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Transformations

Two Dimensional (Planar) Transformations
Given a point, p, in 2D space represented by the simple row matrix as:

[ ]x y
it is a simple matter to argue that the most general linear transformation of the point can be
expressed as the following linear operation:

[ ] [ ]
a b

x y ax cy bx dy
c d
 
  = + +
 
 

where a,b,c,d are arbitrary constants.  This can be further simplified using matrix notation as:
[ ] [ ]* *x y x yT=

or
*p T p=

This simple form yields a new point, p*, with components that are linear combinations of the
original points.  The matrix, T, is called a transformation matrix.  This kind of transformation
can be readily applied to a polyline or to any number of points  simply by adding the additional
points as successive rows to the point matrices, p, and p*.  The role of the arbitrary constants in
T can be deduced from some simple examples as follows.

Case 1 – a=d=1, b=c=0
In this case, T=[I] (unit matrix) and it follows that pT=p I = p.  Thus there is no change in the
point.

Case 2 – a ≠d, b=c=0
This is a simple extension of Case 1 but it yields some interesting results as shown in the
following equations:

[ ] [ ]
0

0
a

x y ax dy
d

 
  =
 
 

The result is an anisotropic transformation that stretches the x coordinate by the factor, a, and the
y coordinate by the factor, d.  If a and d are both positive and greater than unity, the transformed
point will move farther away from the origin.  If a=d, the result is an isotropic transformation
that stretches both x and y coordinates equally.  On the other hand, if a<0, the result is to switch
the sign of the new x component (similar result for d<0).  For the special case where a=-1 and
d=1, this amounts to a reflection across the y axis.  Similarly, if a=1 and d=-1, the result is a
reflection across the x axis.  If a=d=-1, then the reflection is across both axes (e.g., across the
origin).  It should be noted that det(T) is negative for the mirroring transformations across the x
or y axes.  It can be shown that transformations with negative determinants are transformations
that cannot be accomplished by simply stretching or shrinking an object; instead, some kind of
inside-out or mirroring operation must be involved.

Case 3. – a=d=1, c=0
When either b or c are nonzero, the resulting transformation causes a “shearing” kind of
displacement as will be shown in the following simple example.
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[ ] [ ]
1
0 1

b
x y x y bx

 
  = +
 
 

In this case the new (transformed) y coordinate is not simply a stretch or contraction of the
original y coordinate, but instead it also includes a component that depends on the x coordinate
of the point.  Figure 1 shows the effect on a series of points lying along a line at y=1.  Note that
as the x coordinate of the points increases, the transformed x coordinate remains unchanged but
the transformed y coordinate in increased by the factor, bx.  Note also that if b=0, the
transformation reduces to the unit matrix and there is no effect at all.  Finally, a similar argument
can be made for the case where b=0 and c is nonzero.

Figure 1.  Shear Transformation (a=d=1, c=0)

Rotations
From the above cases, it is clear that arbitrary values of the constants in T will cause a
combination of stretching, shrinking, mirroring and shear action.  An interesting question is to
ask what kind of transformation will not produce any shear action.  It turns out that the answer is
a rotation about the origin.  This can be argued simply by visualizing the transformation of points
lying along two perpendicular lines.  The new points transformed by such a rotation will still lie
along perpendicular lines.

The rotation transformation can be readily developed by considering the rotation of a point about
the origin by an amount, θ, as shown in Figure 2.

Figure 2.  Rotation of Point (p) about Origin
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It follows from Figure 2 that if the initial point is:
[ ] [ ]cos sinx y d dp α α= =

then the transformed point will be:
[ ] [ ]

[ ]

[ ]

* * * cos( ) sin( )

(cos cos sin sin ) (cos sin sin cos )

cos sin sin cos

x y d d

d d

x y x y

p α θ α θ

α θ α θ α θ α θ

θ θ θ θ

= = + +

= − +

= − +

This result can be expressed as a matrix multiplication in the same form as used for T above:

[ ] [ ] [ ]
cos sin

* *
sin cos

x y x y x y T
θ θ

θ θ

 
 = =
 − 

Thus the resulting rotation transformation is given by:
cos sin
sin cos

T
θ θ

θ θ

 
 =
 − 

It should be noted that this represents a counterclockwise rotation of the point about the origin.
The same transformation could also represent the clockwise rotation of the coordinate axes with
respect to the point.  The only difference is whether one keeps the axes fixed and rotates the
point or fixes the point and rotates the coordinate axes.  It is only a matter of perspective!  We
can conclude that:

cos sin
sin cos

T
θ θ

θ θ

 
 =
 − 

represents a counterclockwise rotation of the point about the origin or a clockwise rotation of the
coordinate axes with respect to the point, while

cos sin
sin cos

T
θ θ

θ θ

 −
 =
 
 

represents just the opposite!

Several observations are worth noting:
1. The transformation is a rotation about the invisible z axis and therefore the origin is

unaffected by the transformation.
2. The det(T) is +1.  This is a characteristic of a rotation matrix.
3. Given a T(θ), then T(-θ)=TT where ()T means matrix transpose.
4. Given a T(θ), then T(-θ) simply reverses the rotation, so if we apply T(θ) followed by T(-θ),

the result should be an unchanged point. That is, p*=p T(θ) T(-θ)=p.  This means that
T(θ)T(-θ)=I or that T(-θ)=T-1(θ).  That is, the inverse transformation is simply the
transformation with the sign of θ reversed.

5. From #3 and #4, it follows that T-1(θ)=TT(θ) or the inverse is the same as the transpose.  This
defines what is called an “orthogonal” matrix.

6. T(θ) is also an “orthonormal” matrix because it is orthogonal and det(T)=1.

One very practical consequence is that one should never compute inverse rotation matrices
numerically but instead should use the transpose operation which is much faster and more
efficient in a computer program!
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Translation – the Case for Homogeneous Coordinates
The linear transformation, T, by itself cannot produce a simple translation of the point, and this
presents a serious problem for geometric modeling applications.  Homogeneous coordinates
provide a simple and very elegant way round this problem.  While there are many ways to
introduce homogeneous coordinates, the simplest approach is to just define the process of
projecting a point back and forth from 2D space to homogeneous coordinate space.  When we
add a homogeneous coordinate to a 2D problem, it is just like adding a 3rd Euclidean coordinate
(e.g., the z coordinate).  Fundamentally, there is no way we can infer the z value from knowledge
of the (x,y) coordinates alone.  Additional information about the z coordinate (the “depth”) must
be provided.  Similarly, if we project a 3D point into the z=0 plane, we simply discard its z
coordinate.  In this same spirit, let us extend our 2D space to a 3D homogeneous space with the
addition of a homogeneous coordinate as follows:

[ ] [ ]x y hx hy h⇒

What we are doing is simply adding a 3rd coordinate, h, in a homogeneous fashion, that is, we are
multiplying the x and y coordinates by the same h value.  This will create a new point in 3D
homogeneous space.  The reverse of this process is the “projection” of the point from 3D
homogeneous space back into 2D (Euclidean) space and this is obviously done by first
homogeneously dividing the coordinates by the homogeneous value, h:

[ ] [ ] [ ]1hx hy h x y x y⇒ ⇒

The process of making the homogeneous division is generally described as “normalizing” and it
must be done in order to determine the resulting (x,y) coordinates.  In other words, points in
homogeneous space with any value of h in the above equation all project back to the same (x,y)
point, and this is just like in Euclidean space where 3D points with given x and y values but any
value of z all project back to the same (x,y).  To illustrate:

Euclidean Space:
[ ] [ ] [ ] [ ]2 3 5 2 3 7 2 3 0.5 2 3or or− ⇒

That is, all these points project back to the same point (2,3) in the (x,y) plane.

Homogeneous Space:
[ ] [ ] [ ] [ ] [ ]4 6 2 8 12 4 2 3 1 2 3 1 2 3or or − − − ⇒ ⇒

And similarly, all these points project from homogeneous space to the same 2D point (2,3).

Finally, it should be noted that the simplest way to go from 2D to 3D homogeneous coordinates
is to just add the homogeneous coordinate as unity, that is:  [x y]→[x y 1].

This is all well and good from a purely mathematical point of view, but to an engineer, the
question is “what can we do with this result?”  The result is surprising.  Since we are now using
3 coordinates, the dimensions of T must be increased from 2x2 to 3x3 so that we have:

a b p
c d q
l m s

T
 
 
 =
 
 
  
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where the terms a,b,c,d are the same as before but we have added l,m,s,p,q.  Just as before, the
most effective approach is to explore how these constants affect a transformation.  Since we have
already studied the effects of a,b,c,d, we will now consider only the effects of l,m,s,p,q, and the
easiest way to do this is to fix a=d=1 and b=c=0 which was the unit transformation (no effect).

Consider first the situation when p=q=0 and s=1 so that only l and m will be varied.  The
transformation is then:

[ ] [ ] [ ]

1 0 0
1 0 1 0 1

1
x y x l y m x l y m

l m

 
 
  = + + ⇒ + +
 
 
  

It is clear that the l and m terms in the 3rd row of T are translation components in the x and y
directions.  Let’s next examine the effect of the s term by considering the following:

[ ] [ ] [ ] [ ]

1 0 0
1 0 1 0 / / 1 / /

0 0
x y x y s x s y s x s y s

s

 
 
  = ⇒ ⇒
 
 
  

This represents an isotropic scale change that is proportional to 1/s.  The effect of the p and q
terms is much less clear as shown below:

[ ] [ ]

1 0
1 0 1 1

0 0 1

1
1 1 1 1

p
x y q x y px qy

x y x y
px qy px qy px qy px qy

 
 
  = + +
 
 
  

   
   ⇒ ⇒
   + + + + + + + +   

This is a much more confusing situation and it is not a particularly useful result until we consider
3D Euclidean space with projections into 4D homogeneous space in a later section.

As a final remark, it should be noted that the 2D homogeneous transformation with p=q=0
defines what is called an “affine” transformation because it includes the basic linear
transformation plus translation.  We will see how this can be useful in the next section.

Rotation About an Arbitrary Point
It has been noted already that T(θ) produces a rotation about the origin.  In many cases in
geometric modeling, it is necessary to make a rotation about a particular point (x0,y0) instead of
the origin.  This can easily be accomplished by first applying translations to move the point
(x0,y0) to the origin, then making the necessary rotation, and finally, translating the point (x0,y0)
back to its original location.  The process is illustrated in Fig. 3 and can be accomplished
mathematically by concatenating each of the transformations as follows.

1 2

0 0 0 0

1 0 0 cos sin 0 1 0 0
0 1 0 sin cos 0 0 1 0

1 0 0 1 1
T and T and T

x y x y
θ

θ θ

θ θ

     
     
     = = − =
     
     − − + +          

where T1 translates the point at the origin, Tθ makes the rotation about the origin, and T2 returns
the point to its original position.  Concatenating these transformations yields:
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1 2θ= ∗ ∗T T T T

Figure 3.  Rotation of Object About a Point (x0,y0)

Reflection Across a Centerline
A similar approach can be used to reflect an object across a given centerline but in this case it
will be necessary to apply transformations until the centerline lies along either the x or y axes
and then make the reflection across one of these axes.  Then the centerline is returned to its
initial position.  Figure 4 illustrates the process geometrically.

Figure 4.  Reflection of Object Across a Centerline
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Three Dimensional Transformations
It is a relatively simple matter to extend the previous 2D development to a full 3D representation.
The point vector must be increased by one column to accommodate a z coordinate so that we can
write:

[ ] [ ]* 1xh yh zh h x y zp = =

and similarly, the general transformation matrix now becomes a 4x4 matrix:
a b c p
d e f q
g h i r
l m n s

T

 
 
 
 =
 
 
 
  

Elements (a… i) in T play the same role as elements (a… d) in the 2D transformation.  Similarly,
elements in the 4th row and the 4th column play the same roles as those in the 3rd row and column
from the 2D transformation.  The example below illustrates this.

General Affine Transformation
A 3D affine transformation is defined when (p,q,r) are all zero.  This yields the following:

[ ]

[ ]

( ) ( ) ( )

0
0

* 1
0

/ / / 1

a b c
d e f

x y z
g h i
l m n s

ax dy gz l bx ey hz m cx fy iz n s

ax dy gz l s bx ey hz m s cx fy iz n s

p pT

 
 
 
 = =
 
 
 
  

= + + + + + + + + +

 = + + + + + + + + +
 

It is clear that the terms in T contribute to a linear scaling and translation of the original point.

Rotations about x, y and z Axes
It is also easy to generalize the previous 2D results for a rotation about the origin to the 3D case.
In this case, one can visualize the 2D rotation as simply a special case of a 3D rotation about the
z axis.  This recognition leads to the following results:

Rotation θθθθ about z axis:
The appropriate transformation matrix is given by:

cos sin 0 0
sin cos 0 0
0 0 1 0
0 0 0 1

T

θ θ

θ θ

 
 
 −
 =
 
 
 
  

It is easy to see(e.g., simply multiply [x y z 1] times T) that this transformation has no effect on
the z coordinate and only changes the x and y coordinates in exactly the same way as the 2D
rotation.

Rotation φφφφ about y axis:
This is simply a permutation of the previous result as follows:
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cos 0 sin 0
0 1 0 0

sin 0 cos 0
0 0 0 1

T

φ φ

φ φ

 −
 
 
 =
 
 
 
  

It should be noted that the sign of the sinφ terms have been reversed across the diagonal of the
matrix.  This is due to the relative locations of the x and z axes for a rotation about y as
compared to the previous rotation about the z axis.

Rotation ξξξξ about the x axis:
Again, the result is another permutation of the previous results:

1 0 0 0
0 cos sin 0
0 sin cos 0
0 0 0 1

T
ξ ξ

ξ ξ

 
 
 
 =
 −
 
 
  

which is nearly identical in structure to the rotation about the z axis.

It should be pointed out at this point that the finite rotations represented by the above
transformations are not commutative.  That is, the final result of successive rotations about
different axes depends on the order in which the rotations are applied..  This can easily be
illustrated by taking a familiar and readily oriented object (such as a pair of reading glasses) and
subjecting it to successive 90° rotations about the x, y and z axes.  Remember the final
orientation.  Now repeat this process starting from the same initial orientation, but this time make
the 90° rotations about the x, z and y axes in that order.  The result will be a different orientation
of the object!  As a final issue, it is simply noted without proof that while finite rotations are not
commutative, infinitesimal rotations are commutative.

Rotation About an Arbitrary Point
The previous cases create rotations about the origin.  We can consider an axis rotation about an
arbitrary point (x0,y0,z0) in a similar manner to that done for the 2D case.  The procedure
involves a translation to locate the point on the axis of rotation (the x, y or z axes).  The rotation
is next applied, and the reverse transformation is applied to return the object to its original
location.  Consider a rotation about the z axis at a point (a,b,c).  The needed transformation is:

* a b a bθ− −=p pT T T T T
where Ta and Tb are the translations in the x and y directions, respectively.  Note that Ta and Tb
could be expressed as a single transformation, Tab by entering appropriate values for l and m in
the T matrix.

Rotation About an Arbitrary Axis
It is usually not sufficient to consider only rotations about the given coordinate axes since this is
generally too inflexible.  A more useful result would be a transformation matrix for a rotation of
α about an arbitrary axis defined by a vector, n.  This can easily be created by following a
similar approach to that developed earlier to implement mirroring across an arbitrary axis.
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Consider the situation as shown in Figure 5 below where the axis of rotation is specified as the
vector, n, located at the origin of the coordinate system and the angle of rotation is α.

Figure 5.  Rotation About Arbitrary Axis

The objective is to transform the problem such that the n vector lies along one of the coordinate
axes, then apply the specified rotation about n, and finally, return the axis (and object) to the
original location.  To this end, it is necessary to break the rotation into simple steps as follows.
First, consider that the vector, n, has been normalized such that |n|=1 so that the terms of n are
the direction cosines.  The first rotation, θx, is used to rotate the vector, n, about the x axis so that
it lies in the xz plane.  With reference to Fig. 5, the sine and cosine terms for this rotation are:

cosθx = nz/n1 and sinθx = ny/n1
where

2 2
1 y zn n n= +

The next rotation is, θy, about the y axis and this lines the n vector up with the x axis.  Again,
with reference to Fig. 5, the sine and cosine terms for this rotation are:

cosθy = nx/n = nx and sinθy = n1/n = n1
So finally, the needed rotations are the following:

Rotate θx about the x axis:

1 0 0 0
0 cos sin 0
0 sin cos 0
0 0 0 1

x

x x

x x

T
θ

θ θ

θ θ

 
 
 
 =
 −
 
 
  

Rotate θy about the y axis:

cos 0 sin 0
0 1 0 0

sin 0 cos 0
0 0 0 1

y

y y

y y

T
θ

θ θ

θ θ

 −
 
 
 =
 
 
 
  

x

z

y

ny

nz

nx

n

θxθy
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Rotate α about the x axis:

1 0 0 0
0 cos sin 0
0 sin cos 0
0 0 0 1

T
α

α α

α α

 
 
 
 =
 −
 
 
  

The final rotation is simply the concatenation of these rotations:

x t x yθ θ α θ θ− −=T T T T T T
where it should be noted that the reverse rotation matrices are simply the transposes of the initial
rotation matrices.  This final result can easily be evaluated numerically, given appropriate values
for the angles.

Projections into a Plane
A projection from N dimensional space involves displaying the point (or objects) in a space of
N-1 dimensions by simply ignoring one of the coordinates.  In a rectilinear, orthogonal
coordinate system, this produces what is called an orthographic projection since the effect is to
project the objects using projection lines that are perpendicular to the plane of projection.  Such
projections can readily be accomplished from 3D into 2D (or from 2D into 1D) simply by
zeroing one (or two) columns in the transformation matrix.  This has the effect of zeroing the
transformed coordinates corresponding to that column of T.  For example, the following
transformation matrix will create a projection into the z=0 plane:

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

T

 
 
 
 =
 
 
 
  

Mirroring Across A Plane
The 3D equivalent of the 2D mirroring across a given line discussed in a previous section is to
mirror across a given plane.  The process for determining the needed transformations is similar to
what was done earlier.  The steps will be outlined below but the actual computations will be left
as a student exercise.  The resulting transformations are shown in ().
1. Translate until the mirroring plane passes through the origin (T1).
2. Rotate until the mirroring plane is aligned with either the x=0, the y=0 or the z=0 planes (T2).
3. Perform the mirror across the given plane (T3).
4. Reverse the transformations in steps #2 and #1.
The final concatenated transformation is:

T = T1 T2 T3 T2
-1 T1

-1

where it should be noted that the inverse transformations are computed using the opposite signs
for the indicated rotations and translations.

Axonometric Projections
Axonometric projections are orthographic projections in which the object has no particular
orientation with respect to the axis system.  This is in contrast to what are called multiview
orthographic projections in which the principal object axes are aligned with the coordinate axes
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and projections are made into the x=0, y=0 and z=0 planes.  Dashed lines are used to represent
hidden lines, and the particular hidden lines depend on whether the object is in front of or behind
the projection plane.  US custom is to place the projection plane in front of the object while
European convention is to place the plane behind the object.  These two approaches are
sometimes referred to at “third angle” and “first angle” projections, respectively.

There are three different kinds of axonometric projections and they are identified by the
particular orientation of the object with respect to the projection plane.  But rather than specify
the orientation in terms of angles of rotation, the usual approach is to instead specify the change
in length of the axis when it is projected into the projection plane.  When an axis (or a line) is
parallel to the projection plane, there is no change in length for the projection.  On the other hand
for any other orientation there will be some degree of shortening and the precise amount depends
on the cosine of the angle between the axis and the projection plane.  In the special case when the
axis is perpendicular to the projection plane, the projection reduces to a single point.

To consider these cases, we will assume that an object (like a unit cube) has been arbitrarily
oriented with respect to the coordinate system.  You should recall from dynamics that this will
require a minimum of two rotations about independent axes.  Consider an arbitrary rotation φ
about the y axis followed by a rotation of θ about the x axis:

cos sin sin sin cos 0
0 cos sin 0

sin cos sin cos cos 0
0 0 0 1

T

φ φ θ φ θ

θ θ

φ φ θ φ θ

 −
 
 
 =
 −
 
 
  

Trimetric Projection
This is the most general case and no particular orientation is specified.  In this case the original
coordinate axes will each project into new axes on the plane of projection with different degrees
of shortening.  As a result, no particular values for φ or θ need be specified.

Dimetric Projection
For this case, two of the three axes project into the projection plane with equal shortening.  That
is, two axes make equal angles with the projection plane.  This can be defined mathematically in
terms of the above arbitrary 3D rotation by requiring two axes have the same projected lengths.
We can use a point vector, [1 0 0 1], to represent a unit vector in the x direction (and similar
forms for the other 2 axes).  The projections are then:

cos sin sin 0 0
1 0 0 1 cos sin sin 0 1

0 cos 0 0
0 1 0 1 0 cos 0 1

sin cos sin 0 0
0 0 1 1 sin cos sin 1 1

0 0 0 1

φ φ θ
φ φ θ

θ
θ

φ φ θ
φ φ θ

 
    
    
    =
    −
    −       
  

The projected lengths are simple the row norms for the first 3 columns as follows:

x vector length:  E F
1/ 22 2 2cos sin sini Ñ Ñ èZ H

�

y vector length:  E F
1/ 22cosj èZ

�
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z vector length:  E F
1/ 22 2 2sin cos sink Ñ Ñ èZ H

�

We need only equate 2 of the 3 and choosing the first two yields the following relationship (after
a bit of trigonometric manipulation):

2
2

2

sinsin
1 sin

è
Ñ

è
Z

J

This specifies a relationship between the two angles so we are free to choose one and the other
will be determined.  A common approach is to add another constraint that the third axis should
experience a specified shortening.  For example, assume that we specify the z axis is shortened
by a factor of ½.  This means that we must require for the z vector length:

E F
1/ 22 2 21 sin cos sin

2
Ñ Ñ è

� Z H��
Solving the above two equations for both φ and θ can be done by eliminating φ from the
equations to yield a single equation for θ as follows:

4 28sin 9sin 1 0è èJ H Z

which can be solved to yield, sin2θ=1/8.  This in turn allows solution for φ from one of the
remaining equations.  The final result is:

θ = 20.7°
φ = 22.2°

It should be noted that there are many other dimetric projections, but none of them are of any
particular practical use.  Yet, many classical engineering graphics texts still include a discussion
of this projection and how to develop it graphically.

Isometric Projection
The third projection requires that all three axes are projected to equal lengths on the projection
plane.  This can be specified by requiring all the vector lengths to be equal and this yields two
equations.  To illustrate this we will equate the x and y vector lengths and the x and z vector
lengths to yield (after some algebra) the two equations for φ and θ as follows:

Equate x & y vectors:  
2

2
2

sinsin
1 sin

è
Ñ

è
Z

J

Equate x & z vectors:  
E F

2
2

2

(1 2sin )sin
1 sin

è
Ñ

è

J

Z

J

or solving:
2

2

sin 1/ 3
sin 1/ 2

è

Ñ

Z

Z

These can be solved for φ and θ to yield:
φ = 45° about the y axis
θ = 35.26° about the x axis

The result is the familiar isometric projection in which all three axes projected equally onto the
projection plane.  The resulting axis system defines the projected axes to be oriented at 120° to
each other as shown for the unit cube in Fig. 6 below.  The 45° rotation is obviously needed but
the meaning of the 35.26° rotation deserves more explanation.  As shown in Fig. 6, the diagonal
of the unit cube is oriented perpendicular to the projection plane (and shown as a point).  The
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diagonals are in a plane rotated 45° about the y axis as noted but the appropriate angle for θ must
be determined by analyzing the plane in which the diagonal lies.  In this case it should be
obvious that the diagonal is rotated in the plane by an angle whose tangent is 1/√2 and this is the
angle of 35.26° given above!

Figure 6.  Isometric Projection

The isometric projection is very useful in engineering drawings because the same scale can be
applied to all three axes, thus allowing information to be taken directly from the drawing using a
ruler.  By backsubstituting the φ and θ angles, we find that the shortening for each axis is 0.82
and this factor must be taken into account if dimensions are scaled off the drawing.  Another
approach is to increase the scale factor for the isometric view by the reciprocal (1.22) so that the
dimensions are now at full scale.  This allows dimensions to be taken off the drawing without
any scaling but the object will appear to the eye to be about 22% larger.

Perspective Transformations
The previous transformations have all been affine transformations since they do not involve
nonzero values for the p,q,r terms in the 4th column.  The role of p,q were discussed briefly in
discussions of the 2D transformations but further analysis of these cases were postponed to the
3D treatment.  Consider now the transformation with only p,q,r present.  In particular, we will
first consider r as the only nonzero term.

Perspective Projection
A perspective projection is usually formed by projecting a point (x,y,z) into the z=0 plane using a
line of projection that passes through a point on the z axis called the center of projection.  When
the projection of multiple points and lines defining a geometric object is made onto the z=0
plane, the resulting image looks very much like a photographic image.  In this case parallel lines
on the object appear to come together in the projected image at points that are called vanishing
points.  A familiar example is the projection of the parallel rails of a railroad track which appear
to come together in the projected image at a vanishing point.

We can create the same kind of projection by applying a transformation with diagonal terms
equal to 1 and r as the only other nonzero term.  We will follow this with a projection into the

120° 120°
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z=0 plane and this can be accomplished by zeroing any terms in the 3rd or z column of the
transformation matrix as noted earlier.  To illustrate this consider the following transformation:

[ ] [ ]

[ ]

1 0 0 0
0 1 0 0

* 1 0 1
0 0 0
0 0 0 1

0 1 * * 0 1
1 1

x y z x y rz
r

x y x y
rz rz

p p T

 
 
 
 = = = +
 
 
 
  

 
 = =
 + + 

The geometric interpretation of this result is somewhat easier to make if only a single term in
considered at a time.  For example, the above equation indicates that the transformed x value, x*,
is given as:

*
1

xx
rz

=
+

This is somewhat easier to explain geometrically if we consider the y=0 plane as shown in Fig. 7
below.  It can easily be shown that this result defines the particular geometry of the similar
triangles shown in the figure.  Using the geometry in Fig. 7, the ratio of the x and z sides of the
two triangles can be expressed as:

*
1/ 1/
x x

z r r
=

+
This can be solved for x*  to yield:

*
1

xx
rz

=
+

which is exactly the result developed above from the transformation operation.

Figure 7.  Perspective Projection as Viewed in the y=0 Plane

A similar geometric interpretation can be made for the y coordinates (by plotting the geometry in
the x=0 plane).  These results define what is called a perspective projection of the original (x,y,z)

x

z x

x*

z

-1/r
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coordinates into new coordinates (x*,y*) in the z=0 projection plane..  Specifically, points are
projected into the z=0 plane using projection lines that all pass through the point at 1/r on the
negative z axis (which is called the center of projection).  Several interesting features of this
projection are worth noting.
1. Points with positive x coordinates lying above the center of projection all project to points on

the projection plane (z=0) with positive x values as well.
2. Points with positive x coordinates lying below the center of projection all project to points on

the projection plane with negative x values.  This produces an image reversal that is similar
to what happens in an optical lens system.

3. Points with the same x (or y) coordinate value but different z coordinates will project to
points on the projection plane with different x coordinates.  In other words, points farther
away in the z direction will project closer and closer to the origin in the projection plane.  In
fact all points at z=∞ project to the point (0,0) on the projection plane!

These results are illustrated in Fig. 8 where the perspective projection into the z=0 plane is
shown for a vertical line, AB lying above the z=0 plane (the figure is just a 3D extension of Fig.
7).  It is interesting to consider what happens as point A is extended vertically.  Geometrically,
the projected point, A*, moves towards the origin and will converge there when A reaches z=∞.
Similarly, the bottom point projection, B*, will move towards the point, B0, in the z=0 plane as
endpoint B moves downward towards the z=0 plane.

Figure 8.  Perspective Projection of a Vertical Line AB

This behavior is also shown in the transformation of the points defining A and B as follows:

z

x

y A

B

B*A*

-1/r

B0
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1 0 0 0
1 10 1 0 0
1 10 0 0

0 0 0 1

1
1 1 1

1
1 1 1

* * * 1
* * * 1

A A A A A A A

B B B B B B B

A A A

A A A

B B B

B B B

A A A

B B B

x y z x y z rz
x y z x y z rzr

x y z
rz rz rz

x y z
rz rz rz

x y z
x y z

 
 
    +
    =
    +    
 
  

 
 
 + + +
 =
 
 
 + + +  

 
 =
 
 

For a given value of r defining the center of projection, it is obvious that xA* < xB* because
zA>zB so the denominator for xA* is larger than the denominator for xB*.  Furthermore, as zA→∞
it follows that xA*→0 and yA*→0 as illustrated geometrically in Fig. 7.

Perspective Projection
As a final point, Fig. 9 below shows the situation when the perspective projection is applied
without a projection into the z=0 plane.  In this case, the 3rd column in T is not zeroed out so that
a z* coordinate will be computed.  This is a perspective transformation and not a perspective
projection.  When the new zA* and zB* values are included it is apparent that the transformed
points, A* and B*, are located on a line passing through a point located on the z axis at +1/r.
This point is the true 3D vanishing point where both A* and B* will end up if their initial z
coordinates are allowed to increase to ∞.  (We saw in Fig. 8 that this point projects into the
origin in the z=0 plane of projection for a perspective projection.)

Figure 9.  Full 3D Perspective Projection of Line AB

z

x

y A

BB*A*

-1/r

B0

1/r
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Multiple Vanishing Points
In the previous illustrations there is only a single vanishing point located at the origin.  In general
for a 3D object there may be one, two or three vanishing points in the transformed x*, y* and z*
directions.  To see this, we will consider applying a perspective projection into the z=0 plane
after having first applied a rotation about the y axis (Tθ) and a general translation (Tt).  In this
case we will choose the center of projection at a point z=k on the positive z axis.  The resulting
concatenated transformation is:

1 0 0 0cos 0 sin 0 1 0 0 0
0 1 0 00 1 0 0 0 1 0 0

1sin 0 cos 0 0 0 1 0 0 0 0
0 0 0 1 1 0 0 0 1

sincos 0 0

0 1 0 0
cossin 0 0

0 0 0 1

t pz

k
l m n

k

k
n
k

T T T T
θ

θ θ

θ θ

θ
θ

θ
θ

 
   −  
     
     
     = =
     −
     
     
          

 
 
 
 
 
 

=  
− 

 
 
 

− 
  

It is immediately apparent that the rotation and translation has produced an additional nonzero
term in the 4th column of the resulting transformation matrix, and this leads to the appearance of
two vanishing points.  Note also that the (4,4) term which controls isotropic scaling is no longer
unity which implies a scale change.  This is the characteristic property of perspective projections
to make objects closer to the center of projection seem larger and objects farther from the center
of projection seem smaller.  To determine the location of the vanishing points, we must project
points located at ∞ along the x, y and z axes.  Points at ∞ can be created as follows.  Start with a
point located on the x axis and consider what happens as the homogeneous coordinate, H,
becomes vanishingly small:

[ ] [ ] [ ]0 0 / 0 0 1 * 0 0 1x H x H x= =

As H is reduced towards zero, the transformed coordinate, x*, approaches ∞.  We conclude from
this that points with H=0 correspond to points located at infinity.  In particular we note that:

[1 0 0 0] → positive infinity along the x axis
[0 1 0 0] → positive infinity along the y axis
[0 0 1 0] → positive infinity along the z axis

Therefore, we can determine the locations of the vanishing points for the above case by
transforming these 3 points at ∞ as follows:
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sincos 0 0
sincos 0 01 0 0 0 0 1 0 0

0 1 0 0 0 1 0 0cossin 0 0
0 0 1 0 cossin 0 0

0 0 0 1

0 0 1
tan

0 1 0 0
tan 0 0 1

k
k

k
n k
k

k

k

θ
θ

θ
θ

θ
θ

θ
θ

θ

θ

 
 

  
  

    
    
  =   
   − 
       −  

    
− 

  

 
 
 
 

=  
 
 −
 
  

This result indicates that vanishing points will appear for the x and z axes but not the y axis (its
vanishing point is still located at ∞).To illustrate this transformation, Fig. 10 shows the
transformation of a unit cube for which θ=30 and m=-2 with k=3.  From the above results, the
vanishing points will appear at:

x axis:  x* = k/tanθ = 5.20 and y*=z*=0.
z axis:  x* = -k tanθ = -1.73 and y*=z*=0.

Figure 10.  Projection of Unit Cube for θ=30, m=-2, r=-1/3.

y*

x*

z

x

y
z axis
vanishing pt

x axis
vanishing pt
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Alternate Development of Homogeneous Coordinates
We have introduced homogeneous coordinates somewhat arbitrarily and from a purely
mathematical point of view.  However, we can also develop the same form simply by requiring
that our linear transformation also include translation.  Consider a general 3D linear
transformation as follows:

[ ] [ ]* * *
a b c

x y z d e f x y z
g h i

 
 
  =
 
 
  

In order to include translation given by components (x0,y0,z0), we must modify this to the
following:

[ ] [ ] [ ]0 0 0 * * *
a b c

x y z d e f x y z x y z
g h i

 
 
  + =
 
 
  

Considering the application of this transformation to a 2-point polyline instead of a single point
will reveal more details of the necessary process:

[ ] [ ]1 1 1 1 1 1
0 0 0

2 2 2 2 2 2

* * *
1 1

* * *
T

a b c
x y z x y z

d e f x y z
x y z x y z

g h i

 
    
    + =
    

    
  

Note that a column vector of 2 ones is needed to convert the translation component from a single
row vector into a two-row vector with identical rows; this allows us to continue to represent the
translation as a single row vector.  We can express the above result in a more compact symbolic
form as follows:

0 *Tp T 1 p p+ =

where 1T is the special column vector noted above and p0 is the translation vector.  This is still
not a very useful format because it involves two separate terms on the left-hand side of the
equation.  In order to make this equation look more like a linear transformation, we can combine
the pair of multiplications on the left-hand side as follows:

0

*T T
p 1 p

p
 

    =    
 

This looks closer to what we want, and it is very interesting to note that the initial point vector, p,
has now been augmented by a fourth column of 1’s just like an homogeneous coordinate
representation.  But we will need to create the same representation for p* on the right-hand side
and this can be done with a bit more matrix manipulation as follows:

0

*
1

T
T TT 0

p 1 p 1
p

 
     =       

 

The notation here is very tricky.  We have added a new column to the right matrix on the left-
hand side of the equation in order to produce the added column of 1’s on the right-hand side
result.  In this case, we define the 0 vector as a row vector of 0’s with the same number of 0’s as
used in the 1 vector above.  This means that the term 0T is a column of 0’s.  The final form for
this result can be seen by expanding the terms in the above equation as:



AE4375-6380 Notes on Transformations (F99) Page 20

1 1 1

2 2 2

0

0 0 0

1 1 1

2 2 2

1
1

0
0
01
1

* * * 1
*

* * * 1

T

T

T

x y z
x y z

a b c
d e f
g h i
x y z

x y z
x y z

p 1

T 0
p

p 1

 
   =    

 

 
 
  
   =
  

   
 
  

 
   =    

 

It should now be clear that the above result is really the same transformation matrix that we
developed in homogeneous coordinates.  In effect, we are required to add a 4th column to our
point vectors and set the value to 1.  This allows us to expand the T matrix by adding a 4th row
containing the translation components and a 4th column containing 0’s (except for the T(4,4)
element which must be 1 also).


