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Geometric Transformations and Projections 

Prelude: Different Forms of the Transformation Matrix: 
The transformation matrix can be expressed in two different forms: 

•  Post-multiplication form 

In this approach, a point is represented as a row array (or matrix).  The new point is 
obtained by post-multiplying the old point in the following form, as illustrated using a 
2D rotation and translation example. 
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The post-multiplication was once popular and used in our old notes on the web.  
However, this approach is seldom used in more recent textbook and literatures. 
 

•  Pre-multiplication form 

In this approach, a point is represented as a column array (or matrix).  The new point 
is obtained by pre-multiplying the old point in the following form, as illustrated using 
the same 2D rotation and translation example. 
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The pre-multiplication approach is widely used today in textbooks and computer 
manuals.  We use this approach in the lecture and in additional notes (on the web 
and distributed in class). 
 
The two approaches are equivalent.  However, we do want to be consistent with 
current practice.  We will use pre-multiplication in our assignments and exam. 
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1. Translations and Rotations 
a) Translation 
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b) Scaling 

 
 
 
 
 

P1 =
x1

y1

z1

 

 

 
 
 

 

 

 
 
 

     P2 =
sx1

sy1

sz1

 

 

 
 
 

 

 

 
 
 

     P2 = sP1  

y

x

z

P2

P1

 
c) Reflection (about XOY Plane) 
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d) Rotation about z Axis 
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2. Homogeneous Representation 

The representation is introduced to express all geometric transformations in the form of 
matrix multiplication for the convenience of manipulation. 

a) Translation 
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d) Rotation about the z Axis 
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Rotation about X Axis - CCW by θθθθ    
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Rotation about Y Axis - CCW by θθθθ    
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Rotation about an Arbitrary Axis 

 
Parametric Rep. of the Axis: 

 

x = Au + x0
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  0 < u <1 
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Step 2: Rotate Vector 
  

� 

L  about X Axis to get 
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L  into the x - z plane 
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Step 3: Rotate 
  

� 

L  about the Y axis to get it in the z direction 

Rotate a negative angle (CW)! 
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sinθ2 = −
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Step 4: Rotate angle θ about axis 
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Step 5: Reverse the rotation about the Y axis 
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Inverse of Rotation: 

Replace  θ by  – θ 

  sin θ by – sin θ 

  cos θ by – cos θ 
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Step 6: Reverse rotation about the X axis 

 Rx[ ]−1 =
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Step 7: Reverse translation 
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Overall Transformation 
 

 
 

T[ ] = D[ ]−1 Rx[ ]−1
Ry[ ]−1

Rz
θ[ ] Ry[ ] Rx[ ] D[ ]

P2 = T[ ]P1
 

 
Assignment 4: 
 

1. Given [ ] [ ]0 0 0 1 2 3 4 1T Tx y z = , [ ] [ ]1 1 1 1 1T TA B C = , and 90oθ = , 
find the composite transformation matrix [T] for Rotation about an Arbitrary Axis. 
 

2. A line connects the point A at [1,0,0]T to the point B at [1,0,1]T.  A second line extends 
from C at [1,0,2]T to D at [1,1,2]T.  Rotate line AB about line CD using vector-matrix 
methods.  The rotation should be 900 counter-clockwise as seen from the +Y axis. 
 

3. A plane surface intersects the coordinate axes at three points A = [5,0,0]T, B = [0,5,0] T 
and C = [0,0,l0]T. A given point P is on the plane.  Find the matrix of geometric 
transformation that move the point P five units down on the plane to P'. (Line PP' is 
perpendicular to edge AB and is on plane ABC.  PP' = 5.) 
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Viewing Coordinate System 

a) View Window 

 

• Right hand coordinate system 
• 2D coordinate system on the view plane. 
• Some "old" graphics systems use a left-hand coordinate system.  A different 

geometric transformation matrix must be used. 
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b) Orthographic View versus World Coordinate System 
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c) Perspective and Parallel Projections 

We want to produce a 2D image (projection) of a 3D object. 
• Perspective Projection 
• Parallel Projection 
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Definition of a General Viewing Coordinate System 

a) What are involved? 

 

b) How to Set Up the Viewing Coordinate System (VCS)! 
 i)Define the view reference point 

 P = P x,  Py , Pz( )T  

 ii) Define the line of the sight vector 
 

� 

n  (normalized) 

 
 

� 

n = Nx,  Ny , Nz( )T  and N x
2 + Ny

2 + Nz
2 =1 

 iii) Define the "up" direction 

 
  

� 

V = Vx , Vy , Vz( )T
⊥

� 

n ,     
� 

V ⋅
� 

n = 0  

 This also defines an orthogonal vector, u  

 
 

� 

u =
� 

V ×
� 

n  

 
  

� 

u ,  
� 

V ,  
� 

n ( ) forms the viewing coordinates 
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iv) Define the View Window in 
 

� 

U −
� 

V −
� 

W  coordinates 

c) Parallel Projection 

First transform coordinates of objects into the UVn coordinates (VCS), then 
drop the n component.  (n – depth) 

Overlapping  x - y - z  and  U - V - n 
 i) Translate Ov to O. 

 D[ ] =

1 0 0 −0vx

0 1 0 −0vy

0 0 1 −0vz

0 0 0 1

 

 

 
 
 
 
 

 

 

 
 
 
 
 

 

 ii) Align the 
  

� 

n  axis with the Z axis. 

 

A = Nx ,   B = N y,   C = Nz

L = N x
2 + Ny

2 + Nz
2

V = N y
2 + Nz

2

  

 The procedure is identical to that given in 5.2. 
 • rotate θ1 about x: [Rx] 

 • rotate θ2 about y: [Ry] 
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 iii) Rotate θ3 about the Z axis to align U  with x and/or V  with y.  At this 

point, V  is given by ′ V x, ′ V y, 0( )T  where 

 

′ V x

′ V y

0

1

 

 

 
 
 
 
  

 

 

 
 
 
 
  

= Ry[ ] Rx[ ]  Dov ,o[ ]  

V x

V y

Vz

1

 

 

 
 
 
 
 

 

 

 
 
 
 
 

 

 We need to rotate by an angle θ3 about the Z axis 

 L = ′ V x
2 + ′ V y

2 ,     sinθ3 =
′ V x

L
,     cosθ3 =

′ V y
L

 

 Rz[ ] =

′ V r L − ′ V x L 0 0

′ V x L ′ V y L 0 0

0 0 1 0

0 0 0 1

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 
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 iv) Drop the n coordinate 

Dn[ ] =

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 

 

 
 
 
 

 

 

 
 
 
 

,     

u
V
0
1

 

 

 
 
 
 

 

 

 
 
 
 

= Dn[ ]

u
V
n
1

 

 

 
 
 
 

 

 

 
 
 
 

 

 In summary, to project a view of an object on the UV plane, one needs to 
transform each point on the object by: 

 T[ ] = Dn[ ]  Rz[ ]  Ry[ ] Rx[ ]  Dov ,o[ ]  

 
′ P =

u
V
0
1

 

 

 
 
 
 

 

 

 
 
 
 

= T[ ]P = T[ ]  

x
y
z
1

 

 

 
 
 
 

 

 

 
 
 
  

 

Note:  The inverse transforms are not needed!  We don't want to go back to x - y - z 
coordinates. 

 
 

 

 


