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We present a neural network model of category learning that addresses the question of how rules for category membership are acquired. 
The architecture of the model comprises a set of statistical learning synapses and a set of rule-learning synapses, whose weights, crucially, 
emerge from the statistical network. The network is implemented with a neurobiologically plausible Hebbian learning mechanism. The 
statistical weights form category representations on the basis of perceptual similarity, whereas the rule weights gradually extract rules from 
the information contained in the statistical weights. These rules are weightings of individual features; weights are stronger for features that 
convey more information about category membership. The most significant contribution of this model is that it relies on a novel 
mechanism involving feeding noise through the system to generate these rules. We demonstrate that the model predicts a cognitive 
advantage in classifying perceptually ambiguous stimuli over a system that relies only on perceptual similarity. In addition, we simulate 
reaction times from an experiment by Thibaut et al. (1998), in which both perceptual (i.e., statistical) and rule based information are 
available for the classification of perceptual stimuli. 
 
Index Terms: categorization, rule emergence, noise, neural network 
 

I. INTRODUCTION 
The categorization of objects on the basis of their visual 

attributes is a cognitive capacity fundamental to our 
survival. Human adults, as well as infants over one year of 
age are able to categorize objects based not only on the 
statistical structure of categories of observed objects, but 
also by making use of rules derived from that structure. 
Rules have the intrinsic advantage of radically reducing 
cognitive load: if an object can be categorized by paying 
attention to only one or two of its features, instead of a great 
many, cognitive resources can be freed up for other tasks. 
The ontological status of rules in a connectionist modeling 
framework has from the outset been a hotly debated topic 
(see, for example, Seidenberg & McClelland, 1989; Pinker 
& Prince, 1988; Smolensky, 1988; Marcus et al., 1999). In 
this paper we have chosen a conciliatory point of view — 
namely, that rules do have a distinct ontological status 
compared to purely statistical learning mechanisms, but that 
these rules, in general, emerge from the statistical learning 
substrate. 

Our usage of the expression rule for categorization is 
not the commonly used 'necessary and sufficient condition' 
for categorization, but, rather, it is a condition that is 
generally sufficient for category membership. In acquiring 
knowledge of such a 'quasi-sufficient' condition, the 
observer must go from attending to all perceptual features 
to attending to only a small subset of features that appear 
uniquely in a given category: 'category-diagnostic' features. 
To do this, one must learn which features to attend to and 
which to ignore. In other words, during the acquisition of 
the rule, features associated with several categories must 
drop out of the category representation.  Rules of this nature 
might include: animals with beaks are birds; animals with 
gills are fish; animals with opposable thumbs are primates; 
and so on. And even though, for example, opossums, koalas 
and giant pandas also have opposable thumbs, these rules 
are generally true. Not only this, such rules are adaptive 
because they free up cognitive resources and, most 
importantly, they can be extracted from the feature statistics 

of primates and birds.  
Finally, and critically, once a rule has been acquired, an 

agent should not rely solely upon this knowledge. Rather, 
rules emerge from knowledge about the distribution of 
perceptual features in the categories experienced and, once 
acquired, are used in tandem with the original perceptual 
knowledge. The two systems may complement or compete 
with each other, depending on the category structure and the 
objects encountered. For most stimuli, the rule and 
perceptual knowledge will be in agreement and will 
reinforce each other. But for some stimuli they will 
compete, producing conflict and yielding slower 
responding. 

We present a neural network model with two sets of 
synapses: a statistical learning set operating in tandem with 
a rule learning set that extract rules from the statistical set. 
(A preliminary version of this model is described in Cowell 
& French, 2007.) These two sets of synapses connect the 
same input and output nodes, therefore their effects interact 
extremely closely. An important and unique novel 
contribution of this model is that the gradual emergence of 
rules is due simply to the presence of noise in the system.  It 
has long been known that “rather than [being] merely a 
nuisance, noise in biological systems is a useful property” 
(Traynelis & Jaramillo, 1998). Noise has been proposed as 
a mechanism for long-term memory consolidation 
(Abraham & Robins, 2005; Ans & Rousset, 2000;  French, 
1997) and has recently been shown to play a key role in 
optimizing population coding in the brain (Ma et al., 2006; 
Averbeck et al., 2006).  In the present paper we suggest that 
it may also play a key role in “implicit” rule learning (i.e., 
rule learning where one is not explicitly told the rule.) 
 

II. CONTRIBUTIONS OF THE MODEL 
Arguably, the most successful neurobiologically 

grounded model of category learning in the literature comes 
from the work of Ashby and colleagues (Ashby et al., 1998; 
Ashby & Ell, 2001). This connectionist model is based 
upon the idea of competition between verbal and implicit 
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systems (COVIS) and advocates multiple systems for 
category learning. Our model shares certain properties with 
COVIS, for example that it possesses multiple systems 
(statistical weights and rule weights), the outputs of which 
are combined in order to produce the overall categorization 
response. The COVIS model of multiple systems for 
category learning is arguably a more complete and more 
comprehensively-tested model of categorization behavior 
than the work we present here. However, in COVIS, the 
rule learning process consists in selecting between 
alternative verbalisable rules, with no mechanism offered as 
to how the candidate rules are generated from existing 
knowledge in the first instance. A key contribution of our 
system is that it offers an explanation of how the simple, 
verbalisable rules that are assumed in a system such as 
COVIS could be brought into existence. That is, rather than 
using "off-the shelf" rules, our model extracts simple rules 
from its perceptual system. The development of rules in the 
system is, we believe, the principal contribution of our 
model to the categorization literature.  

One consequence of the rule development mechanism in 
our model is that the relative contributions of the rule and 
implicit systems differ from those assumed in COVIS. 
While Ashby and colleagues argue that the verbal (rule 
based) system dominates category learning initially and 
categorization behavior may be dominated by implicit 
knowledge only later in learning, our system necessitates 
that statistical (implicit) knowledge comes online first, 
before any rules may be extracted and come to govern 
responding. 

The two systems in our model work in concert as much 
as in competition. Knowledge in the two sets of weights 
develops in parallel; indeed, one system depends upon the 
other and, although the two routes can produce conflicting 
responses, they share common mechanisms. The 
interdependence of our two systems contrasts with COVIS, 
and with other dual-route models of cognitive function in 
which the two systems proposed are independent (e.g., 
Coltheart et al., 1993). 

Figure 1. A kiwi, as pictured here, is likely to cause conflict in a 
categorization task because of the incongruity between its beak, which 
triggers the rule: “if beak, then BIRD”, and its visual similarity to a rodent. 

 
In addition, our model provides predictions of reaction 

time for categorization. The reaction time to a particular 
stimulus depends, in part, on the degree of conflict between 
the responses from the perceptual and rule based systems. 
Often, the appearance of a category-determining feature 
(e.g., beak) is highly correlated with other features that may 

not be category-determining (e.g., two legs, wings, small 
size, etc.). For most instances of an animal belonging to the 
category BIRD, the response of the rule system (which 
infers BIRD from the presence of beak) will agree with the 
response of the perceptual system (which infers BIRD from 
the presence of beak, two legs, wings, small size, feathers, 
etc.). However, an instance such as a kiwi (Fig. 1) causes 
conflict in the system, because although the beak signals 
BIRD to the rule system, the furry-looking feathers, lack of 
visible wings, small size and general rodent-like appearance 
signal VOLE to the perceptual system. We would be 
expected to take longer than normal to classify the kiwi as a 
BIRD, in spite of its category-defining feature beak. 

 
III. OVERVIEW OF THE MODEL 

The network possesses two sets of units – inputs and 
outputs – and two sets of weights between the two sets of 
units: a 'statistical' weight set and a 'rule' weight set, which 
are distinguished by the type of Hebbian update they 
receive. The two weights sets have identical connectivity, 
and could be thought of as two types of synapse, or indeed 
simply as two types of learning occurring at the same 
synapse. Activation in the output units is determined by 
passing inputs through both sets of weights (which sums the 
effects of the two types of synapse, or two types of 
learning). 

The ‘statistical learning’ weights learn the distributions 
of perceptual attributes of the stimuli in each category, 
whereas the ‘rule’ weights derive their rules by learning 
from the transformation of noise activation at the input units 
by the statistical weights. The model outputs both a 
‘category response’ and a ‘reaction time’, as described later. 

The architecture and learning principles of the network 
are based upon a Kohonen network (Kohonen, 1993) in that 
output units are connected by lateral weights that are locally 
excitatory and distally inhibitory. The statistical synapses 
can be learned by self-organization, or may be subject to 
intermittent or consistent feedback; all learning of both 
statistical and rule synapses is Hebbian. The rule learning 
synapses exploit noise in the input layer, which may travel 
via both sets of synapses to the outputs but engenders 
learning only in the rule weights; in this way, the rule 
synapses determine which input features are sufficient for 
determining category membership. The network is 
implemented in a neurobiologically plausible manner, 
similar to Kohonen (1993), using leaky-integrator neurons. 
It has been suggested that processing of this type occurs in 
visual cortex (Kohonen, 1993; Spitzer, 1999; O’Reilly & 
Munakata, 2000). 

The rule extraction mechanism of our model is based on 
the following principle. If a particular input (i.e., feature) 
unit in the statistical learning network has a strong weight 
connecting it to only one category output node and weak 
weights to all other category output nodes, this means that 
feature will activate one, and only one, category node. The 
presence of this feature tells us that the stimulus item must 
belong to the category whose output node it activates; we 
refer to such features as ‘diagnostic’ features.  

For example, in Fig. 2 the weight in the statistical 
learning network between beak and BIRD will become large 
during training because all birds have beaks. Every time a 
beak is encountered, the category membership of the item 
with a beak will be BIRD. So the beak-BIRD link will 
become very strong, while the weights between beak and 
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any other category node will remain small. Beak is a 
diagnostic (i.e., category-determining) feature. On the other 
hand, the feature eyes is shared by birds, bats, and cats; so 
for eyes, no link from that feature unit to any one category 
node will be strong in comparison with links from it to all 
other categories. Eyes are a category-irrelevant feature. The 
essence of our rule network is that it detects when an 
individual feature possesses a strong link to only one 
category, allowing the network to conclude that that feature 
must constitute a rule for categorization.  

 
Figure 2. Any animal for which the first feature (beak) is active is a BIRD. 
In the statistical learning network, the weight between beak and BIRD is 
large, while the beak-BAT, beak-CAT, etc. weights are small. This is the 
information that is extracted by the rule network. 

 
As we will explain in detail below, the model operates 

by exploiting noise in the system to allow transformations 
of activation by the statistical synapses to be read out and 
copied, selectively, by the rule synapses. The category 
response of the network to a novel stimulus is determined at 
the output units, which are activated via both the statistical 
learning and the rule learning weights. 

 
IV. MODEL ARCHITECTURE 

The general architecture of the model is shown in Fig. 3. 
The model consists of a set of 'perceptual feature' nodes in 
the input layer, which are connected to a set of category 
nodes in the output layer, via two sets of weighted 
feedforward connections. The output layer is a one-
dimensional array of processing units that receives inputs 
from stimuli or noise and implements lateral excitation and 
inhibition between neighboring units (Fig. 4). The statistical 
weights and the rule weights that connect input (feature) 
units to output (category) units are both incrementally 
adapted via a Hebb-type learning rule. The output 
activations are strongly influenced by the lateral 
connectivity, such that only one region of the output layer 
remains active once activations have settled, following 
lateral inhibition.  

Figure 3. Overall Model Architecture. All input units are connected to 
all output units via two feedforward sets of weights: statistical and rule 
weights (solid and dashed lines, respectively). For simplicity, only 2 units 
are shown in the input layer and 4 in the output layer; in simulations, there 
were 10 input units and 8 or 9 output units. Weights from the left and right 
input nodes are shown in black and grey, respectively, for clarity only; 
there was no difference between these in the model. Lateral connectivity 
not shown; see Fig. 4. 
 

The neural network model is formulated in a biologically 

plausible manner. In particular, the lateral inhibition is 
implemented with neuron-like properties, as illustrated in 
Fig. 4, which provides extra detail for which there was 
insufficient space in Fig. 3. Lateral interactions are 
implemented directly between individual output units. Each 
unit in the output layer receives excitatory input from the 
input layer, and inhibitory input from both an interneuron 
and from other collateral units. The activations of units in 
the output layer are then calculated dynamically and 
simultaneously, so that each unit’s activation evolves 
according to the input it receives from other units – via both 
feedforward and collateral links – some of whose 
activations are simultaneously being adjusted. Both output 
units and interneurons are subject to activation leakage. 
This was implemented as a set of non-linear differential 
equations similar to those described in Kohonen (1993). 

Figure 4. Details of the lateral connectivity on the output units. For clarity, 
only 6 units are shown in the input layer, whereas there are 10 input units 
in the model. Also for clarity, only one set of input-output weights is 
shown from each input node to the central output node; in the model, each 
input node connects to all output nodes with two sets of weights (as in Fig. 
3). All output units are coupled with an interneuron and have fixed-weight 
lateral connections to all other output nodes. See Appendix for lateral 
weight values. 

 
The evolution of output activations in response to input 

activation differs slightly, depending on whether that 
activation comes from stimuli or from noise. It is presumed 
that the lateral interaction processes are influenced by the 
fact that stimuli are presented for a minimum of several 
hundred milliseconds, whereas noise activation appears 
very transiently. Accordingly, when stimuli are presented to 
the network, we assume sufficient time for the activations 
of output units and interneurons to interact (via both lateral 
weights and interneuron-output weights), undergo leakage 
and co-evolve to a stable state. This process is simulated by 
finding the numerical solution to a pair of differential 
equations defining the activation of output units and 
inhibitory interneurons (see Appendix). In contrast, when 
noise activation appears on the input layer, it appears as a 
transient burst, which is not sustained for long enough to 
allow full evolution. Instead, activation is simply passed to 
the output units via the feedforward weights, whereupon 
output activations cycle briefly through the lateral 
connections before reaching their final values. 
 

V. STATISTICAL LEARNING MECHANISM 
For each presentation of a stimulus, the input pattern is 

clamped to the statistical input layer of the network, 
resulting in the evolution of a stable and sustained 
activation pattern across the outputs. It is assumed that 
Hebbian learning on the statistical synapses requires 
sustained and simultaneous activation of both the sending 
and receiving nodes. Therefore these synapses are updated 
when stimuli are presented, but not when noise activation 
passes through the network (see Section VI, below, for 
activation due to noise). 

Since stimuli within a category typically share many 
perceptual features, they come to elicit activation on the 
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same region of the output layer. Thus, they share a 
representation and are classified by the statistical learning 
weights as belonging to the same category.  
 

VI. RULE LEARNING MECHANISM 
We assume the occurrence of activation due to noise in 

the input units, which echoes the activity elicited by stimuli. 
This noise occurs spontaneously at the input layer, and is 
interleaved with the presentation of training stimuli. The 
rule weights in the network exploit this noise activation to 
extract the 'category-diagnostic' features of stimuli as 
simple rules. Once learned, the rule synapses map input 
stimuli onto category representations using only category-
determining features. While other algorithms have been 
developed (e.g., Rossi, 1996; Thomas, van Hulle, & Vogels, 
2000) for determining the relative importance of the 
weights in a Kohonen network, an aim of our model was to 
implement the extraction of rules with structures and 
mechanisms that could conceivably arise in the cortex.  

The rule synapses feed forward from the input to the 
output units with exactly the same connectivity as the 
statistical learning synapses (see Fig. 3). The rule synapses, 
like the statistical learning synapses, are adjusted during 
training with a Hebb-type learning rule. However, in the 
case of the rule weights, it is assumed that learning on these 
synapses requires asynchronous activation of the sending 
and receiving nodes. That is, for learning on the rule 
synapses, the input nodes must be activated first and 
activation in the output nodes must emerge only after (but 
soon after) input activation has dissipated.  

This is the pattern of activation that occurs when noise 
activates the input units. Noise activation appears 
transiently (for a single timestep) on the inputs and is 
passed to the output units via any synapse (rule or 
statistical) possessing some connection strength. The 
activation that results in the output units emerges only after 
a brief period of cycling through the lateral weights, to 
resolve the lateral competition; however, by this time, noise 
activation at the input has dissipated. These conditions 
being correct for rule-weight learning, there follows an 
update to any connections between inputs and outputs that 
were activated, in succession, by the noise activation. 
 

VII. THE EXTRACTION OF RULES USING NOISE 
The critical mechanism that allows the rule network to 

learn diagnostic features for category membership is the 
way in which noise-triggered activation is propagated 
through the statistical learning category layer (Figs. 5 and 
6). We know of no other model of rule-learning that posits 
the involvement of noise as a means of rule extraction from 
a statistical substrate.  

We assume that noise generally triggers activation of 
only one feature (one unit in the input layer) at a time. This 
assumption is discussed in detail below. The case where 
noise activates a category-determining feature – in the 
example above, beak, which determines membership of the 
category BIRD – is illustrated schematically in Fig. 5.  

First, spontaneous activation is triggered by noise in the 
input units (1). This activation is passed to the output units 
via the statistical learning weights (and via the rule weights, 
once they are learned, but in the example the rule weights 
are not yet learned) (2). At the outputs, activation cycles 
very briefly through the lateral weights to resolve lateral 
competition (3). Note that, by this time, the original noise 

activation has dissipated at the input units. Finally, Hebbian 
learning occurs at all connections between active output 
units and input units that were recently active (4). This 
results in an increase in the strength of the ‘rule weight’ 
from the unit representing the category-determining feature 
in the input layer to the unit representing the correct 
category in the output layer. The rule weights are learning 
the rule for this feature-category pair. Since the statistical 
weights require simultaneous, sustained co-activation of 
inputs and outputs, no update of statistical learning weights 
occurs.

 
Figure 5. Learning rules for category-diagnostic features by exploiting 
noise in the system. Input and outputs are depicted twice in each panel, in 
order to illustrate clearly the two weight sets, i.e. the units on the left of 
each panel are the same units as those shown on the right. Statistical 
weights are shown on the left of each panel as solid lines; rule weights are 
shown on the right of each panel as dashed lines. 

 
Fig. 6 shows a schematic illustration of the case in 

which activation triggered by noise occurs in a category-
irrelevant feature; in the example given earlier, this might 
be the feature eyes, which does not determine category 
membership since it is shared by many animals, including 
BIRDS, BATS, DOGS, and CATS. First, spontaneous 
activation occurs in the input units and activates the feature 
eyes (1). This activation is passed to the output units (2). 
Next, in (3), lateral competition between output units is 
resolved by allowing activation to cycle very briefly 
through the lateral weights. Since the original spread of 
activation across the output units was broad (because the 
feature is associated with multiple categories and, thus, 
several categories are activated in the output units), the 
effect of the lateral inhibition among output units is to 
suppress activation everywhere: no-one wins the 
competition. (Note that this does not occur when a stimulus 
is presented because the input pattern is clamped to the 
input layer for a sustained duration, in contrast to the very 
brief presentation of noise activation). In (4), no activation 
is present in the output units at the critical time point, 
shortly after activation at the inputs has dissipated. 
Therefore, no Hebbian learning occurs in the rule weights 
on the connection between the input unit corresponding to 
that feature and the output units corresponding to the 
categories that are associated with it. In effect, the weights 
between this feature and the categories possessing the 
feature have dropped out of the category representations in 
the rule synapses. The rule weights are left with only those 
feature-category mappings that are diagnostic for category 
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membership.

 
Figure 6. Rule-learning in the case of a category-irrelevant feature. As in 
Fig. 5, input and output units are depicted twice to show the two weight 
sets clearly. Statistical weights are solid lines, rule weights are dashed 
lines. 

 
VIII. NOISE ACTIVATION TO GENERATE RULES 
One question that arises from our suggestion that noise 

drives rule learning is, Why doesn’t noise also activate the 
output nodes of the model? The spontaneous activation 
driving rule-learning is described as appearing only on the 
input units, but not elsewhere. We readily admit that noise 
activation is equally likely to appear in the output units, but 
we do not model these occurrences because they would not 
affect the learning processes in the model. Since all 
connections in the network are feed-forward, noise 
activation occurring in the output units is never propagated 
back to the input units. All learning is Hebbian and 
therefore, since input units are not activated by noise 
activation triggered in output units, no co-activation 
dependent learning is induced. 

Another question concerning the use of noise as the 
mechanism for rule learning is, How can we assume that 
noise will activate only a single input node at a time? In our 
model, an individual input unit represents a perceptual 
feature and therefore does not correspond to a single 
neuron, but rather to a group of neurons whose collective 
firing stands for a particular perceptual property. What we 
mean by the occurrence of spontaneous firing in an input 
unit is that, as a result of spontaneous neural firings in 
individual neurons, pattern completion is occurring in visual 
cortex. That is, the group of neurons which together 
represent a commonly-encountered perceptual feature fire 
so often together that they form a tightly bound unit, or 
Hebbian cell assembly (Hebb 1949), in which the 
simultaneous occurrence of activity in a small subset of the 
neurons causes the whole representation to be activated. 
Only a very few neurons in this population need fire for a 
burst of activity to be generated across the whole group. 

We suppose that cell-assemblies that have more recently 
fired in response to a stimulus are more likely to be subject 
to spontaneous activity. One can assume that there is 
residual activation in any recently active cell assembly, so 
that for a short time after the disappearance of the stimulus, 
the activation level in the cell assembly remains near its 
perceptual threshold. Therefore, noise activation in the 
model occurs only on those features that appear during 

presentation of the stimuli in the training set. 
 

IX. OUTPUTS OF THE MODEL 
After training, the category response behavior of the 

model is assessed by presenting test stimuli. Since both the 
statistical- and the rule-learning weights have acquired 
some connection strength by the end of training, both 
weight sets contribute in tandem to the activation of the 
output units. Just as with training stimuli, test stimuli are 
clamped to the inputs while the output activations evolve 
according to the coupled differential equations (see 
Appendix). Through training, each category has become 
associated with particular output units. Strong activation in 
these units can be taken as specifying a particular category, 
but the location of category representations across output 
units may vary from one trained network to the next. We 
determine which units correspond to each category by 
recording the frequency with which each output unit "wins" 
(attains the maximum activation) in response to each 
category of stimulus, during the end phase of training. To 
measure the model’s category response on test, we find the 
identity of the most active output unit and compare it to the 
frequencies from training: if the winning unit on test 
matches either of the two most frequently winning units 
from training, for the category of the test stimulus, the 
response is 'correct'. (Note that many of the test stimuli are 
distorted in some way from the category templates seen in 
training, so that a correct answer is not guaranteed). We 
examine not only the activations of the output units, but 
also the number of timesteps it takes for those values to 
cross a threshold, thus extracting both a ‘category response’ 
and a ‘reaction time’. 

The idea that two systems in categorization operate 
simultaneously and interact has already been proposed and 
supported by empirical findings. For example, Keil (1989) 
has suggested that the categorization behavior he has 
observed in children and adults arises through, first, the 
derivation of critical features that can outweigh an object’s 
apparent similarity to members of other categories and, 
second, the combination of this knowledge of critical 
features with similarity information. Keil’s view is that 
theoretical relations (i.e., critical features that people use to 
construct ‘theories’ of, say, biological entities) dominate 
over perceptual (i.e., statistical) features. In addition, Allen 
and Brooks (1991) showed that a rule system may dominate 
over an perceptual system in categorization, but the latter 
cannot be suppressed completely when rules are multi-
dimensional. 

There is a considerable literature examining the time-
course of perceptual choice and the mechanisms by which 
alternative responses compete for control of behavior (see 
Usher and McClelland, 2001, for a review). We model the 
production of longer reaction times to stimuli that induce 
conflict between the statistical and rule weights by 
examining the time course of evolution of the output unit 
activations. Because we use a leaky-integrator 
implementation of the Kohonen algorithm, in which output 
units compete for the highest activation via lateral 
inhibition, we are able to use the time it takes for the 
competition to be resolved – that is, for one unit to cross an 
activation threshold and 'win' – as a proxy for reaction time. 
In this way, our reaction time mechanism is reminiscent of 
the leaky-integrator solution of Usher and McClelland 
(2001). When more than one unit starts out with a non-
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negligible level of activation – that is, when there is conflict 
as to the correct answer – it takes longer for the competition 
between units to be resolved. 

 
X. TRAINING AND TESTING THE MODEL 

The model is trained by repeated presentation of stimuli 
belonging to the different categories that it is required to 
discriminate; there may be two or three such categories. 
During training, after each presentation of a training 
stimulus, noise-generated activation is simulated on the 
input units and this activation is passed through any non-
zero feedforward weights to the output units. The activation 
due to noise is critical to the rule-extraction mechanism. 
During testing we consider up to three different outputs 
from the system: (i) the category response of the complete 
model, (ii) a measure of reaction time of the complete 
model, and (iii) the category response of a model possessing 
the statistical learning weights alone, to assess the benefits 
of possessing the rule-extraction mechanism. Our first 
simulation serves simply to demonstrate that the system is 
able to extract rules from a statistical learning substrate and 
that, for highly ambiguous stimuli, it can provide better 
categorization performance than a system based on 
statistical learning alone. Our second simulation 
demonstrates the ability of the model to simulate reaction 
time data and a key behavioral phenomenon from a 
categorization experiment with human subjects (Thibaut et 
al., 1998) in which both statistical, perceptual information 
and rules were available. 
 

XI. SIMULATION 1 
This simulation shows the rule-extraction mechanism in 

operation and demonstrates predictions for categorization 
performance and reaction times. The category structure of 
the training stimuli contains one-dimensional rules. 
 

 1 2 3 4 5 6 7 8 9 10 
Cat A                                                                        
Cat B                                                                        
Cat C                                                                        

Table 1. Category structure for Simulation 1. Filled circles represent 
features that took high values in all instances of stimuli from that category. 
 
A. Training Stimuli 

Stimuli were represented as an input vector with ten 
elements (i.e., features). Each feature may be thought of as 
some visual-perceptual attribute of an object, represented by 
a number between 0 (indicating total absence of the feature) 
and 1 (indicating that the feature is highly salient). Stimuli 
had two high-valued elements (i.e., between 0.6 and 1) and 
eight low-valued elements (i.e., between 0 and 0.2). These 
values differed for each particular category exemplar, but, 
for example, category C stimuli always had high values on 
features 2 and 7 and low values elsewhere. The stimuli were 
divided into three categories, A, B, and C, as shown in 
Table 1. Categories A and B had an overlapping feature – 
feature 1. Because feature 1 occurred in both categories A 
and B it was not diagnostic for either. Each category was 
defined by at least one sufficient feature: category A by 
feature 10; category B by feature 6; and category C by 
features 2 and 7. 

 
B. Training Procedure 

Two groups of six networks were initialised: a 
‘Complete Model’ group, which contained both the 
statistical learning and rule-learning weight sets, and a 
‘Statistical’ group, comprising networks that possessed only 
the statistical learning weight set. We make the comparison 
between the complete model and the statistical learning 
system to demonstrate the effect of adding a rule extraction 
mechanism on categorization performance.  

During training, 400 exemplars from each of the three 
categories, A, B, and C, were presented in random order to 
all networks, giving 1200 training stimuli in total. The 
training protocol involved 7 steps (outlined below). Steps 1-
7 were repeated, in order, until all training stimuli had been 
presented. 
1. Present training stimulus 
2. Allow activations to evolve dynamically 
3. Update statistical weights according to a Hebb-type 

learning rule requiring simultaneous activation 
4. Simulate the presence of noise in one of the previously 

activated features in the Statistical Input layer 
5. Allow activations to evolve dynamically 
6. Update rule weights according to a Hebb-type learning 

rule requiring delayed activation 
7. Repeat steps 4 to 6 twice more (3 noise bursts in total) 
 
C. Test Procedure  

After training, to investigate whether the acquisition of 
rules had a demonstrable influence on classification 
behavior, we tested networks by presenting some “atypical” 
category exemplars as test stimuli. 
 
D. Test Stimuli 

We measured categorization performance and reaction 
time with four instances each of three templates that defined 
three novel, atypical stimuli. The templates did not conform 
exactly to any of the category templates from which 
training stimuli were generated (see Test Items 1, 2 and 3 in 
Table 2). The atypical stimuli each contained at least one 
category-diagnostic feature, but also included another 
distracter feature that was ambiguous with respect to 
category membership. Thus, the category membership of 
Test Items 1, 2 and 3 was determinable from the category-
diagnostic feature contained in each, despite the fact that 
they were atypical examples of their respective categories. 
Test Item 1 was a member of category C owing to the 
presence of category-determining feature 7; Test Item 2 was 
a member of category C owing to the presence of category-
determining feature 2; and Test Item 3 was a member of 
category B owing to the presence of category-determining 
feature 6. Note that Test Items 1 and 2 had perceptual 
overlap with categories A and B because of the presence of 
(non-diagnostic) feature 1. In the same way that Test Items 
1 and 2 were distorted example of category C items, Test 
Item 3 was a perceptually distorted exemplar of a category 
B item, since it contained a previously unseen feature 3. 
However, Test Item 3 did not possess features that appear in 
any other category, i.e. the distortion did not create 
ambiguity by making the stimulus more perceptually 
similar to members of another category, as was the case for 
Test Items 1 and 2. 

 
 1 2 3 4 5 6 7 8 9 10  
Test 1           Cat C 
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Test 2           Cat C 
Test 3           Cat B 
Table 2. Templates for the generation of atypical Test Stimuli 1, 2 and 3 of 
the simulation. The stimulus features that are 'on' in each test item are 
shown in dark grey. 
 

For Test Items 1 and 2, we expected networks in the 
‘Complete Model’ group, which possessed rules associating 
each diagnostic feature with a particular category, to ignore 
the distracter feature and correctly classify these items as 
belonging to category C. Conversely, a network with only 
statistical learning synapses should be misled – at least 
some of the time – by the distracter feature in Test Items 1 
and 2, which renders these stimuli more similar to category 
A and B items. We expected networks in the ‘Statistical’ 
group sometimes to classify Test Items 1 and 2 as members 
of categories A and B, and sometimes to produce a "hybrid" 
or weak response not corresponding to any category. 

For Test Item 3, an atypical category B exemplar, the 
distracter feature that distorted the stimulus away from the 
category B template did not appear during training as part 
of any stimulus. Therefore, this distracter feature does not 
render Test Item 3 more perceptually similar to items in 
other categories and we expected this control test stimulus 
to produce less misclassification by the statistical learning 
weights than Test Items 1 and 2. 
 
E. Results 

Categorization performance of both network groups on 
the three novel, atypical test stimuli is shown in Fig. 7. 
‘Complete Model’ networks (possessing both statistical and 
rule-learning weights) performed well on the categorization 
of all three atypical test stimuli, classifying them according 
to the rule rather than being influenced by the perceptual 
similarity of the test items to other categories. However, 
networks in the ‘Statistical’ group performed poorly on Test 
Items 1 and 2, but well on Test Item 3. A two-way ANOVA 
(Group x Test Item) was performed on the percent correct 
scores for the three perceptually distorted stimuli, Test 
Items 1, 2 and 3. There was a significant effect of Group 
(F(1,10) =39.03, p <0.001), a significant effect of Test Item 
(F(2,20) =38.55, p <0.0001), and a significant Test Item x 
Group interaction (F(2,20) =22.96, p <0.0001).  

Figure 7. Categorization performance (Percent Correct ± SEM) on Test 
Items 1, 2 and 3. ‘Correct’ indicates that the stimulus item was classified in 
accordance with the rule. 
 

The reaction times of 'Complete Model' networks to the 
three test stimulus types are shown in Fig. 8. These reaction 

times are averages over only those trials on which the 
network produced a correct response. The figure shows that 
Test Items 1 and 2 – which possessed a non-diagnostic and 
ambiguous feature – yielded longer reaction times than the 
‘control’ Test Item 3. A repeated measures one-way 
ANOVA comparing the mean reaction times for Test Items 
1, 2 and 3 revealed a significant effect of test stimulus type 
(F(2,10) = 40.91, p<0.001). Pairwise group comparisons 
with Sidak adjustment for multiple comparisons revealed 
that Item 3 stimuli were classified more quickly than either 
Item 1 (P<0.01) or Item 2 (p<0.01) stimuli, but that reaction 
times for the latter two did not differ (P=0.996). 

 
F. Simulation 1 Discussion 

Both groups of networks performed perfectly on the 
"control" test stimulus – Test Item 3, an atypical exemplar 
of category B. The way in which this stimulus was distorted 
from the training template for category B left no ambiguity 
as to which category from training the item most closely 
resembled; that is, according to either statistical similarity 
or rules, the item belonged to category B. 

Where the two groups differed significantly was on Test 
Items 1 and 2, for which the ‘Statistical’ group performed 
poorly because they were misled by the presence of 
distracter feature 1. Networks either classified the stimulus 
as a category A or B item on the basis of perceptual 
similarity, or were sufficiently misled by the perceptual 
similarity to categories A and B in the presence of the rule 
for category C that they were unable to settle upon a 
representation that corresponded to a category from 
training. The ‘Complete Model’ group, which possessed 
rule weights, did not suffer from this problem because its  

Figure 8. Reaction time ± SEM of ‘Complete Model’ networks for 
categorization of Test Items 1, 2 and 3. Only correct responses are 
included. The unit of reaction time is the number of timesteps in the 
evolution of output activations until the activation of any node passes 
threshold. 

 
behavior was guided by the presence of the rules: “if feature 
2, then category C” and “if feature 7, then category C”. Test 
Item 3 can be thought of as a “control” test item, because it 
is distorted from the category training exemplars like Test 
Items 1 and 2, but there is no ambiguity as to its category 
identity, because its distracter feature, 3, never appears in 
training. Critically, there was no difference in categorization 
performance between the Statistical and Complete Model 
groups on this stimulus, confirming that the differences 
seen for Test Items 1 and 2 were not simply due to 
increased task difficulty. Finally, since there was no 
ambiguity as to the category membership of Test Item 3 and 
no conflict between the statistical and rule information for 
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this item, reaction times for this stimulus were significantly 
shorter than those for Test Items 1 and 2. This demonstrates 
that the increased reaction times seen in Fig. 9 for Test 
Items 1 and 2 is produced by the conflicting information 
they possess, rather than a non-specific effect of stimulus 
unfamiliarity. 

One further noteworthy result from the simulation is that 
in the Complete Model, the rule weights have extracted not 
only a simple “if… then…” rule for classifying the stimuli, 
but also an OR rule. In the case of Categories A and B, each 
rule is simple: “if feature 10, then Category A”, and, “if 
feature 6 then Category B”. For Category C, however, the 
model has extracted two separate feature rules, which 
together form a disjunctive (OR) rule of the form: “if 
feature 2 OR feature 7 then Category C”. In categorizing 
Test Items 1 and 2, the rule network exploits the two halves 
of this OR rule separately. 
 

XII. SIMULATION 2 
Thibaut, Lemaire and Quadri (1998), investigated the 

learning of a category structure in which both perfectly 
predictive rule-based information and imperfectly predictive 
“statistical” information were available for the 
classification. The study yielded insights into the nature of 
the interaction between a rule-based and an associative 
system, such as those implemented in our model. In the 
study, participants were presented with stimuli from two 
categories, with feedback as to category membership. 
Stimuli were abstract, hand-drawn shapes consisting of a 
horizontal body with four legs protruding downwards from 
the body. The rule for categorization was contained in the 
grouping of the legs: either the legs were arranged as two 
groups of 1 leg and 3 legs (the '1-3' category), or they were 
as arranged as two groups of 2 legs (the '2-2' category). In 
addition to this infallible rule, stimuli in the '1-3' category 
were associated 60% of the time with a rounded upper-body 
shape. Stimuli in the '2-2' category were associated 60% of 
the time with an angular, elongated upper-body shape. 
However, the body shape was not a perfect predictor: 10% 
of stimuli in each category were associated with the body 
shape seen 60% of the time in the other category (i.e., 10% 
of '1-3' stimuli were angular/elongated, and 10% of the '2-2' 
stimuli were rounded). In addition, 30% of the stimuli in 
each category were 'neutral', being neither elongated nor 
rounded. Such a category structure therefore provides 
perfect rule-based information based upon the leg 
groupings, in addition to an imperfect “perceptual” 
information based upon body shape.  

Thibaut et al. (1998) also included in their experiment an 
'associative phase', in which only stimuli with the more 
commonly appearing body type for that category were 
presented (i.e. '1-3' rounded stimuli and '2-2' elongated 
stimuli). This phase was intended to strengthen the 
association of each body shape type with the category it 
most often appeared in during the first phase. In fact, this 
scenario should make the association between body type 
and category membership stronger, but it may also lead 
participants to codify body shape as a rule, since during 
these trials body shape becomes a perfect predictor. 

At test, Thibaut et al. (1998) asked participants to 
classify three types of stimulus: "congruent", 
"contradictory" and "neutral". Congruent stimuli were those 
with an body type that matched the type of leg grouping 
most commonly seen in training, i.e., '1-3' legs with a 

rounded shape, or '2-2' legs with an elongated shape. 
Contradictory stimuli displayed the opposite association, 
i.e., '1-3' legs with an elongated body shape or '2-2' legs 
with a rounded body shape. Neutral stimuli possessed 
upper-bodies that were neither rounded nor elongated.  For 
contradictory stimuli the rule information (i.e., the type of 
leg grouping) perfectly predicted the stimulus category, but 
the statistical similarity information (i.e., the shape of the 
body) predicted the other category. The authors found that 
participants’ reaction times were significantly longer to 
contradictory stimuli than to congruent stimuli. This result 
implied that, despite the existence of a perfect rule, 
participants still take into account statistical information 
when classifying a stimulus. That is, in categorization, rule 
knowledge and statistical knowledge interact. 

We simulated this experiment as a test of the network's 
ability to model the interaction of rule and statistical 
information with reaction times. In addition, an examination 
of the model's mechanism generates a novel prediction. 

 
A. Training Stimuli 

We constructed stimuli according the category structure 
of Thibaut et al. (1998), which is schematized in Table 3. In 
the first training phase, all stimuli possessed a leg grouping 
that defined their category membership ('1-3' or '2-2'); 60% 
of stimuli in each category possessed one type of body 
shape (elongated or rounded), 30% of stimuli in each 
category possessed a neutral body shape, and 10% of 
stimuli in each category possessed the other body shape.  

 
 '1-3' '2-2' Elongated Rounded % 
 1 0 0 1 60 
Cat A 1 0 ½ ½ 30 
 1 0 1 0 10 
 0 1 1 0 60 
Cat B 0 1 ½ ½ 30 
 0 1 0 1 10 
Table 3. Templates for the generation of stimuli in the first phase of 
Simulation 2. Where 1 indicates the feature was 'on', 0 indicates it was 'off' 
and ½ indicates it was half on. 
 

In the second, 'associative' training phase, all stimuli 
possessed a category-defining leg grouping along with the 
body shape that had appeared with that leg grouping 60% of 
the time during the first phase, as shown in Table 4.  

As in simulation 1, we used stimuli with 10 input 
elements. We defined one element as corresponding to the 
feature '1-3 leg grouping', another element as '2-2 leg 
grouping', a third element as 'rounded body shape' and 
fourth feature as 'elongated body shape'. For each 'on' 
feature in a stimulus, we set the pre-normalization value of 
that feature element to a number randomly chosen from the 
range 0.9 to 1; when a feature was 'off' it took a pre-
normalization value between 0 and 0.2; in instances of 
neutral body shape, we set both body shape features to an 
intermediate pre-normalization value, between 0.5 and 0.6. 
 

 '1-3' '2-2' Elongated Rounded 
Cat A 1 0 0 1 
Cat B 0 1 1 0 

Table 4. Templates for the generation of stimuli in the association phase of 
Simulation 2. All stimuli in a given category took the same form, which 
was the same template as 60% of stimuli from that category in the first 
phase. 
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B. Training Procedure 
We trained networks with the same general seven step 

procedure as in Simulation 1. In the first phase of training, 
we used 800 exemplars of training stimuli from each 
category, with the proportions of each type of stimulus 
within each category reflecting those used by Thibaut et al. 
(1998). Stimuli were presented in random order.  

The first phase was followed immediately by the second 
'association phase' of training from Thibaut et al. (1998), in 
which we presented, in random order, 60 exemplars from 
each category, constructed according to Table 4. 

 
C. Test Procedure and Stimuli 

Following training, we tested networks with congruent, 
incongruent and neutral stimuli, as in Thibaut et al. (1998). 
Test stimuli were newly generated from the same templates 
shown in Table 3, with the 60% stimulus templates from 
each category corresponding to 'congruent' stimuli, the 30% 
templates corresponding to 'neutral' stimuli and the 10% 
templates corresponding to 'incongruent' stimuli. We 
recorded both categorization accuracy and reaction time. 

 
E. Results and Discussion 

Categorization accuracy was not reported by Thibaut et 
al. (1998), but was high (Thibaut, personal communication), 
and therefore reaction time was the dependent variable of 
interest. In our simulations, accuracy on congruent and 
neutral stimuli was at 100% and accuracy on incongruent 
stimuli dropped marginally to 98.33%. Our reaction time 
data showed the same pattern as those of Thibaut et al.: 
incongruent stimuli took longer to classify than congruent 
stimuli, as shown in Fig. 9. (Reaction times to neutral 
stimuli were not discussed by Thibaut et al.; in our 
experiment, they were comparable to those for congruent 
stimuli). We performed a repeated measured one-way 
ANOVA to compare the mean reaction times for congruent, 
incongruent and neutral stimuli. There was a significant 
effect of test stimulus type (F(2,10) = 49.0, p<0.001). 
Pairwise group comparisons with Sidak adjustment for 
multiple comparisons revealed that incongruent stimuli took 
longer to classify than either congruent (p<0.005) or neutral 
(p<0.005), but that reaction times for the latter two did not 
differ from each other (p=0.95). 

Participants in the study of Thibaut et al. (1998) were 
interviewed following testing about their awareness of the 
stimulus attributes possessed by each category. Thirteen out 
of thirty-three participants noticed the association between 
the perfectly predictive rule for category membership ('1-3' 
vs. '2-2'), and the highly correlated dimension ('rounded' vs. 
'elongated', respectively). It seems likely that the association 
between the rule and the correlated dimension was mediated 
via an association of both with the category identity. The 
other twenty participants stated that they did not notice any 
association between '1-3' grouped legs and a rounded body 
or between '2-2' grouped legs and an elongated body. This 
finding is extremely interesting because it maps onto a 
property of the neural networks that emerged during 
training. Three out of the six networks we trained extracted 
a weak rule for at least one of the highly correlated (but 
imperfectly predictive) dimensions, namely 'rounded' or 
'elongated'. In each case, the weak rule linked that 
correlated dimension with the same category as the 
perfectly predictive, strongly-extracted rule. In other words, 
if we equate presence of a feature in the rule weights with 

participants' awareness, these three networks were 'aware' 
of an association between the highly correlated dimension 
and the rule, since both were linked to the same category at 
output. The other three networks did not extract any rules 
for dimensions that were merely correlated rather than 
perfectly predictive, mirroring the participants who did not 
notice the association. In addition, we noticed that the 
associative phase of training was critical to the emergence 
of weak rules for the correlated dimensions: in a simulation 
that we ran without the associative phase, only one network 
out of six extracted any kind of rule for a stimulus 
dimension that was merely correlated (rather than perfectly 
predictive) and that rule was so weak as to have negligible 
influence. Thus, rules for correlated dimensions were 
extracted only once those correlated dimensions became 
perfect predictors, in the associative phase. This result 
makes a prediction for future work: if the Thibaut et al. 
(1998) study were rerun without the associative phase, no or 
very few participants should notice an association between 
the perfect rule and the correlated dimension. 

 
Figure 9. Reaction time ±SEM to congruent and incongruent stimuli in 
simulations of Thibaut et al. (1998). Only correct responses are included. 
The unit of reaction time is the number of timesteps in the evolution of 
output activations until the activation of any node passes threshold. 

 
XIII. GENERAL DISCUSSION 

Our model is designed to extract rules that can be 
described as perfectly predictive of category membership: it 
learns rule weights for those features that are possessed by 
members of only a single category and it explicitly 
suppresses rule weights for those features that appear in 
more than one category. It does this by exploiting noise in 
the system to discover which features are category-
diagnostic. We demonstrated this mechanism in Simulation 
1, in which an ambiguous test stimulus possessing a rule 
feature from one category and a non-diagnostic feature that 
had appeared in other categories was correctly classified by 
networks that possessed the rule mechanism and incorrectly 
classified by networks that did not. In addition, Simulation 
2 further demonstrated this mechanism through the finding 
that networks did not extract a rule for a feature that was 
merely highly correlated with category membership (when 
the simulation was run without the 'associative phase' of 
Thibaut et al., 1998) but that, if a period of training was 
added during which the correlated feature became perfectly 
predictive, networks were more likely to extract a rule 
(three out of six networks did so when the 'associative 
phase' was simulated). In general, as the period of training 
including perfectly predictive features lengthens, the 
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probability of networks extracting a rule increases. 
The network employs Hebbian learning, and is a variant 

upon a physiologically plausible implementation of 
Kohonen's self-organizing map (Kohonen, 1993). However, 
the network differs from a standard Kohonen network in 
two key ways: first, feedback may be provided to the output 
units such that learning may be supervised or semi-
supervised (when feedback is provided on every trial or 
intermittently, respectively) and, second, an additional set 
of rule synapses is present, at which learning requires the 
sequential activation of inputs and outputs by noise. 

The network simulates both categorization accuracy and 
reaction times. In Simulation 2, the model accurately 
simulated the slowing of reaction times when conflicting 
information as to category membership was present in a test 
stimulus. In Simulation 1, the model generated novel 
predictions for reaction time, along with the predictions for 
classification accuracy. 

 
XIV. CONCLUSION 

We present a connectionist model of category learning, 
in which there is a mechanism for extracting simple rules 
for the category membership of stimuli. The mechanism 
operates by suppressing features that appear in more than 
one category and selectively focusing on those that are 

diagnostic for category membership. We claim that rules 
that emerge in this manner have a distinct status and 
function with respect to a purely statistical network and, 
once the rules have emerged, they provide additional power 
to the categorization system as a whole. We suggest that the 
mechanisms proposed in this paper provide a plausible 
manner to bootstrap the development of more complex 
rules, providing a potential route from an associative, 
similarity-based system to higher-order, rule-based 
cognition. Additionally, competition between the 
associative and rule-based outputs on the category-response 
layer generates plausible reaction time data. A key novel 
contribution of this model is the hypothesis that the gradual 
emergence of rules from simple associative processes is due 
simply to the presence of noise in the system.  
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Appendix: Model Details 

Architecture 

Feedforward 'statistical' weights are initialized to values 
drawn from the random distribution between 0 and 0.5. 
Feedforward 'rule' weights are initialized to zero. All 
output units possess lateral connectivity (locally 
excitatory and distally inhibitory). The lateral weights are 
'wrap-around', so that the last unit in the row is treated as 
a neighbor of the first unit in the row. The values of the 
lateral weights each unit projects are as follows:  

Distance to 
receiving node 0 1 2 3+ 

Value of weight 0.5 0.15 -0.8 -0.5 

The size of the output layer is either 9 (Simulation 1) or 8 
(Simulation 2), determined by whether there are two to-
be-discriminated categories or three. This maintains a 
relatively constant size of output layer and of category 
representation, in order that the same lateral weight 
parameters may serve for both experiments. 

Activations 

Activation due to stimuli. When a stimulus is presented 
(whether during training or on test), it is clamped to the 
input for some time period and output activations are 
calculated by solving a pair of simultaneous equations – 
(1) and (2), below – which define the activation of the 
output units and the activation of a set of inhibitory units 
that feed into the output units. The equations are solved 
with the MATLAB function ODE45, which employs the 
Runge-Kutta method for solving differential equations 
numerically. The output unit activations are given by: 

𝜂′ = 𝑤𝑠 ⋅ 𝑖𝑛 + 𝑤𝑟 ⋅ 𝑖𝑛 + 𝑤𝑙 ⋅ 𝜂 − 𝜉 −  𝑐 log �1+𝜂
1−𝜂

� (1) 

in which η is a vector of output unit activations, ws is a 
matrix containing the statistical weights from input to 
output units, in is the input pattern, wl is a matrix 
containing the lateral weights between output units, c is a 
constant, ξ is a vector describing the inhibitory units' 
activations, and the terms in the right hand side of the 
equation, from left to right, represent: input activation, 
lateral input from other output units, inhibition from 
inhibitory units, and leakage. The division in the last term 
is performed element-wise. The inhibitory unit activations 
are given by: 

𝜉 ′ = 𝜂 − 𝜃 + 𝑏1𝜉 −  𝑏2 log �|1+𝜉|
|1−𝜉|

�  (2) 

where ξ is a vector of inhibitory unit activations, b1 and b2 
are constants, θ is an activation threshold, and the terms 
in the right hand side of the equation, from left to right, 
represent: activation by the output units, thresholding, 
recurrent activation from each inhibitory unit to itself, and 
leakage. The division in the last term is performed 
element-wise. 

When training and testing the full model with 
presentation of a stimulus (i.e., not noise) output 
activations are generated via equations (1) and (2). In 
addition, we run a version of the model in which output 
activations due to a stimulus are calculated using a 
modified version of equation (1), in which the rule 

weights do not influence output activations; this latter 
case provides a measure of the performance of the 
statistical weights alone. 

Activation due to noise. When noise is presented to the 
network, it is presented transiently rather than being 
clamped to the inputs, such that there is assumed to be 
insufficient duration of input for the full evolution of 
output unit activation via the differential equations above. 
Instead, activation due to noise is simply passed to the 
output units and cycled briefly (7 iterations) through the 
lateral weights, with the application of a sigmoid function 
after each iteration. Thus, when noise is presented during 
training, equations (1) and (2) are replaced by equations 
(3)–(6). 

 𝜂 = 𝑤𝑠 ⋅ 𝑖𝑛 + 𝑤𝑟 ⋅ 𝑖𝑛    (3) 

𝜂𝑗 = 1

�1+𝑒−𝑘�𝜂𝑗−𝑑��
 for all output nodes j (4) 

Then, repeat equations (5) and (6) for 7 iterations: 

𝜂 = 1
2
𝜂 + 1

2
𝑤𝑙 ⋅ 𝜂    (5) 

𝜂𝑗 = 1

�1+𝑒−𝑘�𝜂𝑗−𝑑��
 for all output nodes j (6) 

 end 

Learning 

Statistical Synapses. Learning on the statistical synapses 
is Hebbian, and is assumed to depend on the simultaneous 
activation of input and output units. Therefore, statistical 
synapses are updated when a stimulus is presented, 
because stimuli are clamped onto the inputs and remain 
present during evolution of output activations. Statistical 
synapses are not updated when noise occurs, because 
noise activation appears only transiently on the inputs and 
dissipates before the resultant output unit activation has 
settled. The statistical weight updates are given by: 

Δ𝑤𝑗𝑠 = 𝜂𝑗 �𝑖𝑛 − 𝑤𝑗𝑠�𝑤𝑗𝑠 ⋅ 𝑖𝑛��  (7) 
𝑤𝑗𝑠 =  𝑤𝑗𝑠 + 𝛼Δ𝑤𝑗𝑠   (8) 

where wj
s is the statistical weight vector from all inputs to 

output node j, ηj is the activation of output node j, in is the 
input pattern vector, and α is the Hebbian learning rate. 
Output node activations are determined by the solution of 
equations (1) and (2) by the MATLAB function ODE45, 
which outputs a vector of activations for each output 
node, corresponding to the activation value at each 
timestep in the evolution. In equation 3, ηj is the 
activation at the 'winning timestep', defined as the 
timestep at which the maximum activation value in the 
most highly active node was reached. 
 
Feedback in the form of a teaching signal is provided, 
either intermittently (Simulation 1) or on every trial 
(Simulation 2). When feedback is provided, the output 
unit activations in Equation (7) are replaced by a teaching 
signal, which contains a Gaussian profile of activation 
across the units designated as the output nodes for that 
category of stimulus, and zeros elsewhere. The Gaussian 
profile spans either 3 nodes (for 3 categories, Simulation 
1), or 4 nodes (for 2 categories, Simulation 2). 
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Rule Synapses. Learning on the rule synapses is Hebbian, 
and is assumed to require non-simultaneous (i.e., 
sequential) activation of input units and output units. Rule 
weights are therefore updated only upon activation by 
noise, and not during activation by a stimulus. Noise 
activation appears transiently on the input layer, sending 
activation to the output nodes before dissipating in the 
input nodes; output activations briefly cycle through the 
lateral weights before settling. Activations used to update 
the rule weights (in equations (9) and (10)) are taken from 
the last iteration of equations (5) and (6). In addition, the 
rule weights are subject to small decrements, or 'decay', 
on each trial, in proportion to their size (third term in 
equation (10)). 

Δ𝑤𝑗𝑟 = 𝜂𝑗 �𝑖𝑛 − 𝑤𝑗𝑟�𝑤𝑗𝑟 ⋅ 𝑖𝑛��  (9) 

𝑤𝑗𝑟 =  𝑤𝑗𝑟 + 𝛼Δ𝑤𝑗𝑟 − 𝜏�𝑤𝑗𝑟�
2
  (10) 

where wj
r is the rule weight vector from all inputs to 

output node j, ηj is the activation of output node j, in is the 
input pattern vector (generated by noise), and τ is the rule 
decay parameter. In equation (10), the operation (wj

r)2 is 
performed element-wise.  

No feedback is provided after noise presentation. 
Learning on the rule weights does not occur during the 
first 400 training stimuli (the first ¼ to ⅓ of trials), in line 
with evidence that, early in development, human infants 
are unable to extract rules (French et al., 2004). 

Stimuli and Noise 

Input vectors have 10 elements. In training and test 
stimuli, 'on' features are assigned a value chosen from a 
uniform random distribution between 0.9 and 1; 'off' 
features are assigned a value chosen from a uniform 
random distribution between 0 and 0.2; features 
designated as 'half on' (Simulation 2) are assigned a value 
chosen from a uniform random distribution between 0.5 
and 0.6. After setting the values of all features, the input 
vector is normalized.  

Noise stimuli are created by setting all features to 0, 
except a single feature, which is set to 1. That feature is 
chosen at random from all features that appear among the 
training stimuli as 'on' or 'half on'. 

Training and Test 

Stimuli are presented in random order. Each stimulus 
presentation is followed by update of the statistical 
synapses. After each training stimulus, three noise bursts 
appear on the input units, causing update of rule synapses. 

Test stimuli are presented at the end of training, with no 
feedback or learning. The response of the network is 
taken as being the node that reached the highest activation 
value at any point in the evolved activations. The 
response to a test stimulus is judged 'correct' if the most 
highly active node matches the node that was most often 
chosen, or second most often chosen, for the category of 
the test stimulus during the last 120 trials of training. The 
frequency scores for all nodes for each category 
accumulate during training by awarding a node 2 points 
when it is the winning (most highly active) node, and 1 
point when it is the runner up. 

Reaction Times  

RTs are taken as the point at which activation in any node 
first crosses an activation threshold (in practice, the node 
crossing first is also the winning node as calculated 
above). RTs are taken only from trials which yielded 
correct responses and on which the activation threshold 
was exceeded. 

Parameters 

Output Unit Activations: c = 0.4, b1 = 0.5, b2 = 0.2, θ = 
0.3, k = 25, d = 0.3, activation threshold for determining 
reaction times = 0.7. 
Training: α = 0.02, τ = 0.008, proportion of trials 
supervised = 0.5 (Simulation 1), or 1 (Simulation 2).
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