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vidence for functional asymmetries in forward and backward connections that
define hierarchical architectures in the brain. We exploit the fact that modulatory or nonlinear influences of
one neuronal system on another (i.e., effective connectivity) entail coupling between different frequencies.
Functional asymmetry in forward and backward connections was addressed by comparing dynamic causal
models of MEG responses induced by visual processing of normal and scrambled faces. We compared models
with and without nonlinear (between-frequency) coupling in both forward and backward connections.
Bayesian model comparison indicated that the best model had nonlinear forward and backward connections.
Using the best model we then quantified frequency-specific causal influences mediating observed spectral
responses. We found a striking asymmetry between forward and backward connections; in which high
(gamma) frequencies in higher cortical areas suppressed low (alpha) frequencies in lower areas. This
suppression was significantly greater than the homologous coupling in the forward connections.
Furthermore, exactly the asymmetry was observed when we examined face-selective coupling (i.e., coupling
under faces minus scrambled faces). These results highlight the importance of nonlinear coupling among
brain regions and point to a functional asymmetry between forward and backward connections in the human
brain that is consistent with anatomical and physiological evidence from animal studies. This asymmetry is
also consistent with functional architectures implied by theories of perceptual inference in the brain, based
on hierarchical generative models.

© 2008 Elsevier Inc. All rights reserved.
Introduction
This paper is about functional asymmetries between forward and
backward connections in the brain. Dynamic causalmodelling (DCM), a
recently developedmodelling framework, was used to ask if there is an
asymmetry in nonlinear or modulatory influences among different
levels of a cortical hierarchy. We addressed this asymmetry usingMEG
data obtained from human subjects during the processing of faces and
tried to explain theobserved responsesusingmodels thatdo anddonot
have nonlinear connections. This enabled us to quantify the evidence
for nonlinear coupling in qualitative terms, using model comparison.
We then compared forward and backward coupling strengths
quantitatively, to test for any asymmetries, under the best model.

Hierarchical connections and functional asymmetries

It is now generally accepted that, at least in the sensory cortex, the
brain has a hierarchical organisation that is defined largely by
asymmetries in extrinsic cortico-cortical connections (Maunsell and
rights reserved.
van Essen, 1983; Zeki and Shipp, 1988; Felleman and Van Essen, 1991;
for motor systems this issue is more controversial, see Shipp, 2005).
These asymmetries classify a connection as being forward or
backward (Rockland and Pandya, 1979) and therefore define an
implicit (although not necessarily unique; Hilgetag et al., 2000)
hierarchy of areas. The laminar specificity of forward and backward
projections is a key anatomical asymmetry, which may speak to
ensuing functional asymmetries (Sandell and Schiller, 1982; Murphy
and Sillito, 1987; Salin and Bullier, 1995; Lamme et al., 1998; Angelucci
et al., 2002a,b). One of the important aspects of this anatomical
asymmetry is that backward connections make synaptic connections
predominantly in supra-granular layers, with en-passant connections
in infra-granular layers. This is relevant because voltage sensitive (i.e.,
nonlinear) receptors like NMDA receptors populate, largely, the supra-
granular layers (Fox et al., 1989; Rosier et al., 1993), suggesting that
backward connections may have preferential access to modulatory,
voltage-dependent post-synaptic effects with long time-constants (c.
f., Eaton and Salt, 1996; Gentet and Ulrich, 2004). Similarly, backward
connections have also been found to target metabotropic glutamate
receptors which, like NMDA receptors, have long time-constants and
are thus able to mediate context-sensitive effects (Rivadulla et al.,
2002; Salt, 2002). The notion that backward connections are more
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modulatory, in relation to the driving effects of forward connections
(Salin and Bullier, 1995; Sherman and Guillery, 1998), is further
supported by the higher degree of divergence that backward
connections display and by their ability to transcend more than one
cortical level (Zeki and Shipp, 1988). In short, most of the evidence
from the anatomy of extrinsic (inter-regional) connections, from the
spatial distribution of their synaptic connections across cortical layers
and from their physiology, points to a functional asymmetry between
forward and backward connections. This asymmetry is consistent
with a role for backward connections in modulating, coordinating or
providing contextual guidance to bottom-up processing that is driven
by forward connections. There are many examples of this ranging
from the mediation of extra-classical receptive field effects (Angelucci
and Bressloff, 2006; Hupe et al., 1998; Lamme and Roelfsema, 2000) to
the implementation of gain mechanisms that may be involved in
attention and biased competition (Larkum et al., 2004). Indeed, direct
evidence for the modulatory effect of backward connections has been
obtained from reversible deactivation studies inmonkeys (Sandell and
Schiller, 1982; Girard and Bullier, 1989; Hupe et al., 1998) and non-
invasive fMRI studies of humans (Friston et al., 1995; Büchel and
Friston, 1997; Stephan et al., 2008). However, there have been no
direct comparisons of modulatory effects in forward and backward
connections in man.

Modulatory effects and nonlinear coupling

The defining characteristics of modulatory pre-synaptic inputs are
nonlinear interactions with other pre-synaptic inputs when generat-
ing post-synaptic responses. Examples here include the mechanisms
of classical neuromodulatory neurotransmitters that, for example,
change the conductance of slow potassium channels that mediate
after hyper-polarisation (e.g., Metherate et al., 1992; Faber and Sah,
2003). These sorts of effects change the response profile of neurons,
such that they respond differently to the same driving input. Another
key example is the voltage-dependence of NMDA receptor activation,
which means that the effect of pre-synaptically released glutamate at
these receptors is context-sensitive and nonlinear (e.g., Schiller and
Schiller, 2001). A third important example of nonlinear interactions
relates to action potentials that are back-propagated by means of
active conductances throughout the dendritic tree to elicit long-
lasting calcium currents; this means that, depending on the relative
timing of synaptic inputs, the propagation of postsynaptic potentials
can be facilitated or blocked by preceding synaptic inputs (e.g., Larkum
et al., 2004; London and Häusser, 2005).

The equivalence between modulatory effects of synaptic connec-
tions and nonlinearities in neuronal input-output relations is
important because nonlinear effects can be characterised relatively
easily using only the observable inputs and outputs of a system. In
brief, nonlinear effects induce high-order generalised convolution
kernels, in the time domain, or generalised transfer functions in the
spectral domain (Friston, 2001). These high-order functions couple
certain frequencies in the input to different frequencies in the output.
A simple example here would be the nonlinear squaring of a
sinusoidal wave to double its frequency. This means we can formulate
questions about the modulatory effects in terms of coupling between
frequencies in spectral responses that are observed in different parts
of the brain. This is the basis of a recently developed dynamic causal
model (Friston et al., 2003) for EEG and MEG (Chen et al., 2008) that
allows one to test various models with and without nonlinear
(between-frequency) coupling among specified regions or sources.
The current report is based on this approach.

Nonlinear coupling and generative models in the brain

There are many heuristics that have been used to frame the
importance of nonlinear or modulatory coupling in the brain. We
focus on a specific but dominant account of functional anatomy, based
on hierarchical inference and learning in the brain (Helmholtz, 1860;
MacKay,1956; Ballard et al., 1983; Mumford,1992; Kawato et al., 1993;
Dayan et al., 1995; Rao and Ballard, 1999; Rao, 1999; Friston, 2003;
Kersten et al., 2004; Friston, 2005; Friston et al., 2006). This account
suggests that the brain is an inference machine that uses generative
models to predict incoming sensory information. In this framework,
also referred to as predictive coding (Rao and Ballard, 1999; Friston,
2005), perceptual inference corresponds to optimising putative causes
of sensory input by minimising prediction error (or, equivalently,
variational free-energy). This can be achieved simply by generating
predictions at higher levels of the cortical hierarchy, which are passed
to lower levels to explain away bottom-up inputs. These predictions
are updated by prediction errors, conveyed by the forward connec-
tions. This scheme entails forward and backwardmessage passing and
is formally identical to hierarchical or empirical Bayesian inference
(Friston, 2003). Critically, because predictions are formed using a
generative model of the world, this account predicts that the influence
of backward connections is necessarily nonlinear (Friston, 2003). A
simple example of nonlinearity, in generative models of visual input,
would be the occlusion of one object by another. If higher level
representations of an object and its occluder are used to provide a
prediction of the sensory input, then these top-down effects must
interact nonlinearly to encode the occlusion per se. In short, under
empirical Bayesian or predictive coding models of perceptual
inference, backward connections that convey predictions that should
suppress activity in lower levels encoding prediction error. Critically,
this explaining away of prediction error rests on nonlinear mechan-
isms. This is compatible with the physiological evidence, described
above, that backward connections mediate modulatory effects.

The functional properties of forward connections are predomi-
nantly, but not exclusively, linear; see Friston, 2003 and Sherman and
Guillery, 1998 for a summary of the neurophysiological evidence.
However, there is some empirical evidence that forward connections
may also exhibit nonlinear properties. For example, transmission of
sensory information along forward connections can involve NMDA
receptors (Fox et al., 1990; Kelly and Zhang, 2002; Salt, 2002). Accor-
ding to predictive coding theories, forward connections mediate the
influence of error units in lower levels on representational units in
higher levels, and these bottom-up influences are linear in prediction
error (Friston, 2003). However, “… although the forward connections
mediate linearly separable effects, these connections might be activity-
and time-dependent because of their dependence on [higher repre-
sentations]” Friston (2003). This means the strengths of forward
connectionsmaybe activity-dependent and therefore appearnonlinear.

In summary, on the basis of the above empirical and theoretical
considerations we predicted that coupling between high and low
areas would entail cross-frequency or nonlinear coupling. This is
because there is substantial evidence that at least one arc (backward
connections) of reciprocal self-organising exchanges between visual
areas rests on nonlinear synaptic mechanisms. Furthermore, we
predicted that backward coupling would suppress neuronal activity in
lowers areas and that this suppression would; (i) be manifest as a
significant cross-frequency (nonlinear) suppression (ii) be signifi-
cantly greater than the equivalent coupling in the forward direction.
To test these hypotheses, we used a recently validated dynamic causal
model for induced responsesmeasuredwithM/EEG (Chen et al., 2008)
to implement different models with and without nonlinear (between-
frequency) coupling among regions involved in visual face processing.
Using Bayesian model selection (Penny et al., 2004), we compared
models in which forward and backward connections could either be
linear or nonlinear. We were hoping to show that, qualitatively,
nonlinear models were significantly better than their linear homo-
logues.We then examined the coupling estimates from the best model
to test the quantitative hypotheses about the suppressive effects of
backward connections.
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This paper comprises three sections. In the first, we briefly
summarise dynamic causal modelling for induced responses. This
technique is then applied to an MEG study of face perception, as
described in the second section. This section describes the factorial
construction of four DCMs that were inverted to provide the
evidence for each model and subject (i.e., probability of the data
given the model). We then identified the best model using Bayesian
model comparison and established the consistency of model
selection at the between-subject level by analysing the model
evidences. In the final section, we present the quantitative char-
acterization of coupling using the conditional parameters estimated
of the best model to test for predicted top-down suppression and
forward-backward asymmetries.

Dynamic causal modelling for induced responses

Dynamic causal modelling (Friston et al., 2003) uses a dynamic or
state-space model to explain observed time-series. Because these
models are formulated in terms of differential equations and account
for experimentally controlled perturbations or inputs they can be
regarded as causal in nature; hence dynamic causal modelling. Usually
a dynamic causal model has two components; the first comprises a set
of differential equations describing the causal evolution of hidden
states of the system generating data. Second, an observer function
maps the hidden states to observed responses. These equations form
the basis of a likelihood model, which together with a prior constitute
a probabilistic generative or forward model. This model can then be
inverted, given observed data using established variational techniques
(i.e., Friston et al., 2007).

Dynamic causal modelling is now well established for functional
magnetic resonance (fMRI) time series (e.g. Bitan et al., 2005; Ethofer
et al., 2006; Fairhall and Ishai, 2007; Fan et al., 2007; Grol et al., 2007;
Mechelli et al., 2003; Stephan et al., 2007a) and has recently been
applied to electromagnetic data as observed with EEG and MEG
(Garrido et al., 2007; Kiebel et al., 2008; David et al., 2007) or
invasively recorded local field potentials (Moran et al., 2008). Even
more recently, we have described a dynamic causal model for spectral
responses as summarised by time-frequency representations of
source-reconstructed EEG or MEG data (Chen et al., 2008). In brief,
DCM for induced responses involves three steps: model specification,
feature selection and model inversion. Model specification entails
specifying a number of sources generating the observed channel data,
the sparsity structure of connections among these sources and
whether the connections are nonlinear or not. Feature selection
involves computing the time-dependent expression of different
frequencies at each source. This is simple to do because the forward
model, given the sources, is over-determined and can be inverted
easily to give the time-series xi(t) at each source. A time-frequency
analysis of source-specific activities then provides the time-depen-
dent spectral activity over a range of frequencies at the i-th source1.
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where ω denotes frequency, t represents time and s indexes time
within amoving Gaussianwindow of width σ. The likelihoodmodel of
these spectral features is very simple; it is based upon a linear
approximation to the state-equations describing the evolution of
frequency-specific power at one source as a function of power in all
other sources and frequencies. A bilinear form for the state equations
1 We use ~g ω; tð Þ for the observed spectral features and g(ω,t) for the true but hidden
values.
allows one to model the modulation of connectivity by experimental
manipulations (i.e. faces vs. scrambled faces in this study).
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Here, the matrices A and C contain coupling parameters that
control, respectively, changes in spectral activity due to endogenous
coupling with other sources and changes induced by exogenous (e.g.,
stimulus) inputs, u(t). The matrices B represent the modulation of the
endogenous coupling parameters in A by an experimental manipula-
tion encoded by X∈{1,0} for two conditions (e.g., faces and scrambled
faces). The coupling matrices are composed of blocks:
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where the elements aijkl encodes how changes in the k-th frequency in
the i-th source depend on the l-th frequency in the j-th source and bij

kl

represents the corresponding change in coupling that is induced
experimentally. The leading diagonal elements of the A matrices are
minus one; this means that each frequency has an intrinsic tendency
to decay or dissipate. Similarly, ci

k controls the frequency-specific
influence of exogenous inputs on the k-th frequency in the i-th source.
This enables within and between-frequency coupling within and
between sources. See Fig. 1 for a schematic summary of the model.

The coupling parameters define the effective connectivity between
sources and frequencies, while priors on these parameters define the
particularmodel in termsofwhich sources and frequencies are coupled.
Linear connections between two sources are encoded by parameters
coupling the same frequency in both sources, whereas nonlinear
connections are represented by parameters coupling different frequen-
cies. By changing the priors, one can switch these parameters on or off
(for details, see Chen. et al. 2008). Specifically, one can construct diffe-
rent models that do or do not allow for nonlinear coupling between
different sources. The advantage of the bilinear form in Eq. (3) is thatwe
can restrict the experimental effect to a subset of connections and
compare the ensuing models. We will use this to model face-selective
effects in, and only in, forward and backward extrinsic connections.

Predictions of the observed spectral responses are formed by per-
turbing the systemwith a parameterised (gamma function) input over
all frequencies and integrating the predicted response over peristimu-
lus time. Under Gaussian assumptions about observation error, ɛ(ω,t),
this provides a likelihood model for observed data, which can be
inverted using standard techniques as described in Friston et al. (2007).

~g ω; tð Þ = g ω; tð Þ + e ω; tð Þ: ð4Þ

The results of inversion comprise a free-energy bound on the log-
evidence of the model lnp ~gjmð Þ and the conditional density of its
parameters p A;B;Cj~g;mð Þ. When several models are inverted, infer-
ence on model-space proceeds by comparing the log-evidences
lnp ~gjmið Þ for each model, as described below. After the best model
has been identified, inference on its parameters proceeds using their
conditional estimates. In the context of multi-subject studies the
evidence is pooled by simply adding the log-evidences over subjects
(because the data from each subject are conditionally independent).

Inference on coupling parameters

Typically, dynamic causal models are applied to time-series data
from single-subjects or sessions. Characterising the model parameters



Fig. 1. Schematic illustration of DCM for induced responses. Upper panel: The spectral dynamics in the sources, ~gi tð Þ, are first evaluated from observations in sensor space and
projected onto source space using the pseudo-inverse of the lead-field, La<sxc; for s sources and c channels. The spectral densities obtain by squaring the absolute values after a
Morlet wavelet transform. Lower panel: the bilinear form of state equations. At the source level, the DCM comprises a vector of states for each electromagnetic source, allowing for
linear and nonlinear coupling.
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over subjects usually uses a summary statistic approach, in which
the conditional estimates are passed to a second (between-subject)
level for classical inference. This is the procedure we pursue here,
with an interesting difference: in DCM for induced responses, each
connection is characterised by amatrix or field of coupling parameters,
Aij(ωk,ωl)=aijkl, that link all frequencies in the source to all frequencies
in the target. Under narrow-band linear coupling, all the elements of
this coupling matrix will lie along the leading diagonal, because one
frequency in the source can only affect the same frequency in the
target. With nonlinear coupling the coupling matrix has large off-
diagonal entries, whereby a high or a low frequency in the source can
change a low or high frequency in the target. Critically, at the
between-subject level, we have to deal with coupling matrices, as
opposed to single connection strengths. We do this using conven-
tional statistical parametric mapping that properly accommodates
smoothness or dependencies among the elements of the coupling
matrices, when controlling false positive rates (Kilner et al. 2005).
The results of these analyses are statistical parametric maps (SPMs)
that show significant differences in coupling among different
frequencies, for each connection or mixtures of connections.

Data acquisition and analysis

Experimental design and data pre-processing

We analysed spectral responses induced by face processing in ten
normal subjects as measured with MEG (Henson et al., 2007). Here,
we analyse data from a single, eleven minute session, in which
subjects saw intact or scrambled faces, subtending visual angles of
approximately four degrees. We chose these data because visual
processing of face stimuli vs. degraded face stimuli is an example of a
perceptual process that has been investigated previously and inter-
preted in terms of predictive coding principles (c.f. Summerfield et al.,
2006). Scrambled versions of each face were created by phase-
shuffling in Fourier space and masking by the outline of the original
image. The scrambled faces were therefore matched for spatial
frequency power density and size. Subjects made left-right symmetry
judgments about each stimulus by pressing one of two keys with
either their left or right index finger (range of reaction times was 1031
to 1798 ms). There were 86 intact and 86 scrambled face artefact-free
trials as revealed by visual inspection. Ten subjects were tested, five
female (young to middle-aged adults). The MEG data were sampled at
625 Hz on a 151-channel axial gradiometer CTF Omega system at the
Wellcome Trust Laboratory for MEG Studies, Aston University,
England. No subject moved more than 6 mm across the session
(median=1.1 mm, range=0.2–5.6 mm).

The MEG data were pre-processed using SPM5 (Wellcome Trust
Centre for Neuroimaging, London). The data were epoched from −600
to +1800 ms, and projected from channel space to source-space using
the generalised inverse of the lead-field matrix for our chosen sources
(see Model specification below for details). The lead-field (gain
matrix) was computed using the coregistered channel locations and
a single-sphere forward model computed by Fieldtrip (F.C. Donders
Centre for Cognitive Neuroimaging, Nijmegen, as implemented in
SPM5). The spectral densities from 4 to 48 Hz at each source were
computed using a time-frequency Morlet wavelet transform (Eq. (1);
wavelet number: 7) between −100 and 600 ms of peristimulus time.
The resulting time-frequency responses were first converted to
absolute values and averaged over 86 trials for each condition and
then baseline-corrected by subtracting the frequency-specific power
of the first time-bin. For computational expediency, we reduced the
dimensionality of spectra to four principal frequency components
derived from a singular value decomposition (SVD) of the spectra
(over conditions and peristimulus time, within subjects). This
preserved over 93 % of the spectral variance in all subjects. Note
that the generalised inverse of the lead-field described here is one of
many inversion schemes that one can use to project data from channel
to source space (Darvas et al., 2004; Friston et al., 2008; Kiebel et al.,



457C.C. Chen et al. / NeuroImage 45 (2009) 453–462
2008; Michel et al., 2004). The generalised inverse is an appropriate
projector if one knows a priori where the sources are located.
However, the results of any model inversion under these prior
assumptions are conditional on the chosen sources being a reasonable
summary of the real neuronal sources. If any sources are omitted and
misplaced there will be a better model of the data and possibly a
different conclusion from model comparison. If one did not know
where the spectral signals were coming from, the beam-former
method could be one useful strategy that allows one to localize the
source positions and estimate spectral features empirically (Singh et al
2003).

Model specification

The anatomical source locations were the maxima of ventral
temporal activations in a group SPM analysis of fMRI data from
exactly the same paradigm though different subjects (Henson et al.
2003). Those sources have also been reported in MEG face studies
(Henson et al. 2007; Itier et al., 2006). Fig. 2 shows the location of
these sources in Montreal Neurological Institute (MNI) coordinates
and on a template MRI image in that space (Talairach and Tournoux,
1988). These four sources correspond to the fusiform face area (FFA)
and the occipital face area (OFA), bilaterally. The central panel of Fig. 2
shows the connectivity graph, which served as the basis for
constructing alternative DCMs. We assumed reciprocal intra-hemi-
spheric connections between OFA and FFA and reciprocal inter-
hemispheric connections between homotopic areas. Additionally, we
assumed cross-hemispheric connections between OFA and contral-
ateral FFA. This connection was added because a previous fMRI study
of a prosopagnosic patient with lesions of left FFA and right OFA found
normal activation in the right FFA for faces vs. non-faces (Rossion et
al. 2003). One possible input to this patient's right FFA is from the
intact contralateral OFA. We therefore included forward connections
from OFA to contralateral FFA. The connectivity architecture for the
models considered in this study is shown in Fig. 3. All models
included reciprocal connections between the visual and fusiform
areas within and across the hemispheres. Stimuli entered the left and
right OFA. We used a factorial approach to specify our models, which
systematically varied the form of the A and B matrices in Eq. 2: Our
models differed according to whether the forward and backward
Fig. 2. Location of the four sources (in MNI coordinates) shown on a template MRI image. The
in more detail in Fig. 3. OFA: left and right occipital face area; FFA: left and right fusiform fa
connections, (and implicitly their modulation by face-selective
processing) were linear or nonlinear (see upper left panel in Fig. 3).
This resulted in four models (lower panel in Fig. 3):

FLBL: linear forward connections and linear backward connections.
FNBL: nonlinear forward connections and linearbackward connections.
FLBN: linear forward connections andnonlinearbackward connections.
FNBN: nonlinear forward connections and nonlinear backward
connections.

We restricted face-selective effects (encoded by the B matrix) to
intra-hemispheric forward and backward connections. Clearly, these
models are a highly simplified representation of the “core system” for
face processing identified by Haxby and colleagues (Haxby et al.,
2000; Fairhall and Ishai, 2007). However, they are sufficient to address
our question, i.e. to distinguish between linear and nonlinear coupling
in a hierarchical neuronal network.

Bayesian model comparison and statistical testing

We compared alternative models in terms of their log-evidence.
For any given pair of models, this difference is the equivalent, in log-
space, to computing their so-called Bayes factor, i.e. their evidence or
marginal likelihood ratio (Penny et al. 2004). A difference of three or
more (i.e. a Bayes factor of about twenty) is usually considered as
“strong” evidence in favour of one model relative to another (Penny et
al. 2004). To ensure differences in the summed log-evidences were
consistent over subjects, the log-evidences for each subject andmodel
were entered into a one-way, repeated-measures analysis of variance
(ANOVA).

To make inferences about the coupling parameters of the best
model, the conditional expectations of the forward and backward
coupling matrices were entered into a conventional between-subject
SPM analysis to identify significant, frequency-specific, differences in
effective connectivity. We tested for significant negative or suppres-
sive effects in backward connections, relative to forward connections
for coupling under face processing (A plus B matrices). We then
repeated this comparison for the face-selective component of
coupling (B matrix). After performing these t-tests we computed an
SPM of the F-statistic to ensure that our planned comparisons had not
central panel shows the basic connectivity structure of the models, which are presented
ce area.



Fig. 3. The upper panel shows the factorial structure ofmodel space: models differed according towhether the forward and backward connections (and implicitly their modulation by
face vs. scrambled face stimuli) were linear or nonlinear. The lower panel shows the connectivity architecture of the ensuing DCMs. The solid and dashed lines indicate nonlinear and
linear connections, respectively. N: nonlinear coupling; L: linear coupling; F: forward connection; B: backward connection. For simplicity, the intrinsic (self) connections are omitted.
These were nonlinear (see previous figure).
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missed any other significant differences. The SPM were displayed at
pb0.05 (uncorrected) and we report maxima at a corrected pb0.05
level (Kilner et al. 2005).

Results

Inference on models

Four DCMs were inverted for each subject as described above. The
summed log-evidences over subjects are shown in Fig. 4 (left panel). It
can be seen that the best model is FNBN (log-evidence sum=−11895),
followed by FLBN (−16306), FNBL (−16308) and FLBL (−59890). In other
words, the model with nonlinear forward and backward connections
was vastly superior to all other models, whereas the model with linear
forward and backward connections was clearly the worst. The two
‘mixed’ models were fairly similar in log-evidence (i.e., positive but
Fig. 4. Left panel: Summed log-evidences for the four DCMs, pooled over subjects. It can be se
log-evidence for all four models with standard errors.
not strong evidence for exclusive nonlinear coupling in backward
connections relative to forward connections). A repeated-measures
ANOVA showed there was a significant interaction (F=13.468;
p=0.005; df 1.9); suggesting that when backward connections are
linear, the log-evidence is greatly affected by whether forward
connections are nonlinear; conversely, when backward connections
are nonlinear, the log-evidence is much less influenced by the nature
of forward connections (see Fig. 4; right panel). Post-hoc t-tests,
confirmed that nonlinear model was significantly better than all other
models (FLBL: t=4.473, p=0.001; FNBL: t=1.908, p=0.044; FLBN:
t=2.306, p=0.023; df=9).

To verify that our assumptions about the basic connectivity
structure (c.f. Fig. 2) were sound, we created two variants of the FNBN
model. These included a simplified model (sFNBN) that contained no
cross-hemispheric OFA–FFA connections and a more complex model
(cFNBN) that contained reciprocal (as opposed to unidirectional) cross-
en that the best model is FNBN, followed by FLBN, FNBL and FLBL. Right panel: The averaged



Fig. 5. This figure shows predicted and observed spectral responses for a representative subject, at the source level, under the best model (FNBN), for the two experimental conditions
(faces vs. scrambled faces). The top two rows are the observed and predicted spectra for normal faces; the bottom two rows are the observed and predicted spectra for scrambled
faces.
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hemispheric OFA–FFA connections. Bayesian model comparison
demonstrated that both were clearly inferior to the nonlinear model.
Their summed log-evidenceswere −17243 (sFNBN) and −15638 (cFNBN)
and paired t-tests showed a significant difference in favour of the FNBN
model (pb0.047 and pb0.008, respectively). The lower log-evidence
for the cFNBN model provides another interesting demonstration (c.f.,
Grol et al. 2007; Stephan et al. 2007b), that increasing the complexity
of a model does not necessarily improve it.

In conclusion, we found that the model with nonlinear forward
and backward connections was the best model and that the model
with nonlinear backward connections came second. Fig. 5 shows the
predicted (under the nonlinear model) and observed spectral
responses at the source level, for the two experimental conditions
(faces vs. scrambled faces) in a representative subject.

Inference on coupling parameters

Fig. 6 shows the coupling matrices during face processing for the
forward and backward connections in the right and left hemispheres
under the nonlinear model. These are the sum of the A and B
matrices in Eq. (2), averaged over all subjects). Anecdotally, it can be
seen that the forward (upper row) and backward (lower row)
connections show profound nonlinear coupling with substantial off-
diagonal structure. Furthermore, there are systematic differences
between the forward and backward coupling; with the backward
coupling showing negative or suppressive cross-frequency effects.
Quantitatively, these are most marked in the right hemisphere for low
(alpha) to high (gamma), and from gamma to alpha in both
hemispheres (red arrows). We tested for these putative asymmetries
with planned comparisons.

The SPM testing for a significant suppression in backward,
relative to forward connections is displayed by Fig. 7 (thresholded
at pb0.05 uncorrected). These comparisons used a stimulus times
hemisphere times forward vs. backward repeated measures ANOVA
with restricted maximum likelihood estimates of non-sphericity
among the errors. The smoothness of the underlying residual fields
was 7.8×6.5 Hz resulting in about 32 resolution elements (i.e.,
effective samples over the frequencyxfrequency search space of the
SPM). This comparison averaged over hemispheres because we failed
to detect a hemisphere times connection interaction. The most (and
only) significant difference (red arrow) was in the coupling from
high (gamma) frequencies to low (alpha) frequencies. This difference
was extremely significant (t=4.72; p=0.002, corrected; df=72). The
subject-specific estimates of coupling strength for this cross-
frequency coupling are shown in the lower panels for both
hemispheres. In the right hemisphere, this difference is due mainly



Fig. 6. Coupling matrices, averaged across subjects, for the coupling strengths of
forward and backward connections in the right and left hemispheres of the FNBNmodel.

Fig. 7. Upper panel: SPM of the t-statistic testing for a greater suppressive effect of
backward connections, relative to forward connections. The SPM is thresholded at
pb0.05 (uncorrected). Lower panels: Subject-specific estimates of the coupling strength
at the maximum of the SPM (red arrow) presented for each hemisphere.
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to a suppressive effect of backward connections; where, remarkably,
every subject had a negative connection strength. In the left hemi-
sphere, the difference appeared to be augmented by an activating
effect of forward connections.

We then repeated exactly the same analysis but testing for
asymmetry in face-selective changes in coupling (i.e., looking just at
the B matrix). Although this comparison is not orthogonal to the
previous comparison, it is reassuring to see that exactly the same
differences. The only significant difference was again between
gamma and alpha frequencies and was even more significant
(t=5.09; p=0.001 corrected; df=72) than coupling under faces per
se (Fig. 8; left panel). Finally, the right panel of Fig. 8 shows the SPM
of the F-statistic testing for any differences in coupling over stimuli,
hemispheres or connections. There were only three peaks that
survived a corrected p-value of 0.05 and only one of these related to
nonlinear coupling (F=5.78; p=0.006, corrected; df=8.72). This is
exactly the same frequency-specific coupling identified by the
planned comparisons. This SPM is shown to illustrate that the
planned comparisons did not miss any other significant differences
and shows that cross-frequency suppression mediated by backward
connections, relative to forward connections, was the most promi-
nent among all differences.

Discussion

Coupling between low and high frequency bands has been
documented in both animal and human recordings (see Jensen and
Colgin (2007) for a review). Canolty et al. (2006) demonstrated in
humans that the power of high frequency gamma oscillations was
modulated by the phase of the low-frequency theta rhythm. The
implicit nonlinear coupling between oscillators at different frequen-
cies builds upon previous studies that have identified similar
phenomena in both anesthetised (Soltesz and Deschênes 1993) and
behaving rats (Bragin et al. 1995). Here, we extend these observations
by showing that nonlinear (between-frequency) interactions can be
ascribed to specific intracerebral sources and used to disclose
asymmetries in directed connections.
Intracranial EEG recordings have shown that faces elicit res-
ponses across a number of regions in the ventral temporal visual-
processing pathway (Allison et al. 1994; Barbeau et al. 2008) and
furthermore that faces can induce changes in the coherence of
broadband (4–45 Hz) power between those regions (Klopp et al.
1999, 2000). However, little is known about the functional relevance
of this coherence or, in particular, the role of nonlinear (between-
frequency) coupling. It has been suggested that nonlinear coupling is
a key aspect of functional integration and is an essential aspect of
network function (Friston 2001; Jensen and Colgin, 2007; Tallon-
Baudry and Bertrand, 1999; Varela et al. 2001). To our knowledge,
this is the first study to quantify and make inferences about directed
nonlinear coupling.

Model selection furnished strong evidence that nonlinear connec-
tions are important for explaining the current MEG data: indicating
that the best model entailed nonlinearities in both forward and
backward connections. The most marked difference in nonlinear
coupling between forward and backward connections under this
model was an activating effect of high (gamma) frequencies on low
(alpha) frequencies in the forward connections and a suppressive
effect in backward connections. Not only are these findings consistent
with empirical evidence from invasive studies but confirmed
theoretical predictions based on Bayesian treatments of perceptual
inference. These predictions suggest that backward connections
suppress or explain away prediction error as lower levels in cortical
hierarchies using nonlinear synaptic mechanisms.



Fig. 8. Left panel: SPM of the t-statistic testing for a greater suppressive effect of backward connections, relative to forward connections in the face-selective changes coupling. Right
panel: SPM of the F-statistic testing for any difference in frequency-specific coupling over connections, conditions or hemispheres. Both SPMs are thresholded at pb0.05
(uncorrected). Significant (pb0.05 corrected) peaks are indicated by the red arrows).
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Wewere a bit surprised to find that high-frequencies affected low-
frequencies. We had expected to see the converse given empirical
results (e.g., Canolty et al. 2006) and the simulations reported in
Friston (2001). However, on reflection, the current results are entirely
sensible if one considers that high (gamma) frequencies reflects
increased neuronal firing (Chawla et al 1999): Heuristically, this
means that gamma activity in low-level areas induces slower
dynamics at higher cortical levels as prediction error is accumulated
for perceptual synthesis. The concomitant high-level gamma activity
(due to intrinsic nonlinear coupling) then accelerates the decay of
evoked responses in the lower level that are manifest at, the
population level, as damped alpha oscillations.

In conclusion, using a model-based approach that allows for
probabilistic estimates of brain connectivity and its modulation by
experimental conditions, our study provides empirical evidence for a
functional asymmetry between forward and backward connections in
the human brain that is consistent with neuroanatomical and
neurophysiological data from animal studies. First, qualitative Bayesian
model comparison disclosed overwhelming evidence for nonlinear
models, in relation to formally equivalent models with linear coupling.
Secondly,we found a striking quantitative asymmetry between forward
and backward connections with regard to stimulus-bound and
stimulus-specific (faces relative to scrambled faces) nonlinear coupling.
This asymmetry was extremely significant and reproducible over
subjects, even under the very conservative SPMprocedures formultiple
comparisons. This study is a starting point for further investigations of
functional asymmetry between forward and backward connections in
the human brain. Here, we restricted our models to the bilateral OFA
and FFA regions believed to form the core of the visual face-processing
system (Haxby et al., 2000). Futuremodelling studies will include other
regions, such as posterior STS, which may also show changes in
nonlinear coupling under other stimulus manipulations (e.g., different
facial expressions, Winston et al. 2004).

Software note

All the analyses described in this paper can be performed using the
SPM software available from http://www.filion.ucl.ac.uk/spm (erp api
toolbox).
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