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Learning by Robots
Kathryn Elizabeth Merrick

Abstract—A range of different value systems have been proposed
for self-motivated agents, including biologically and cognitively
inspired approaches. Likewise, these value systems have been
integrated with different behavioral systems including reflexive
architectures, reward-based learning and supervised learning.
However, there is little literature comparing the performance of
different value systems for motivating exploration and learning
by robots. This paper proposes a neural network architecture for
integrating different value systems with reinforcement learning.
It then presents an empirical evaluation and comparison of four
value systems for motivating exploration by a Lego Mindstorms
NXT robot. Results reveal the different exploratory properties
of novelty-seeking motivation, interest and competence-seeking
motivation.

Index Terms—Competence, developmental robotics, interest,
motivated reinforcement learning, novelty, value system.

I. INTRODUCTION

S ELF-MOTIVATED robots have an embedded value system
that mediates the saliency of environmental stimuli. This

allows the robot to self-supervise and self-organize its own ex-
ploratory and learning activities. The value system signals the
occurrence of important stimuli and triggers the formation of
goals. These goals are then acted on by a behavioral system. The
behavioral system may use reflexes, learning, planning or other
processes to achieve the goals generated by the value system.

Value systems play an important role in the design of robots
with adaptive, lifelong learning behavior, because they provide
a way for robots to behave autonomously through spontaneous,
self-generated activity. This is in contrast to robots without
value systems, which often rely on instructions provided by
their human designer, or a human teacher, to determine the
goals they will pursue.

Many different value systems have been proposed for robots
and other artificial systems [1]–[9]. However, there is little liter-
ature comparing the performance of these techniques for moti-
vating exploration and learning in complex environments, such
as those inhabited by robots. Making such a comparison is cur-
rently difficult for a number of reasons. First, a range of different
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system architectures have been used to model different value
systems. Secondly, these value systems have been combined
with different behavioral systems including reflexive behaviors
[8], reinforcement learning [2], [9] and supervised learning [10].
Thirdly, a range of different metrics have been used to evaluate
self-motivated agents and robots [2].

This paper addresses some of these challenges, specifically in
a reinforcement learning setting. First, an integrated neural net-
work architecture is proposed as a framework for combining dif-
ferent cognitive value systems with function approximation re-
inforcement learning. Secondly, an empirical evaluation is made
of four value systems using this architecture, to compare the ex-
ploratory and learning capabilities of each value system.

The remainder of this paper is organized as follows. Section II
begins with a brief review of theories of motivation from nat-
ural systems and, where they exist, corresponding artificial
value systems. The range of system architectures identified
by the review demonstrates the need for a flexible, integrated
architecture that can support a number of different value sys-
tems. Section III proposes such an architecture for motivated
reinforcement learning (MRL), based on a neural network
formalism. Four variations of the architecture are presented
for novelty-seeking behavior, interest, competence-seeking
behavior and random exploration. The experimental evaluation
is presented in Section IV using a Lego Mindstorms NXT robot
to compare the stability, variety and complexity of the robot’s
behavior using different value systems. Results reveal the
different exploratory properties of novelty-seeking motivation,
interest and competence-seeking motivation.

The paper concludes by discussing a number of variations
of the proposed architecture to demonstrate the flexibility of
the model and its capacity to support more complex variants of
MRL in future.

II. MOTIVATION THEORIES AND VALUE SYSTEMS

In natural systems research, neuroscientists, psychologists
and ethologists have proposed different theories describing the
forces that motivate action. These can be loosely classified as
biological theories that work within the biological system of
a behaving organism; cognitive theories that cover theories of
the mind abstracted from the biological system of the behaving
organism; social theories concerned with what individuals
do when they are in contact with one another; and combined
theories that synthesize ideas from several or all of the previous
categories [2]. Value systems for artificial agents have been
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considered primarily in the biological and cognitive categories,
although some social models have been proposed.

In this paper, the term “value system” is used to describe a
subsystem that mediates the saliency of environmental stimuli
on behalf of an artificial agent or robot. A value system may thus
model a motivation theory from natural systems literature or it
may incorporate concepts relevant only to artificial systems. The
following sections review existing value systems for robots and
other artificial systems, and their parallels in natural systems.

A. Biological Motivation Theories and Value Systems

Biological motivation theories explain motivation in terms of
the processes that work at a biological level in natural systems.
Examples include neuromodulatory theories [4], [5], [11], drive
theory [12], [13], motivational state theory [14] and arousal
theory [15], [16].

Biological value systems for robots and other artificial sys-
tems have tended to focus on neuromodulatory and drive-based
approaches. Neuromodulatory systems in robots are based on
computational models of neurons in the brain. They define prop-
erties such as how neurons influence each other, how long neu-
rons activate for, and the regions of the brain that are affected.
Existing work with neuromodulatory value systems in robots
has focused on areas such as the adaptation of appetitive and
aversive behavior [4] and adaptation of the visual system [5].

Drive theory [12], [13] holds that homeostatic requirements
drive an individual to restore some optimal biological condi-
tion when stimulus input is not congruous with that condition.
Drive-based value systems have been studied in the artificial life
community as an approach to building action-selection architec-
tures [17]–[19]. Action-selection architectures make decisions
about what behaviors to execute in order to satisfy internal goals
and guarantee an agent’s continued functioning in a given envi-
ronment.

B. Cognitive Motivation Theories and Value Systems

In contrast to biological value systems, cognitive value sys-
tems are based on psychological theories of the mind, abstracted
from the physical organism. Examples include curiosity [20], in-
centive motivation [21], operant theory [22], achievement moti-
vation [23], attribution theory [24] and intrinsic motivation [25].

Oudeyer et al. [1] classify cognitive value systems for robots
in three categories: error maximization (EM), progress max-
imization (PM) and similarity-based progress maximization
(SBPM). These categories reflect the idea that robots using
value systems try to choose actions that will maximize the
value of a reward signal, and that this reward signal may be
calculated in different ways.

Robots using EM techniques focus on actions that permit
them to learn about stimuli for which they currently have a high
prediction error. Examples of EM approaches [3], [6], [26], [27]
can often be thought of as modeling the ‘novelty’ of a stimulus
and seeking out stimuli of high novelty. The main criticism of
EM approaches is that random occurrences often result in a high
prediction error, but there is little to be learned from such occur-
rences. Alternative approaches that can filter out random occur-
rences are thought to be required in robotics domains, where
random occurrences may be a result of sensor noise.

PM techniques focus attention on stimuli for which the robot
“predicts that it will have a high prediction error.” This more
indirect method of computing reward overcomes some of the
difficulties associated with EM techniques in environments that
may contain random occurrences. Examples include work by
Kaplan and Oudeyer [28] and Herrmann et al. [29].

SBPM techniques are like PM techniques, but take into ac-
count the similarity of observations when making predictions.
These approaches often incorporate an unsupervised learning
algorithm or other mechanism to cluster similar experiences, be-
fore computing a “novelty,” “interest,” or “curiosity” value for
the learned cluster [1], [3], [30].

Alternative computational models of curiosity for applica-
tions other than robots include Saunders and Gero’s curious so-
cial force model for design agents [31], Schmidhuber’s curious
neural controller [32], and Lenat’s AM [33].

C. Social Motivation Theories and Value Systems

Social motivation theories are psychological theories con-
cerned with what individuals do when they are in contact with
one another. They include conformity [21], creativity [34], cul-
tural effect [21], and evolutionary theories [35].

One example of a social value system for software agents is
proposed by Saunders and Gero [36]. They present a computa-
tional model of creativity that captures the social aspects of an
individual’s search for novelty. Incorporation of evolutionary
forces in self-motivated agents has been considered by Singh et
al. [37].

D. Combined Motivation Theories

A small number of psychological motivation theories synthe-
size biological, cognitive and social motivation theories. These
include Maslow’s Hierarchy of Needs [38], Existence-Relat-
edness-Growth (ERG) theory [39] and Stagner’s steady state
model [40]. The development of combined artificial value sys-
tems remains an open research challenge.

III. AN INTEGRATED MODEL FOR MOTIVATED REINFORCEMENT

LEARNING

While this paper does not claim to present an architecture for
a combined artificial value system, it does make a step towards a
generic platform for the integration, and potential combination,
of different cognitive motivation functions with reinforcement
learning. In particular, features of the proposed architecture in-
clude:

• a combined memory model for the value system and rein-
forcement learning components, so the robot has a single,
consistent, shared representation of long-term memory;

• a uniform notation for both the value system and the
learning module, based on the idea of an artificial neuron.

• computational models of motivation as the only driver for
exploration and learning;

• capacity for either exemplar learning or function approxi-
mation, as required by a given application.

A. Generic Architecture

The proposed integrated MRL architecture is a multilayer
neural network with a generic structure shown in Fig. 1. The ar-
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Fig. 1. Generic network structure for motivated reinforcement learning.

Fig. 2. Generic neuron structure and processes for motivated reinforcement
learning.

chitecture uses four main types of neurons organized in layers:
sensory neurons (input neurons), observation and motivation
neurons (hidden neurons) and activation neurons (output neu-
rons).

In each layer, one or more “winning” neurons:
• inputs values from connected neurons in the previous layer;
• updates connected input weights;
• computes and outputs a synaptic value to one or more neu-

rons in the next layer.
The main components of a generic MRL neuron are illustrated
in Fig. 2. They are input values passed from neurons in the pre-
vious layer; input weights representing the strength of the con-
nection between the current neuron and neurons in the previous
layer; a weight update functions which calculates how those
connections change over time; and a synaptic function which
calculates the output synaptic value to be passed to connected
neurons in the next layer.

While all neurons have these components, different neurons
play different roles in the network. Sensory neurons are re-
sponsible for inputting raw data from the robot’s sensors to the
network. There is one sensory neuron for each piece of sensor
data generated at a given time. This data then passes through
three types of layers made up of different types of neurons: the

sensation layer with weights connecting sensory neurons to ob-
servation neurons, one or more motivation layers with weights
connecting motivation neurons, and the reinforcement learning
layer with weights connecting motivation neurons to activation
neurons. Activation neurons output data from the network
to the robot’s physical actuators. There is one activation neuron
for each primitive action available to the robot.

The following paragraphs describe the flow of data through
the network in detail, to show how an action is selected. This
paper assumes a Q-learning [41] approach to reinforcement
learning. Q-learning is particularly appropriate as an approach
to MRL because it is an incremental, online algorithm that can
learn at each step of the robot’s interaction with its environ-
ment. Using Q-learning, at each time , the robot reasons about
its current sensory data , the
last action it performed and its previous sensory data

.
This paper makes two main theoretical contributions: 1) adap-

tation of neural network notation to describe motivated rein-
forcement learning problems and 2) translation of three moti-
vation functions and the Q-learning update and action-selection
functions into the new notation. A third practical contribution
of the paper is the demonstration, evaluation and comparison of
four specific instances of the generic approach.

1) Sensation Layer: The first layer of the network is
the sensation layer that generalizes over the state space en-
countered by the robot. This layer clusters raw sensory data

at a given time , to an observa-
tion neuron , that best represents the data. This layer can
incorporate common clustering algorithms such as K-Means
clustering, Self-Organizing Maps (SOMs) [42], Adaptive Res-
onance Theory (ART) networks [43], or Growing Neural Gases
(GNGs) [44]. Depending on the algorithm used, there may
be any number of observation neurons and, additionally, this
number can be fixed or variable. Observation neurons can be
organized as a set or have a topological relationship.

All of the models in this paper use a Simplified ART (SART)
network [43] in the sensation layer. This approach has had
demonstrated success in robotics applications with MRL [30].
Using this approach, there are initially no observation neurons.
When sensory data is presented to the network, either a new
observation neuron is created (with associated weights) or an
existing observation neuron is selected with weights that best
describe the sensory data.

More formally, at each time , raw sensory data
are the input values to the

observation neurons. The observation neuron with the
minimum Euclidean distance to the sensory data is identified
as follows:

If is within some distance of the sensed state (called
the vigilance constraint), the weights connecting to the
sensory neurons are updated. That is, each of the connected
weights is modified using the update function:
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where is the learning rate of the SART network. We denote
the updated neuron

If does not satisfy the vigilance constraint, a new
observation neuron is created with associated weights.

uses the sensory data to initialize
its connected weights. This means that the sensation layer is
never randomized.

In summary the sensation layer identifies a winning obser-
vation neuron with weights that best describe the current
sensory data as follows:

if

otherwise

Using a vigilance constraint , function approximation
ensures that the SART network remains stable enough to guard
against expansion caused by noisy sensor data, or simply the
size and complexity of the state space, but flexible enough to
generate new observation neurons when required.

If then there is no function approximation and each
unique combination of sensory data will trigger the creation of
a new observation neuron. This is equivalent to instance-based,
exemplar learning. In reinforcement learning terms it would be
equivalent to using a table-based approach. However, the ad-
vantage of the proposed approach is that the layered neural net-
work can integrate complex motivation layers in series or in
parallel. This would not be easily achieved using an extended
table-based approach. Further examples of the flexibility of the
layered neural network model are discussed in Section V.

The synaptic values output by each observation neuron
are computed using the following synaptic function:

if (i.e., if is a winning neuron)
otherwise.

(1)
In this way, the continuous-valued raw sensory data input to
the network is converted to a series of binary action poten-
tials. These action potentials trigger activity in other parts of the
network. Specifically, in the models in this paper, the synaptic
values are input to the first motivation layer.

2) Motivation Layer(s): The motivation layers each have one
neuron for every observation neuron in the sensation layer, as
shown in Fig. 1. As such, they may also have a fixed or vari-
able number of neurons, depending on the structure of the sen-
sation layer. For example, using the SART-based function ap-
proximation described above, motivation neurons and associ-
ated weights will be added to the network when new observa-
tion neurons are created.

There may be several layers of motivation neurons, de-
pending on the complexity of the motivation function used.
Motivation neurons in the first motivation layer receive their
input values from observation neurons according to (1). Their
associated weights are updated using a computational model of
motivation as the update function. Three specific examples of
this process are described in Parts B, C, and D later. Motivation
neurons in the last motivation layer, output synaptic values
to the reinforcement learning layer.

Depending on the nature of the motivation function all moti-
vation neurons may be updated at each time-step, or some subset

may be updated. For example, some motivation functions may
require only the motivation neuron connected to the winning ob-
servation to be updated. We refer to such a neuron as the “win-
ning motivation neuron.”

3) Reinforcement Learning Layer: Weights in the reinforce-
ment learning layer are updated to reinforce actions that are
highly motivating, according to the activities of the motivation
layer. We use a Q-learning approach in this paper so only the
weight connecting the winning motivation neuron to the action
performed at the previous time-step is updated. For example,
if a network with one motivation layer is assumed, the update
equation is

This update is comparable to the standard Q-learning update
with the weight-based notation in place of
the table-based notation . , can
be thought of as the current motivational state of the agent.
In addition, reward is defined by the motivation weight

. An action is reinforced by incorporating a per-
centage of both the current motivation and future expected
motivation for performing that action in response to a given
observation. is the reinforcement learning rate and is the
discount factor for future expected motivation.

Using the modified notation, a winning activation neuron is
selected according to the synaptic function:

This function greedily selects the action with the highest
weight. Note that there is no additional exploration component
such as e-greedy exploration incorporated into this action-se-
lection equation. Rather, exploration and exploitation are both
controlled by the motivation function embedded in the motiva-
tion layer. The following sections describe a number of such
motivation functions.

B. Novelty-Seeking Exploration

Novelty-seeking robots find unfamiliar stimuli the most
highly motivating. Stimuli may be unfamiliar because the robot
has never encountered them before or because the robot has not
encountered them for a long time. To model this latter property,
a model of habituated novelty [45] is used in this paper.

The network for novelty-seeking exploration and learning is
shown in Fig. 3. This network follows the generic structure de-
scribed above, but specifically incorporates a novelty layer as
the motivation layer.

The sensation layer is implemented as described above using
a SART network. Novelty neurons and weights are added pro-
gressively as observation neurons are added in the sensation
layer. Weights are initialized to and

meaning that all observations are initially considered to be
highly novel. The novelty layer takes the synaptic values output
by the observation neurons as input. Weights in the novelty layer
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Fig. 3. Network structure for novelty-seeking exploration.

are updated using a step-wise approximation of Stanley’s habit-
uation function [45] so

where

is a constant governing the rate of recovery of novel observa-
tions and is a constant governing the rate of habituation such
that:

if
otherwise

governs the rate at which novelty decreases for winning ob-
servations, while governs the rate at which novelty increases
for losing observations.

Novelty neurons output a synaptic value computed using
the following synaptic function:

if
otherwise

(2)

This means that the action potentials computed by novelty
neurons [see (2)] are influenced by those computed by observa-
tion neurons in (1). An example of the novelty curve is shown
in Fig. 4. This curve shows how novelty changes in response
to changing binary synaptic values passed from the observation
layer.

C. Interest-Seeking Exploration

Novelty and interest differ in that interest is highest for obser-
vations of moderate novelty and lowest for observations of very
low or very high novelty. This precludes both very familiar ob-
servations and very unfamiliar observations from being highly
motivating. In particular, the interest curve in this paper gener-
ates the lowest interest values for stimuli of very low novelty, as
shown in Fig. 5. This models an aversive response to stimuli of
very low novelty.

Fig. 5. shows the change in interest in response to changing
synaptic values from the observation neurons. The interest layer

Fig. 4. Change in novelty over time [see (2)] in response to changing synaptic
values from the observation layer [see (1)].

Fig. 5. Change in interest over time in response to changing synaptic values
from the observation layer. Compare to Fig. 4. to see the difference between
novelty and interest.

takes the synaptic values output by the novelty neurons (see (2)
and Fig. 4.) as its direct input. Weights in the interest layer are
updated using two sigmoid functions and to
provide positive and negative feedback for very high and very
low novelty, respectively [8]:

is the synaptic value passed from the novelty layer, as
shown in (2). is the minimum novelty to receive positive
feedback and is the minimum novelty to receive negative
feedback is the maximum positive feedback and
is the maximum negative feedback. controls the level of
aversion to low novelty while controls the level of aver-
sion to high novelty. Weights are initialized to ,
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Fig. 6. Network structure for interest-seeking exploration.

Fig. 7. Network structure for competence-seeking exploration.

and , meaning that all observations
are initially highly novel and thus of low interest to the robot.

Interest neurons output a synaptic value of .
The network for interest-seeking exploration and learning is

shown in Fig. 6. This network is based on the network for nov-
elty-seeking exploration described above, but incorporates an
additional motivation layer for interest.

D. Competence-Seeking Exploration

Competence-seeking exploration differs from novelty and
interest-based exploration in that stimuli specifically maintain
high motivation values until the robot can repeat the stimuli
with a small, but positive, learning error. A small, positive
learning error indicates that the learned network weights are
an accurate prediction of the robot’s self-motivation for the
associated observation and action. The robot is thus internally
competent at fulfilling its current motivational needs.

The network for competence-seeking exploration and
learning is shown in Fig. 7. This network follows the generic

structure described in Part A above, but specifically incorporates
an error layer to permit the robot to compute its competence at
various tasks.

The sensation layer is implemented as described in Part A
using a SART network. Error neurons and weights are added
progressively as observation neurons are added in the sensation
layer. Weights are initialized to and

, meaning that the robot initially models itself as incompetent
at all tasks. Weights in the error layer are updated according to

is the learning error for the reinforcement
learning update (often referred to as using traditional
notation). is a competence-based reward signal that has
two rules as follows:

if such that
or

otherwise

The first rule assigns the highest reward of 1 to observa-
tion neurons that win repeatedly and cause learning. This
rule contains a component to continue rewarding winning
observation neurons will continue to improve the robot’s
prediction of its current motivational needs (i.e. continue to
have ) and a component to switch to
rewarding observation neurons that the robot predicts will soon
start to improve the its prediction of its motivational needs (i.e.
those with ). The second rule
assigns other winning observation neurons a punishment of 1.

So that the robot learns faster than it forgets, in this model, the
reinforcement leaning rate is split into two parameters and

governing the rates of learning and forgetting respectively.

if
otherwise

The competence-based reward function is shown diagram-
matically in Fig. 8. Because competence is linked to the
reinforcement learning error, it can only be computed when
learning occurs. In other words, competence motivation is
computed only in motivation neurons attached to the winning
observation neurons [which generate a synaptic value of one, as
shown in (1)]. This means that a robot maintains its competence
with observations even if it has not repeated that observation
for some time. This is in contrast to novelty-based approaches
where the novelty of an observation rises if the observation has
not been repeated for some time.

Error neurons output a synaptic value of so
the update equation for the activation layer becomes

E. Random Exploration

This network, shown in Fig. 9, has the same structure as the
network for novelty-seeking exploration. However instead of a
motivation layer, a randomized layer is used to generate random
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Fig. 8. Change in competence motivation over time. Note that competence mo-
tivation is only updated for winning observation neurons, that have an associated
learning error. Winning neurons have a synaptic value of one [see (1)].

Fig. 9. Network structure for random exploration.

exploration. This model acts as a naïve baseline against which
to measure and understand the other models.

The sensation layer is implemented as described in Part A
using a SART network. Neurons and weights in the random-
ized layer are added progressively as observation neurons are
added in the sensation layer. To provide a comparison with the
other models, weights are initialized to and

.
At each time , the weight linked to the winning observation

neuron is updated according to

That is, weights are assigned a random number between 1
and 1. Randomized neurons output a synaptic value of

to the reinforcement learning layer.

IV. EXPERIMENTS

This section describes an experimental evaluation of the four
models described above on a Lego Mindstorms NXT robot. Part
A describes the robot. Part B describes the strategies used to
characterize the performance of the robot. Finally, Part C dis-
cusses the results of the experiments.

Fig. 10. A “crab” robot using the Lego Mindstorms NXT platform.

A. The “Crab” Robot

The physical structure of the robot, which roughly resembles
a crab, is shown in Fig. 10. The robot has two servo motors
controlling the left and right sets of legs. The robot can move
each motor forwards or backwards or stop a motor. The robot
can sense whether the motors are moving or not, and in which
direction. In addition, the robot can sense the position (rotation)
of each motor using the motors’ built in tachometers. The robot
is also equipped with an accelerometer permitting it to sense its
acceleration and tilt in three dimensions.

Table I summarizes the sensory neurons needed by this robot
and the range of values produced by their associated sensors.
Table II summarizes the activation neurons.

While this robot is relatively simple in comparison to other
systems, it provides the basic structure for a robot that can poten-
tially learn to walk: motors to control the action of the legs and
an accelerometer to monitor the movement of the body. Previous
experiments with a similar but simpler “Ant” robot [30] shown
in Fig. 17 demonstrated a self-motivated walking behavior using
a cycle-based motivation function. This paper extends that work
with a comparison of different value systems on a more complex
mobile robot.

To permit a fair comparison of the four value systems de-
scribed in Section III, common parameters use the same values.
All parameters and their values are summarized in Table III.
Each value system was run five times on the robot for 4000
time-steps (approximately 30 min). Where appropriate, the re-
sults in Part C show the 95% confidence interval. The measure-
ment strategies used in Part C are discussed in the following
section.
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TABLE I
SENSORY NEURONS AND THE RANGE OF VALUES THEY PRODUCE

TABLE II
ACTIVATION NEURONS

TABLE III
MODEL PARAMETERS AND THEIR EXPERIMENTAL VALUES

Fig. 11. Point-cloud matrix for a fragment of robot data. Diagonals indicate
cycle behavior. Image from [30].

B. Measurement Strategy

This paper uses a number of existing, generic metrics [30] for
MRL as well as one metric specific to the integrated approach
presented in this paper. These approaches are summarized here.

1) Posture and Point Cloud Matrices: A robot’s pos-
ture at any time can be characterized by its sensory data

. Using such an attribute-based
state representation, a point-cloud matrix can be constructed
to visualize a robot’s behavior by computing the Euclidean
distance between pairs of postures at all times and . That is

The intensity of a pixel on the point-cloud diagram is
determined by . A darker color indicates more similar postures
as shown in Fig. 11. Dark diagonals on the point-cloud matrix
indicate that the robot is cycling through a sequence of similar
postures.

Cycles are an important behavioral structure for both natural
[46] and artificial systems [30]. As such they provide an ap-
proach to evaluating emergent, developmental behavior.

2) Identifying Cyclic Behavior: In Fig. 11, cycles can be
identified by analyzing unbroken sequences of “dark” pixels that
form diagonals. A “dark” pixel is defined as one where .
Formally, using a point-cloud matrix, a behavior cycle is a
sequence of posture-pairs such that for all ,

and . is the length of the cycle. The
duration of the cycle is . The sequence of
posture-pairs must be repeated in its entirety at least once (i.e.,

) and cannot be a multiple of another shorter cycle
(i.e., there is no for which and

for all ). is used in this paper.
3) Behavioral Stability: The stability of a robot’s behavior

over a time period of length is the total duration of all behavior
cycles in the period, divided by the length of the period:

This gives a stability value normalized between zero (fewer
cycles/shorter durations) and one (many cycles/longer du-
rations). A higher stability value is generally desirable as it
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Fig. 12. Average behavioral stability attained by robots using each value
system after 4000 time steps (30 min).

Fig. 13. Average number of behavior cycles learned by robots using each of
the value systems.

indicates that the robot is exploiting learned behavioral cycles
more productively than a robot with a lower stability value.

4) Exploration: A measure of the robot’s capacity for explo-
ration can also be obtained by analyzing the number of observa-
tion neurons created. The creation of more observation neurons
suggests that the robot has explored more of its environment.

C. Results and Discussion

Fig. 12 shows stability values for robots using the novelty-
seeking, interest-seeking, competence-seeking, and randomized
value systems. The first important result evident from this chart
is that the robots using the three motivation functions (novelty,
interest, and competence) show behavior that is significantly
more stable than that exhibited by the robot using random ex-
ploration.

While the behavioral stability of the robots using the mo-
tivation-based value systems is significantly higher than the
robot using random exploration, Fig. 12 shows that the stability
results for the three motivated robots are still relatively low.
Results indicate that all of these robots spend, on average, more
than 50% of their lifetime exploring rather than exploiting
learned behavior cycles. In addition, no statistical difference

can be claimed between the three motivated techniques in terms
of their behavioral stability.

Further analysis of the behavior of the robots, does however,
show some significant differences. The similar behavioral
stability of the three motivated approaches indicates that robots
using these algorithms spend similar proportions of their
lifetime exploiting learned behavior. However, Fig. 13 and
Fig. 15. show that this exploitation is distributed differently
throughout the robots’ lifetimes. Robots using the novelty
and interest-based approaches tend to exploit learned behavior
cycles for short periods and return to the same behaviors up to
three times during their life. In contrast, robots using the com-
petence-based motivation function exploit learned behaviors
for longer periods. These robots tend to focus attention on each
behavior cycle only once.

Fig. 13 shows that the difference between the number of
unique cycles learned by each of the robots is statistically
ambiguous. That is, we cannot claim a statistical difference
in the number of unique cycles learned. This is not the case,
however, if an interest function without an aversion to low
novelty is used. If such an interest function, shown in Fig. 16, is
used, a robot will maintain its starting posture for the duration
of its life. That is, it will never move. This results in a very high
behavioral stability but a very low number of behaviors learned
(one) of very short length (one posture long only). Stability
values should thus not be considered in isolation, but rather in
conjunction with statistics describing the number and length of
cycles. This gives an additional indication of the variety and
complexity of the robot’s behavior.

When a robot has no aversion to low novelty, interest in the
starting posture will drop to a very small positive number, but
this is still enough for the posture to be reinforced in the learning
layer and remain more interesting than other unexplored pos-
tures with weights initialized at zero. Without a secondary ex-
ploration function, such as e-greedy exploration, the robot will
never explore other postures.

The use of the aversion constant is more desirable than using
a secondary randomized exploration algorithm as it provides
a structured approach to exploration, based on motivational
theory.

Fig. 14 illustrates the other main difference between the value
systems described in Section III. Fig. 14 shows that robots using
random exploration tend to learn cycles of length one action the
most. That is, they tend to learn cycles that maintain a given
posture for some time. Generally, this happens when the robot
randomly generates a sequence of relatively high, positive re-
ward values when performing a stop-motor action.

In contrast, robots using interest and competence motivation
learn the most cycles of length two actions. Robots motivated to
seek novelty learn the most cycles of length three actions.

In general, Fig. 14 indicates that the robots learn very simple
behaviors. Inspection of the log files for the runs shows that
these include lifting and lowering their legs. Generally these
behaviors involve stopping one motor then moving the other
motor backwards and forwards in some sequence. The emer-
gence of simple structured behaviors is important, but indicates
that the limits of these motivation functions and basic MRL is
being reached, even on this relatively simple robot structure.
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Fig. 14. Average number of cycles learned of a given length by robots using each of the value systems.

Fig. 15. Average number of consecutive repetitions of a behavior cycle.

Fig. 16. Change in interest over time without an aversion to low novelty.

Fig. 14 does show the emergence of some longer behavior cy-
cles, particularly by the interest-motivated agents. These cycles
of up to 106 postures are generally repeated 2–3 times, but have
no clear function in practice.

While the emergence of structured behavior cycles, including
long cycles, is encouraging because it shows that structure can
be generated using generic motivation functions, the cycles
emerging in these experiments are not particularly compelling.
None of the algorithms was able to motivate the Crab robot to
learn to walk, for example. This is disappointing as a variation

Fig. 17. An “Ant” robot using the Lego Mindstorms NXT platform. This robot
has one motor controlling all legs and an accelerometer. Image from [30].

Fig. 18. Change in competence motivation over time with optimistic initializa-
tion of utility values.

on the competence-based technique [30] has been shown to
produce an emergent walking behavior in the simpler “Ant”
robot shown in Fig. 17. This “Ant” robot is quite similar to
the Crab, but all legs are controlled with a single motor. This
robot, when motivated specifically to learn behavior cycles,
is able to learn a ten-posture long behavior cycle for walking.
This variation on competence-seeking behavior is shown in
Fig. 18. In this variant, Q-values are initialized to one. This
means that the robot initially believes itself to be universally
competent. It then progressively reduces its prediction of its
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Fig. 19. Average number of observation neurons created by robots using each
of the value systems.

own competence. This approach causes the robot to explore
rapidly early in its life to reduce the large error in its perception
of its competence. In addition, a negative reward (not shown in
Fig. 18.) is assigned to actions that cause the robot to maintain
its previous posture. This further motivates the robot towards
behaviors that cause change, such as walking.

The problem with this approach on the more complex Crab
robot is that behavioral stability is very low early in the robot’s
life because exploration is so high. The Crab using such a moti-
vation function creates around 600 observation neurons. In con-
trast, Fig. 19 shows that robots using the novelty, interest and
competence based approaches described in this paper generate
only around 300 observation neurons. Because their focus of at-
tention is narrower, they learn more quickly.

In reinforcement learning terms, several hundred states
should describe a plausible learning problem. However, in
practice none of the value systems evaluated in this paper focus
attention consistently or coherently enough for compelling,
functional behavior cycles (such as walking) to emerge.

The overall similarity in performance of the novelty and in-
terest-based approaches tested in this paper is also noteworthy
because interest-based approaches are often favored over nov-
elty-seeking approaches for noisy applications such as robots.
This is because novelty-based approaches are believed to be
weaker than interest-based approaches in the presence of noise.
Random stimuli such as sensor noise, from which little can be
learned, tend to be unfamiliar and thus generate high novelty
values. In practice, however, it would appear that this weakness
is not apparent in a MRL setting because random stimuli by na-
ture do not appear consistently enough to be reinforced. In other
words, the frequency of stimuli is as important as their famil-
iarity for determining novelty-based reward.

V. CONCLUSION AND FUTURE DIRECTIONS

This paper makes a step towards a generic platform for the in-
tegration, and potential combination, of different cognitive mo-
tivation functions with reinforcement learning. The proposed ar-
chitecture includes the following:

• a uniform notation for both the value system and the
learning module, based on the idea of an artificial neuron;

• a combined memory model, in the form of observation neu-
rons, for the value system and learning components, so
the robot has a single, consistent, shared representation of
long-term memory;

• the capacity for exemplar learning (equivalent to a table-
based approach) or function approximation.

This paper makes two main theoretical contributions: (1)
adaptation of neural network notation to describe motivated
reinforcement learning problems; and (2) translation of three
motivation functions and the Q-learning update and action-
selection functions into the new notation. The paper also presents
an empirical evaluation of four value functions within the
proposed framework, including three based on computational
models of motivation—novelty, interest and competence—
without the need for secondary random exploration functions.

Results show the following:
• the three motivation-based approaches outperform random

exploration for generating behavior comprising stable
cycles;

• robots using the novelty and interest-based approaches
tend to exploit learned behavior cycles for multiple short
periods, but robots using the competence-based motiva-
tion function exploit learned behaviors for fewer, longer
periods;

• the motivation-based approaches inspire longer behavior
cycles than random exploration;

• novelty-based reward is at least as effective as interest-
based reward, even in an application with high sensor
noise.

The emergence of structured behavior cycles is encouraging
because it shows that structure can be generated using generic
motivation functions, but the value functions compared in this
paper demonstrate only modest success in motivating the for-
mation of compelling, functional, cyclic behavior. Overall, the
experiments in this paper suggest that the limits of these simple
value systems and MRL variants are reached by the Crab robot
platform. While the novelty-, interest-, and competence-based
motivation functions are capable of motivating structured be-
havior, there is a need for more expressive MRL architectures
to permit the emergence of more complex and compelling be-
havior. The integrated architecture presented in this paper pro-
vides a basis for such architectures. Two variants are discussed
in the following sections.

A. Hierarchical Learning Models

The basic architecture described in Section III has capacity
for remembering only a single behavioral policy representing
one type of behavior cycle. While this means that the robot’s
behavior is always adapting, in practice it is likely that robots
will need to be able to remember and reuse learned behaviors
[47]. The integrated model can be adapted to include multiple
policies or options [48] using parallel reinforcement learning
layers. This is shown in Fig. 20.

The approach in Fig. 20 suggests a number of new ways that
motivation can be considered. In particular, motivation may not
only act as a reward signal for learning, but it may act as a trigger
for creating options by freezing and duplicating the weights in
the current reinforcement learning layer, forgetting options, or
for activating a previously learned option.
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Fig. 20. Integrated approach using parallel reinforcement learning layers to
remember more than one learned behavior cycle.

Fig. 21. Multiple motivation layers may be combined in series or in parallel.

When the robot has integrated memory of a number of be-
havior cycles as options, motivation can also play a role in rea-
soning about potential highly motivating situations the robot
may strive towards, beyond those that it has actually encoun-
tered. Existing approaches to MRL assume that the robot must
first experience a particular situation before it can motivate it-
self to achieve that situation. That is, motivation is a function
only of the concrete experiences the robot has of its environ-
ment, such as states, observations or events. However, in robots
with an integrated memory of their current skill set, the moti-
vation function can potentially reason about and generate goals
for things the robot “might” be able to do, based on its previous
experiences of things it “can” do. For example, the robot may
generate a goal to achieve a sequence of observations that have
previously only been experienced individually.

This has a number of implications. First, that motivation can
be a basis for creativity in robots by permitting them to construct
models of possible situations they have not actually encoun-
tered. This kind of speculative reasoning also provides a way
for a motivated robot to actively direct its behavior towards pro-
gressively more complex cycles. This is important for building
robots that can combine simple skills to develop more complex
ones.

B. Combined Motivation Models

The experiments in this paper also use only one or two moti-
vation functions in each robot. The novelty-seeking robot, for
example used a single motivation layer. The interest-seeking
robot used two motivation layers in series. The framework, how-
ever, is general enough to permit the use of an arbitrary number
of motivation modules, either in series or in parallel, as shown in
Fig. 21. This provides a basis for future development of simple,

combined value systems in which different kinds of motives
can cooperate or compete to control the robot. In particular,
this model may be used to ground the knowledge of the robot.
Grounding is one of the main principles that helps structure be-
havior, by permitting individual interpretation of the effect of
behavior, One of the problems artificial robots is that they lack
internal physiology, unless it is explicitly modeled. As a result,
they do not have internal drives instructing them to act to main-
tain their internal resources within the range tolerable to remain
alive. The behavioral structure of robots such as the Crab or Ant
reflects this absence, since the effect of their behavior does not
affect their internal state, except in terms of the custom designed
motivation function.

Although artificial robots lack physiology, it is still possible
to inspire an inner–outer world relationship to provide structure
to behavior by explicitly modeling relevant internal variables
such as energy, heat, mechanical balance and so on. These can
be modeled in parallel motivation layers, as shown in Fig. 21,
so that biological motivations can compete with cognitive mo-
tives to control the robot. This is likely to be fundamental for a
successful scale-up of the models presented in this paper.
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