree of the bezier curve is one less than the number of control point defin-
ing it.
1.e. n = # control points - 1

2. The curve generally follows the shape of the defining polygon (i.e. the polygon
formed by connecting the control points)

P, P,

.81 -



Engr 150 Spring ‘96 Lecture 18

/3. The curve is contained within the convex hull of the defining polygon (i.e. it has\
the same curvature of as the defining polygon)

4. The first and last endpoints of the curve are coincident with the endpoint of the
defining polygon.
Py

P(“)lu=0 = 10

and
P(u)[u:1 = Py

5. The tangent vectors at the endpoints of the curve have the same direction as the
first and last polygon segments, respectively. (i.e. the slope of the curve at the
endpoints is the same as the slope of the respective polygon segment)

6. The curve exhibits the variation diminishing property. Basically, the curve does
not oscillate about any straight line more often than the defining polygon. (i.e.
the shape of the curve follows the shape of the defining polygon - the curve can
follow the solid line but it can’t follow the dotted line)
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@ample: \

* Find Bezier curve which is given by the following control points

P —_—

Py =(0,00,P, = (1,1),P, = (2,1),and P, = (3,0)

Step 1:  Determine the order of the Bezier curve

Since there are 4 control point, n = 4-1 = 3

Step 2: Calculate the blending functions By plu) fork =0,...n

Fork =0, By ;(u) = OTT;’—!_WMO(I—M)3‘O = (1-u)?
3!
k=1, B () =mlil(l*li)3_l=3ll(1—ll)2
: 3! 2 3-2 2
k = 2,82'3(14) = mu (I—H) = 3u (l"ll)
k=3,8y500) = 523 (-3 =
= » By i) = Wll - = U

Step 3:  Substitute the blending functions and control points into the Bezier

polynomial function P (1) = y° Ekak’n(u)
k=0

P (u)

P,Bo.3 (W) +11B) 5 (1) +pyB, 5 (1) + 3By 5 (1)
|:0 0:' (1-w)3+ |:1 1:|3u(1 -u)?+ [2 1]3:12(1 ~u) + |:3 0]{13

Step 4: Evaluate P (1) for ne [0, 1]

[ARH @)
g o

w020

Tos 0 Tws oz 25 AT TIE T
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/In-Class Problems: \

Problem 1:

* Generate the Bezier curve given by the following set of control points

Py =[33 0]
P, =[1760]
P,=[790]

P =20 12 0]

* Evaluate the curve atu=0,0.2, 0.4, 0.5,0.8, 1.0
* Skeich the curve, control points, and defining polygon.
Problem 2:

* Develop the expression P(u) for the bezier curve with n=4.
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Blending Functions

Bezier Curves Cont.

« Last class we introduced the concept of the Bezier blending functions,
let’s take a closer look at the actual form of these functions.

* Below are the blending function for a 31d order Bezier curve
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* These functions determine the weighting of the control point for the vari-

* Itcanbeen seen that when u = 0 only By 5 (1) 1snon-zero. Hence only E;
contributes to the curve for this « . In fact since, By ;(u=0) = 1 the curve
passes through p, at u = 0.

* Similarly at « = 1 only B, 5 (u) 1s non-zero, and the curve passes through

J
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As the order of the Bezier curve changes, the number and shape of the N
blending functions also change

The following figures show the blending functions for 41 and 6M order
Bezier curves. ’
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6th order Bezier basis functions
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/Bezier Matrix Notation

Or,

L]

Last class we presented the Bezier curve as follows
P{u) = Z,E;Bk,n(“)
k=0
We can re-write this function in matrix form as:
P(u) = [F] [G]
where [F| = By ,(w) B, ,(u) ... B, , (u)]
—_— A — T
[G] = [po Py p,J

For four control points (# = 3), the cubic Bezier curve is given by:

P(u) = |:(1-—u)3 S3u(l-u)? 22 (1 - u) 143] EB
P
7
Py
P(u) =1,3,2 13 3 1{=] =u”B
w ol Py P
3 -6 3 0.
-3 3 0 of(1
1 0 00p,
2

Note: Matrix Bis (n+1) x (n+1) and specifies the coefficients for the
blending functions. A bezier curve can be fully specified by the
control point vector and matrix B since the form of u is known once

the order of the curve is known.

_87-



Engr 150 Spring ‘96 Lecture 19

/Continuity \

* Up to this point we have been dealing with just a single parametric curve.

* But, it 1s difficult to devise a single set of parametric equations which
completely defines a “free-form” curve.

* Any curve, though, can be approximated by using different sets of para-
metric functions over different parts of the curve.

* These approximations are formed with polynomial function (in our case
Bezier curves)

* But, we now must ensure that there is a smooth transition from one poly-
nomial section to then next.

* The smoothness criteria is described by the CONTINUITY between the
sections.

L. 0-order Continuity, 9

» The curves have a common end/start point (i.e. Pj(uzl) = Pj+ L (u=0))

Section j
polynomial

Section j+/
polynomial

2. l-order Continuity, cl

* The tangent lines a (first derivatives of each section) of two adjoining
curve sections are equal at the meeting point. (i.e. P ju=l) = P, ) (u=0))

Section j+17
polynomial

Section j
polynomial
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/3. 2-order Continuity, c? N

* The curvature (second derivatives of each section) of two adjoining curve
sections are equal at the meeting point. (i.e. Pj." (u=1) = P"j+ , (1=0))

+

Section j Section j+]
polynomial polynomial

Note: C"= ("l . 5320l 0

(1.e if you have C1 continuity, you also have C0 continuity)
y Y.y

Derivatives of Bezier Curves

* Obviously, to make use of the concept of continuity with respect to Bezier
curves we must know how to take their derivatives.

* From the example given last class, a Bezier curve defined by four control
points is given by:

P(u) = 5;30,3(“) +5;31,3(”) +f7;32,3(“) "‘"_’233,3(“)
* the first derivative (w.r.t. 1) is:
P'(1) = pBo3 (W) +D1B) 3 () + 3By 5 (1) +73B's 5 (1)
* From before we have that
Bos(u) = (1-1)3 By 5(u) = 3u(l-u)?, B, ;(u) = 3u2(1-u) By a(u) = ud
B'gs(u) = -3(1~u)?
B 3(u) =3(1-u)?2-6u(l-u)
B'2,3(u) = 6u{l-u) —3142_

312

By 5 (1)
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/ * atu =0, | \

P=0) = 5,(-3) +5)(3) + 75 (0) +53(0) = 3( 7, -7y)

—

* Py ,5(\) = the slope of the polygon segment from Potop,;

Py P,

p
P, 3

-". the direction of the tangent vector at the curve beginning is the
same as the polygon span.
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{ In-Class Problems: )

Problem 1:

* Calculate the maximum of each Bezier basis function for n=5.

Problem 2:

* How many control points does a 4™ order Bezier curve have?

Problem 3:

. D?scribe the circumstances for 2 adjoining Bezier curves to have 9 and
C” continuity.

Problem 4:

» It is desired to connect 2 Bezier curves with C! continuity. The first curve
P (1) is defined by 4 control points B, B}, B, and B, The second curve
0 (5) is defined by the by the 4 control points D, D,,D,and D,.

* (iven that

Bo=1[210
Bi=[340
By=[3574q
By=[s550"

* Find points D, and D, .
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/ Review N

Orthographic Views:

- Top, Front and Profile views

- Line Precedence (Visible/Hidden/Centreline)

- Generating Missing Views

- Hidden Lines (Space if vertex known, no space if hidden line defines vertex)

Dimensioning;

- Dimension feature once where it shows
- Dimension outside diameters in non-circular view
- Dimensioning of repetitive features

Sectioning:

- Full Sections

- Half Sections

- Revolved/Removed Sections

- Label Section and cutting plane

- Fins, objects on centreline of assembly drawing left unsectioned
- GOAL.: Clarity

3-D Viewing Formats:

- Isometric - all axis equal angles apart
- Oblique - cabinet/cavalier
- Perspective - 1 point, 2 point, 3 point

Auxiliary Views:

- know how to generate
- (i.e. TS view of an inclined plane)

Assembly Drawings:

Spatial Analysis:

- TL of a line (aux.view/rotation)

- PVofaline

- EV of a plane (aux.view/rotation)
- TS of a plane (aux.view/rotation)
- Slope/Grade/Bearing of a line

- Slope of a plane

- angle between 2 lines

- angle between 2 planes

Tests for:

- Parallelism of 2 lines

- Perpendicularity of 2 lines

- Intersection of 2 lines

- Perpendicularity of a line and a plane
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Review

/' Shortest distance:

- between two lines
- between a plane and a point
- between a plane and a line

Constructing a line perpendicular to a plane

Interactions between:

- line and plane

- plane and a plane
line and a sohid
plane and a solid
solid and solid

Methods for determining points of intersection:

- auxiliary view method
- cutting plane method

Visibility
Labeling: subscripts, TL, PV, EV, TS, fold lines, etc.

Computer Graphics

- 2-D and 3-D transformation matrices

- Composite transforms

- Beazier Curves

- Continuity conditions

- Translation, scaling, rotation, reflection

- Performing transforms about arbitrary points/lines/planes

- developing curves from set of control points

- Matrix notation for Bezier function




