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Top—Down Gaze Movement Control in Target Search
Using Population Cell Coding of Visual Context
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Wen Gao, Fellow, IEEE

Abstract—Visual context plays an important role in humans’
top—down gaze movement control for target searching. Exploring
the mental development mechanism in terms of incremental visual
context encoding by population cells is an interesting issue. This
paper presents a biologically inspired computational model. The
visual contextual cues were used in this model for top—down
eye-motion control on searching targets in images. We proposed
a population cell coding mechanism for visual context encoding
and decoding. The model was implemented in a neural network
system. A developmental learning mechanism was simulated in
this system by dynamically generating new coding neurons to
incrementally encode visual context during training. The encoded
context was decoded with population neurons in a top—down mode.
This allowed the model to control the gaze motion to the centers of
the targets. The model was developed with pursuing low encoding
quantity and high target locating accuracy. Its performance has
been evaluated by a set of experiments to search different facial
objects in a human face image set. Theoretical analysis and ex-
perimental results show that the proposed visual context encoding
algorithm without weight updating is fast, efficient and stable,
and the population-cell coding generally performs better than
single-cell coding and k-nearest-neighbor (k-NN)-based coding.

Index Terms—Gaze movement control, neural encoding and de-
coding, population cell coding, target search, visual context.

I. INTRODUCTION

ARGET search or object detection is an important ability
of human vision system. Generally this process consists
of two phases: 1) prediction of a target or an object’s place; and
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2) identification of the target or object at the predicted place.
These two phases are consistent with the “dorsal-ventral” path-
ways and the well-known “where-what” models on visual pro-
cessing within mammal and human brains [1]-[6]. Both the
dorsal and the ventral pathways [7]-[12] start from visual cortex
V1, and reach V2. After that the dorsal pathway goes to the
branch from MT (V5) to posterior parietal cortex (PPC), and the
ventral pathway takes the branch from V4 to inferior temporal
(IT) cortex. The control of attention is believed to take place
mostly in the dorsal pathway using the bottom—up low-level
features, such as saliency or motion, to produce object location
or “where” information. The ventral pathway is mainly associ-
ated with the identification of visual stimuli. It is responsible
for providing “what” information, such as the top—down prior
knowledge of targets’ representation and objects’ spatial fea-
tures. There are physical connections between these two path-
ways. Both of them are projected to superior colliculus (SC)
and related oculomotor nucleus via prefrontal eye field (FEF) to
control the eye movement.

It is not easy either to model the biological mechanism or
build a practical system for both aforementioned phases. They
have been widely studied in the literature. By assuming the tar-
gets certainly exist in images, this paper focuses on the infor-
mation coding for inferring targets’ locations; i.e., how to pre-
dict the targets’ locations with lower top—down memory to get
higher locating accuracy?

In the models that simulate top—down attention, there are gen-
erally two kinds of cues used for gaze movement control in
target search: the cues about targets such as color, shape, or scale
[12]-[18], and the cues about the visual context that contains the
target and the relevant objects or environmental features with
their spatial relationship [19]-[27].

A lot of computational model with object detection methods
[28]-[32] have been developed by using the first type of cues.
These methods mainly used the object-centered matching tech-
niques. These methods did not predict where the targets are but
compared the object features with each image region to verify if
that region is the location of the target to be searched. Especially
for the classical object detection methods, an original image are
usually rotated m times and rescaled n times and then an object
detector moves pixel by pixel on the transformed images [ times
to compare each image window with the target features. Thus,
the detector will spend a total of mnl times to locate targets in
the original image. This technique generally considers each ob-
jectis independent and neglects the relevance between the target
and the relevant objects or environmental features.

1943-0604/$26.00 © 2010 IEEE



MIAO et al.: TOP-DOWN GAZE MOVEMENT CONTROL IN TARGET SEARCH USING POPULATION CELL CODING OF VISUAL CONTEXT 197

In a recent psychological research [33], the second kind of
top—down cues, i.e., the visual context, was reported to play
a really helpful role in humans’ top—-down gaze movement
control for target searching. This is also proved by psycho-
logical experiments [34]-[40] through examining the response
time (RT). These experiments show that the response time can
be decreased dramatically when the relationship between the
background and the location of an object in a trail (image) is
known. Chun [35] stated this reduction on RTs was influenced
by “contextual cueing.” Henderson and his colleges have done
a lot of research work focusing on the role of context in the
object searching. They have examined many other indexes
besides RTs, such as fixation location, saccade length, and the
relationship among the sequenced fixation locations [36]. After
carrying out two experiments, they found that fixation location
can be predicted based on the combination of current location
and context. In other words, the local feature of current fixation
location and its peripheral areas can influence the next fixation
position.

In literature, there is a small amount of research work have
been done by using visual context on object searching. Torralba
used global features or global context to predict a horizontally
long narrow region where the target is more likely to be ap-
peared. Since it does not provide an accurate estimation on the
2 coordinate [19], therefore Torralba suggested using an object
detector to search the target in that horizontally long narrow pre-
dicted region for accurate localization, which was implemented
in the literature [23], [24]. Kruppa, Santana, and Schiele [25]
used an extended object template that contains local context to
detect extended targets and infer the location of the target via the
ratio between the size of the target and the size of the extend tem-
plate. Bergboer, Postma, and Herik [26] introduced local-con-
textual information to verify the candidates provided by an ob-
ject detector, in order to reduce the false detection rate. Miao et
al. [27] proposed a visual perceiving and eyeball-motion con-
trolling neural network to search target by reasoning with visual
context encoded with a singe cell coding mechanism. This rep-
resentation mechanism led to a relatively large encoding quan-
tity for memorizing the prior knowledge about the target’s spa-
tial relationship contained in the visual context.

The single-cell coding means using one cell or one response
to represent one object or control the movement. In contrast to
it, the population-cell coding uses an ensemble of cells or re-
sponses to represent an object or synthesize a movement [41].
Single and population cell coding mechanisms have been an
argumentative issue in understanding human brain and vision
functions, which was discussed and debated in the special issue
for binding problem [42]. Wang [43] addressed that the main
problem of the single-cell coding is that it would not allow per-
ceiving novel objects, which is an ability the perceptual system
undoubtedly possesses.

Usually eye movement is affected by the bottom—up and the
top—down saliency map and visual context, in which multiple
salient regions or objects are contained. If the single-cell coding
is reasonable for representing a region or an object, it may imply
that the population-cell coding is more suitable for representing
multiregions and multiobjects in the visual context. In this
paper, we propose a developmental neural network system that

encodes the top—down knowledge of the visual context and
infers the location of the target using a population-cell coding
mechanism. The proposed system possesses the following
characteristics.

First, it is a biological-inspired neural network system with
visual sensors, internal-representation system and eye move-
ment controller. It consists of four layers of neurons: input layer,
feature neuron layer, single/population coding neuron layer, and
eye movement control neuron layer (see Fig. 3). The first layer is
the input layer and it uses five overlapped neuron arrays to form
five visual fields in different scales to approximate the primate’s
retina whose sensing neuron density of the central part is larger
than the density of the surrounding area. The second layer em-
ploys a group of highly selective features. These features simu-
late the sparse coding basis functions to encode the images from
five visual fields into the connection weights between the second
layer and the third layer. The spatial relationship (Az, Ay) be-
tween the center of a visual field and the target is encoded into
two connection weights between a coding neuron in the third
layer and the two movement neurons in the fourth layer. The
weights between the second layer and the third layer and the
weights between the third layer and the fourth layer are inner
encoding presentation for the visual context. The third layer
uses a single neuron or a group of population neurons to repre-
sent an object or a visual field image, and control or synthesize
the eye movement through connection weights from the third
layer to the fourth layer. The fourth layer simulates a movement
controller. It uses the responses of two orthogonal movement
(Az, Ay) neurons to activate the gaze movements in horizontal
and vertical direction, respectively. The (Ax, Ay) representa-
tion is consistent with the anatomy structure of an eye. There
are two pairs of muscles in an eye. The muscle contraction is in
proportion to the responses of the superior colliculus or related
oculomotor nucleus. These muscles are responsible for control-
ling the orthogonal movements, which enables eyeball rotation
and gaze movements [10].

Second, it is a dynamic learning architecture. It has the devel-
opmental and incremental learning characteristics reflected in
the interactions with the visual image environments. These char-
acteristics are consistent to the idea of the self-organizing au-
tonomous incremental learner (SAIL) or the autonomous mental
development [44]. Our developmental learning algorithm is in-
troduced in Section III-A. Its main strategy is that when the
system cannot infer the target’s position correctly based on the
current visual field image and the patterns encoded in the con-
nection weights between the second layer and the third layer, the
system generates a new coding neuron in the third layer with its
two groups of connection weights to encode the current visual
context (the current visual field image and the spatial relation-
ship from the center of the current visual field to the center of
the target) in an incremental coding mode.

Third, itis a task-driven visual search system. It uses the mod-
ulated spatial relationship as top—down information to move the
gaze to the potential places of the targets. The encoded spatial
relationship is modulated based on the percentage of the re-
sponses from the coding neurons associated with different vi-
sual context patterns.
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visual field image X

Fig. 1. Visual context (X, (Ax, Ay)) in terms of the visual field image X
and the spatial relationship (Axz, Ay) between two object centers or between
the center of the target and the center of the visual field image (the target in this
scene is the left eye).

To value the model’s performance, we compared our system
with a single-cell coding system and a k-NN-based coding
system on encoding quantity and target locating accuracy by
using a real-world image database. Our experimental results
indicated that the population-cell coding mechanism generally
performed better than other two systems in both encoding
quantity and target locating accuracy.

This paper is organized as follows. Section II introduces
highly selective coding features employed in the system.
Section III describes the developmental learning structure
using population-cell coding mechanism and its principle on
encoding visual context and controlling gaze movement in
target search. Learning properties of the population cell coding
are discussed in Section IV. Experiments for three coding
systems applied on a real-world image database are compared
and analyzed in Section V. Conclusion and discussion are given
in Section VL

II. FEATURES EMPLOYED FOR ENCODING VISUAL CONTEXT

Visual context is related to two types of features: low-level
features and the high-level features. The low-level features are
responsible for representing the global and local images from
visual fields. The high-level features are responsible for repre-
senting the spatial relationship which was described in the hor-
izontal and the vertical distances (Ax, Ay) between centers of
two objects or between the center of the target and the center of
the visual field as shown in Fig. 1.

Learning or encoding a context may produce a great amount
of internal representation information. Employing features suit-
able for concise context representation is important for a prac-
tical system’s efficiency. Physiological experiments done by
Young and Yamane [45] show that monkeys only used a small
number of neurons in their inferotemporal cortex (where the
“what” information of objects is stored) to represent a human
face image. This is the strategy of the sparse population coding
occurred in primate animals’ visual neural system. It can be in-
troduced to employ the features that may decrease the encoding
quantity as much as possible.

Interacting with the external environment and developing fea-
tures to describe the observation is a characteristic of a devel-
opmental system. For example, in a recent proposed develop-

o
—
(o]

i’
=3 (b

¥

AR Gl LE" e LA LA LA LA LA

0 M B0 (W B0 (W O (W O 0 (W (W (e e

i oFE P55 o5 o585 B B PR RS
fo fy f‘_) f3 fa fs fe fs fs

Ol

o _m

"E%

fas5

{=2]
a
N

RF=3x3 input neurons

Fig. 2. Extend LBP features extracted by 256 feature neurons, each of which
is computed by a sum of eight pairs of differences between surrounding pixels
(labels = 0 ~ 7) and the central pixel (label = 8) in its receptive field
(RF) = 3 x 3 input neurons (pixels). They are illustrated in the 256 feature
templates above, in which the gray box represents weight 1 while the black box
represents weight —1.

mental model “where-what network 17 [12], an image set is
learned via the in-place Hebbian learning to obtain a group of
lobe features [46], [47]. These produced features are similar to
ICA orientation filters. It is well known that independent com-
ponents of natural scenes are edge filters [48], and are similar to
sparse coding features [49]. In literature, there are many algo-
rithms [S0]-[53] have been designed to calculate these similar
sparse coding features. In this paper, we focus on the develop-
mental learning on the high-level knowledge on visual context,
rather than the low-level features. Therefore, there is no learning
process applied between the input layer and the feature neuron
layer in our system. As long as the features are highly selective
edge-like filters and are similar to the sparse coding features, we
concerned that they are suitable to be used for the system.

Recently, a set of features called local binary patterns (LBP)
[54] has become popular because of its high selectivity and fast
computation characteristics. LBP is a binary code. Each binary
code represents one of 256 patterns for an image block with
3 x 3 pixels. Originally, the LBP coding features contain 256
discrete codes used to represent 256 types of image blocks.
However, these discrete codes cannot be used to compute the
value of the connection weight between a feature neuron (in the
second layer) and a coding neuron (in third layer) in our system.
We used the Hebbian rule Aw, 3 = aR, Ry to calculate the con-
nection weights within our system. Here « is a learning rate. R,
and Ry, are responses of two connected neurons, respectively. As
illustrated in Fig. 2, to conquer this, we extended the LBP fea-
tures to the new features with a continuous output I2;; by using
the basis functions {f;} (0 < j < 255) (see Fig. 2)

7
Rij = fj(Xi) = WEX;E = zZ wu,j(l’iz — T48) )
=0

wij = (=1)"

where the vector X; = (w0 Zjo ... wi3)T represents the
ith image block or receptive field image composed of 3
x 3 pixels or 3 x 3 input neurons, and its extended form

: E — . . T. —
1S )(Z = (lioliglilxig T8 . li7xi8) 5 Wz’j =
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(Wio,j — Wio,jWi1,j — Wit j - - - Wit j — Wit j - - Wiz j — Wiz j)"
(0 < 1 < 7) represents the jth basis function which consists of
eight pairs of weights; the term R;; represents the response of
the jth feature extracted from the sth image block. The index j
is a discrete number among 0 ~ 255, which corresponds to a
eight-bit binary code: (bobs ...b;...b7),, where

b,:{()?

17

In our coding system illustrated in Fig. 3, there are 256 fea-
ture neurons in the second layer. These neurons extract the ex-
tended LBP features {R;; = f;(X;)} (j = 0 ~ 255) for each
receptive field image X;. Only the first m (1 < m < 256)
neurons with the largest responses {R;;; = f;/(X;)} (Rij» €
{Rij},j =1~ m,j = 0 ~ 255) win the competition. To
maximally decrease the coding quantity, m can be set to 1 for
enough sparsity.

if (1131'1 — 1131'8) <0

otherwise (L=0~7).

©))

III. ViSuAL CONTEXT CODING ARCHITECTURE
AND ALGORITHMS

A unified developmental neural coding structure is designed
for the single and the population cell coding for visual context,
which is illustrated in Fig. 3. The coding structure consists of
two parts: the visual field image coding and the spatial rela-
tionship coding. The part of visual field image coding includes
the first three layers: the input layer, the feature neuron layer,
and the coding neuron layer. This part inputs images from a
group of visual fields in different resolutions. Then it extracts
features and encodes the current visual field image represented
as the connection weights between the second layer and the third
layer. The part of spatial relationship coding includes the last
two layers: the coding neuron layer and the movement control

/ feature weights Wy

input neurons

(visual field image X in different scales)

ntation and gaze movement controlling.

neuron layer. The spatial relationship is encoded as the distance
between two object centers or the distance between the center
of the target and the center of the current visual field image and
represented as the connection weights between the third layer
and the fourth layer.

The corresponded visual context encoding and decoding al-
gorithms for this neural coding architecture are introduced in
the following sections.

A. Visual Context Encoding

In this paper, the visual context refers to the visual field image
and the spatial relationship (Az, Ay) between the center of the
visual field and the center of the target. To encode such context,
the corresponding representation coefficients need to be calcu-
lated and stored. The details of the algorithm are described as in
Table 1.

The key part of the algorithm is dynamically generating
coding neurons. The coding neurons are linked by the feature
neurons in the second layer and two movement control neurons
in the fourth layer with two groups of connection weights
to represent the encoded context knowledge and experience.
When the coding system can not search the target in the given
precision FR(s) depending on the encoded context, the system
generates a new coding neuron in the third layer with its two
groups of connection weights {w;; 1} and {(wk, Az, Wr Ay)}
to encode the current visual context (the current visual field
image and the spatial relationship from the center of the cur-
rent visual field to the center of the target) in an incremental
coding mode. From this point of view, the proposed encoding
algorithm has the developmental and incremental learning
characteristics which are consistent to the idea of the SAIL and
the autonomous mental development [44]. The encodings of the
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TABLE 1
ALGORITHM FOR VISUAL CONTEXT ENCODING

distributed in the context area of the target;

BEGIN LOOP1 Select a scale s from a set S for the current visual field;
BEGIN LOOP2 Select a starting gaze point (x, y) as the center of the visual field from an initial gaze point set Gy

1. Input an image from the current visual field, and then predict the moving distance (Ax, Ap)of the gaze
towards the target center. The real distance should be (Ax,Ay);

limit;

(95}

END LOOP2
END LOOP1

2. If the prediction error ER= \/ (A% —Ax)? + (AP — Ay)? is larger than a maximum error limit ER(s) for the
scale s of the current visual field, move the center of the visual field to the new gaze point
position (X + AX, y+ A)A/) ; go to 1 until ER<ER(s) or the iteration number is larger than a maximum

. If ER>ER(s), generate a new coding neuron (let its response R;=1); encode the visual context by
computing and storing the connection weights {w;; 1} (initialized to zeros) between the new coding neuron
and the feature neurons (their responses R,-j = fj(Xi) ) and the connection weights (wy ax, Wi ay)

(initialized to zeros) between the new coding neuron and two movement control neurons (let their
responses Rax=Ax and Ray=Ay) respectively using the Hebbian rule Aw, p=aR,Rp;

visual field images and the spatial relationship are formulized
in the following two sections.

1) Encoding of Visual Field Images: The kth coding neuron
in the third layer represents (or encodes) a visual field image
pattern X(*) with a group of connection weights {w;;} be-
tween the feature neurons (in the second layer) and itself. The
ijth feature neuron extract the jth feature {R;; = fj(X,Ek))}
(0 < j < 255) from the ith receptive field image ng) (1<
1 < n). All the receptive field images {ng)}compose the vi-
sual field image X*), ie., X*) = (ng)ng) - Xglk)). The
connection weights {w;; » } are computed with Hebbian rule

Awﬂ,,},(t) = aR,Ry
wa,b(t + 1) = wa,b(t) + Awa,b(t)

where a is the learning rate; ¢ is the iteration number; R, and R,
are responses of two neurons which are connected by a synapse
with a connection weight w, ;. Thus, each weight w;; ;, between
the ijth feature neuron and the kth coding neuron is calculated
as

3)

wijk(0) = 0, Awgj(0) = aRij Ry = af; (ng)) Ry,

wij k(1) = wij 1 (0) + Awij i (0) = afj (ng)) Ry,

“4)
where o and Ry, are the learning rate and the response of the
kth coding neuron, respectively. Both they are set to be 1 for
simplifying computation, and then the (4) is changed to

wizn = £ (X)) )

Therefore, the visual images were encoded based on the (5).
The lengths of all the weights {w;; } were normalized to one
for unified similarity computation and comparison.

Our experiments described in Section V showed that up-
dating weights {w;;x} with one step or multisteps did not
make much difference on system performance. This is because
our system does not learn the internal representation through a
fixed-number of neurons which the classical learning machines

normally do, e.g., the Perceptron [59] or the multilayer per-
ceptron (MLP) [60]. Our coding system dynamically generates
a nonfixed number of population coding neurons with their
connecting weights as internal representation. Our system is
less sensitive to the weight adjustment compared with other
learning algorithms. We will make a more detailed discussion
and explanation in Section IV-B.

2) Encoding of Spatial Relationship: The spatial relationship
(Axy, Ay ) between the center of the visual field and the center
of the target is encoded in terms of two connection weights
(Wk, Az, Wk, Ay ). They linked the kth coding neuron and the two
movement control neurons and are learned by the Hebbian rule

Wi, Az(0)=0,  Awp az(0)=FRrRa,= PR Axy, ©)
Wi, Az (1) =Wk, A2 (0)+Awg A (0) = BRL Ay,
Wi,Ay(0)=0, Awg ay(0)=LRiRAy=LRrAys @
Wi, Ay (1) =Wk, Ay (0) +Awp A, (0) = BRL Ay,

where (3 and Ry, are the learning rate and the response of the kth
coding neuron, respectively. Similarly, both of them are set to 1
for simplifying computation, and then (6) and (7) are simplified
to

{wk,Am = Azy, ®)

Wr Ay = Ayr

B. Visual Context Decoding for Gaze Movement Control

Visual context decoding includes the responding of a single or
population coding neuron(s), the decoding of visual field images
and the decoding of the spatial relationship. Here, the spatial re-
lationship decoding has direct relation to the control of the gaze
movement for target search. They are formulized in following
sections.

1) Response of a Single or Population Coding Neuron(s):
When the coding system inputs a visual field image Y for test
or perception, a single cell or population cells, in the third layer
may respond(s) through competition among the total NV coding
neurons to represent a visual field image pattern. As described
in Fig. 3, for the 7th receptive field image Y, the kth coding
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<m <

S

neuron receives m responses {R;;} (1 < j 256)
weighted by {w; ;7 1} from m feature neurons which extract fea-
tures { R;j» = f;7(Y;)} from Y. Therefore, for the visual field
image Y, which is composed of the receptive field images {Y; }
(1 < i < n), the response of the kth coding neuron in the third
layer is

=Cr(Y)=Cr(Y1Y2...Y,)
= Z Z wijkRijr =YY wir il (Yi) (9
i=1 /=1 i=1j'=1
where wi;, € {wij i}, Rijo € {Rij}, fir(Yi) € {fi(Y)},

-/

j =1~ mandj 0 ~ 255. The weights {w;; 1}
are obtained at the encoding or training stage discussed in
Section III-Al. The R;;s is the response of the j’th feature
neuron for the receptive field image Y;, belonging to the first
m largest responses among the total feature responses {R;;}

(j = 0 ~ 255). Substituting (5) into (9), we get
Rk —Ck(Y) = Z Z w'i,j/,kf_]’(Y’l)
i=1j/=1
_ Z Z fi (ng)) fir(Y3) (9a)
i=1j'=1

Let WX(’\‘) = (wz 17'=1, kw7—1_]’—2 k- Wi= 2,] =m k)T»
fxy = (fj’:l( )f;’ 2(X; ( 1) - fg’— (X’Ez)n>> , and
fv = (fi=1(Yiz )f]’=2( i=1 )---fj —m(Yi=n))", then

(9a) is changed to its inner product form between two groups
of features
Ri. = Wi fy = fyfx). (9b)

Equation (9b) indicates the response of the kth coding neuron
in the third layer, which is a similarity measure between the new
image Y and the kth visual field image pattern X *) memorized
in the coding system.

2) Decoding of Visual Field Images: In the third layer of the
coding system, the first M largest responses { Ry } (1 < k' <
M) of M coding neurons among the total N coding neurons
represent a visual field image. Therefore, the visual field image
Y that is composed of n receptive field images {Y;} (1 < i <
n), can be approximately reconstructed with the M encoded
visual field image patterns {X®)|1 < &’ < M} which are
weighted by the percentage of the first M largest responses of
coding neurons {Ry/|1 < k' < M}, or the m basis functions
{W;#]1 < j7 < m < 256} modulated by the connection
weights {w;j 1|1 < 7/ < m < 256,1 < k' < M} from
feature neurons to M coding neurons

( R M .
Y~Y = Z R, XK
k'=1 T
f ’
Z, — J\II%M — I‘IY x(l\ ) , (1 < m < 256.’ 1 < M < N)
DORCENND PR N
k'=1 k'=1
k,) n m
X( = Z Z ’lUL]/ kIWLJ
. i=1j=1
(10)
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(a) (b) (© (d

Fig. 4. Illustration of visual field image decoding or reconstruction. (a) The
first encoded visual field image associated with the first coding neuron; (b) The
second encoded visual field image associated with the second coding neuron;
(c) A new visual field image; (d) Reconstructed visual field image using the
first and the second encoded visual field images if adopting the population-cell
coding mechanism (here is two-cell coding); Otherwise the reconstructed image
will be Fig. 4(a) or (b) if adopting the single-cell coding mechanism.

where Ry € {Rk}, Wi k' € {’U}qjjl,k}, Wi]'/ € {WU}’ —
1~M,k=1~N,j’=1~mandj =0~ 255;{W,, } are
m basis functions introduced in Section II, which correspond to
the first m largest responses of feature neurons in the second
layer using these basis functions. When M > 1, it means that
the system is using population cells in the third layer to represent
the visual field image; when M = 1, it means that the system is
using one single cell to represent the visual field image. For the
case of single cell coding, (10) is changed to

E § w1j’ k’—1W7_]

i=1j'=

Y~Y=XK=D_ (11)

Fig. 4 illustrates the visual ﬁeld image decoding or recon-
struction using single or population cell coding mechanism. It
shows that when the coding system encountering a new object
image that is different from the individually encoded objects,
the population cell coding mechanism makes a better image un-
derstanding (or decoding). Of course, if the system perceives a
new object image which is much like an encoded object in its
memory and there is one coding neuron respond with the largest
response that is much larger that of other neurons, the single cell
coding mechanism is suitable.

3) Decoding of Spatial Relationship for Gaze Movement
Control: Gaze movement control is directly responsible for
visual object search. We implemented the gaze movement into
a two-layer structure: single- or population-cell coding layer
and the movement control layer (see Fig. 3). The movement
control neurons were divided into two categories, respectively
responsible for the moving distances along two axis, x and y.
Their responses (RAm,RAy) represent the relative distance
(Az,Ay) from the current gaze point (z,y) (or the center
of the current visual field image) to the target center. For the
current visual field image input, the first M coding neurons
with the largest responses play a main role in activating the
movement control neurons. When M = 1, the system uses
the single-cell coding controlling mechanism, otherwise it uses
the population-cell coding mechanism. The responses of gaze
movement control neurons can be formulated as

¢

M
PRI ¥

RAm =
k'=1

Ray = 32w ay R, (12)
k'=1

« _ Ry

Rk’ - M
> Ry

\ k=1
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TABLE II
ALGORITHM FOR GAZE MOVEMENT CONTROL

randomly distributed on the image;

minimum;

END LOOP2

X, =x,+Y A% and 3, =y, + ) Ay
7 7

END LOOPI

(%, p)=argmax{D(x, y)}.

BEGIN LOOP1 Select a starting gaze point (x,, y;) as the center of the visual field from a initial gaze point set Gyy
BEGIN LOOP2 Select a scale s; from the set S for the current visual field in the order of from the maximum to the

Input an image from the current visual field, and output a relative position prediction in terms of gaze
movement (AX, ,AJ,) for the real relative position of the target center (Ax, Ay);

The position of the target center (x, y) starting from the initial gaze point (xy, ;) is predicted by

Computing the density D(x, y) of the gaze point distribution {(X;,7,)};

Select the position with the largest density as the finally predicted target position:

where Ry is the k’th largest response of a coding neuron among
the total N coding neurons; 12}, is the ratio of a single response
Ry to the sum of M responses. R}, is used for synthesizing
gaze movement. Wy’ A, and wy A, are the weights for the con-
nection between the k’th coding neuron and the movement con-
trol neurons in x and y directions, respectively. At a learning (or
encoding) stage, both wy A, and wys A, are calculated using
(6)—(8). Substituting (8) and (9b) into (11), the synthesis of
movement can be represented as

( M

RA;E = Z RZ,Amk:
k'=1
M

Ray = X2 R Ay
= (13)
Ry fo k!

2’: AlL = MYX() ’ (ISMSN)

PIRUEND IR SN

\ k=1 k=1

Formula (13) means that the gaze movement distances (de-
coded at the perception or test stage) are the sum of the weighted
spatial relationship (encoded at the learning or training stage,
which are weighted by the first M largest responses of coding
neurons). Especially, when M = 1 (single cell coding), the re-
sponses (Ra, RAy) of two movement control neurons are acti-
vated by a single neuron who has encoded a historical spatial re-
lationship (Az =1, Ay =1 ) into connection weights wy/=1 Az
and wjyr=1,Ay, respectively. In this case, (13) is simplified to
14

{ Rax = Az (14)

RBay = Aypr—1.

Fig. 5 illustrates the spatial relationship decoding (or gaze
movement synthesis) using the single and the population cell
coding mechanisms. It shows that when the coding system en-
counters an image containing a new spatial relationship dif-
ferent to the individually encoded relationship, the population-
cell coding mechanism makes a better gaze movement synthesis
or target position prediction. Conversely, when the system per-
ceives a new spatial relationship which is very close to an en-

@ T FER

(@ (b) (©) (d)

S

Fig. 5. Tllustration of spatial relationship decoding or gaze movement synthesis
to predict the position of a new target center. (a) The encoded spatial relationship
(Aay, Ay ) associated with the first coding neuron. (b) The encoded spatial re-
lationship (A, Ay, ) associated with the second coding neuron. (c) Predicting
a new target center with a gaze movement (Ax,, Ay; ) controlled by a single
cell with the encoded spatial relationship (A1, Ay;). (d) Predicting the new
target center with a synthesized movement wy (Azy, Ayy) + w2 (Aza, Ays)
modulated by population cells (here are two coding neurons) with two weighted
spatial relationships.

coded relationship in the memory, the single-cell coding mech-
anism will be more suitable.

An entire algorithm for gaze movement control on target
searching is given in Table II.

The algorithm uses a gradually searching strategy that is
moving an initial gaze point to the center of target from the
largest visual field to the smallest visual field by decoding
the global and the local context. The visual field imaging and
searching are illustrated in Fig. 6.

To avoid getting an instable searching result, the algorithm
uses multiple search results to evaluate the position of the target
center, which is illustrated in Fig. 7.

The case of searching multiple targets, using two targets as
example, can be handled in two ways: 1) if the two targets have
no close relationship, for example, the mouths from two dif-
ferent persons, we carry out two searches, respectively, for two
targets; and 2) if the two targets have close spatial relationship
with their local context, (for example, two associated objects,
such as a river and a ship, a road and a car, and a running car
and the car’s driver; or one object and its subobjects, such as
the driver and his head, the head and its left eye; or two sub-
objects included in a common object, such as the left eye and
the mouth), we encoded the global context between the envi-
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(@

Fig. 6. Illustration of gradually visual context encoding or decoding. (a) Five
visual fields centered at a gaze point (here is the left eye center). (b) Five visual
field images (16 x 16 pixels, scales = 5, 4, 3, 2, and 1) sub-sampled from
the original image (320 x 214 pixels) with intervals = 16, 8, 4, 2, 1 pixel(s).
(c) The spatial relationship between one given starting gaze point and the target
center. (d) Encoding or decoding the visual context between current gaze points
and the target center, gradually from largest visual field to smaller ones (here two
scales of visual fields and the corresponding spatial relationships are shown).

ronmental points and the first target, and then encode the local
context between the first target and the second target. By this
way, the coding system could save quite a large amount of en-
coding quantity, especially when the number of the targets is
very large. Figs. 8 and 9 illustrate that using global and local
context together for multiple targets searching can save more
encoding information than searching them separately.

IV. LEARNING PROPERTIES OF THE POPULATION CELL CODING

In this section, we discuss our population coding system in
two respects. The first is its learning properties underlying the

(c)

Fig. 7. Tllustration of fine target localization through computing the maximum
density of the final gaze points. (a) The distribution of final gaze points (white
points) representing located target (left eye) centers, which start from a group
of initial gaze points randomly distributed on the image. (b) The density of final
gaze points or located target (left eye) centers. (c) Using the position with the
highest gaze point density as the finally located target center (the white point).

visual context encoding and gaze movement controlling or syn-
thesizing. The second is a theoretical analysis and comparison
between our system without weight updating and the classical
learning machines with weight updating in terms of efficiency
and stability.

A. Modeling Context Representation as a Learning Problem

A learning problem can be proposed as: Given a group of
visual contexts {(X*), (Azy, Ayg))|1 < k < N} and a visual
field image Y, how to estimate the unknown relative distances
(Az, Ay) of the target center?

One solution is letting the half-unknown visual context
(Y, (Az, Ay)) be represented or synthesized by the known
visual contexts {(X*), (Azy, Ayp))|1 < k < N}, ie.

N

(Y, (A2, Ap) = > e (XB), (Awy, Ag) ) -

15)
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(@)

(b)

Fig. 8. Encoding and decoding the global and local context for searching mul-
tiple targets. (a) Encoding the global context between the environment and the
targets (left eye or mouth). (b) Encoding the local context between the targets
(the mouth and the region surrounding the left eye). (c) Encoding the global
context firstly and local context secondly for target search in sequence.

Then the leaning problem becomes an issue of how to deter-
mine the values of the coefficients {ct }. To compute the coeffi-
cients {c }, we divided (15) into three parts

( N
Y = Z CkX(k)
k=1
N
Az = ) cpAxy (16)
k=1
N
Ay = > crAyg.
\ k=1

The coefficients {ci} could be obtained by decomposing
the known Y into a group of basis functions {X(*)}. Then,
these coefficients are used to synthesize the unknown relative
distances (Az, Ay) along with the known spatial relationships
{(Azy, Ayr)}.

Usually, the exact value of these coefficients {c} can not
be obtained in a simple and easy way. Therefore, we used an
estimated visual context (Y, (A#, Aj)) to approximate the real
visual context (Y, (Az, Ay)) instead. Then (16) is transformed
to

( R M ,
YrY=Y cpuX*)
k=1
M
Az~ Az = RAz = Z CkIAJ,’k/ (17)
k=1
~ M
Ay = Aj=Ray= > cwAyp
\ k=1

where ¢ € {Ck}, X(kl) S {X(k)}, (A.’Ek/,Ayk/) S
{(Azp, Ayp)}, B =1~M,k=1~N,and M =1~ N.
Comparing (17) to (10) and (13), we can get the corre-
sponding coefficients {cy/|1 < k' < M}
fST{'fX(k’)

oy =—2X (1<K < M).

T
> fyfxon
k=1

(18)

(b)

(c) (d)

Fig.9. Combining global context and local context for searching target centers.
(a) Locating the left eye center using the global context from a group of initial
gaze points randomly distributed on the image. (b) Fine left eye center localiza-
tion (represented by the white point) after computing the maximum density of
the final gaze points. (c) Locating the mouth center using the local context from
a group of initial gaze points around the located left eye center. (d) Fine mouth
center localization (represented by the white point) after the maximum density
computation.

Thus, decoding the spatial relationship (Az, Ay) with the
encoded visual contexts {(X*), (Azp, Ayp)|1 < k' < M}
to produce a gaze movement for target locating can be modeled
with a regression function

(A:U,Ay) ~ (Ai, AQ) = Frg(A:Uk/,Ayk/)
M
= 3 o (Aww, Age)
k'=1
f$fx(k,)

M
T
>

k=1

19)
Ckl =

where the coefficient ¢y is the percentage form of the similarity
between the new visual field image Y and the %’th encoded
visual field image pattern XK. Particularly, when using the
single coding mechanism (M = 1), (19) is simplified to
(Az,Ay) = (A2, Aj) = (Azpr =1, Aypr=1).  (20)
From (20), it can be learned that for the case of single-cell
coding, the system produces a movement associated with a
memorized visual field image pattern which is most similar
to the new visual field image. If the coding system encoded
enough visual field image patterns {X*)} (1 < k& < N)
and associated spatial relationship {(Azg, Ayr)} (1 < k <
N), a new visual field image Y can be easily located in the
neighbor area of an encoded X(*) in the data space, as il-
lustrated in Fig. 10(a). In this case, the single-cell coding is
suitable and its associated distance prediction (Azy, Ayy) is
accurate enough. However, the encoding quantity for coding
system to memorize such visual context could be very large.
In other words, the system needs a large amount of training
data to obtain a good prediction performance. Therefore, it is
not economic to implement a practical system in such a coding
mechanism.
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Fig. 10. Illustration of encoded visual field image patterns {X(*)} with their neighbor areas (radius r), the test visual field image Y and their distances
{d;} or the similarity measurements (e.g., {1/(1+d;)}) in a data space. (a) Densely encoded samples suitable for single cell decoding for a new sample
(e.g., using X*+'=1) 1o represent Y for distances dy < r <« do < d3 < d4); (b) Sparsely encoded samples suitable for population cell decoding (e.g.,
using {X*)]1 < &’ < 3} to represent Y for distances r < dy < dy < ds < dy).

From (19), for the case of population-cell coding, the system
produces a movement according to a group of encoded visual
field image patterns to which the new visual field image is sim-
ilar. If the sparse visual field image patterns are stored in the
coding system, the possibility of a new visual field image to be
located in the neighbor area of an encoded image pattern is very
small, as illustrated in Fig. 10(b). In this case, the single-cell
coding can not provide an accurate representation and predic-
tion. Thus, the prediction should be compensated by other cells
that are also similar to the new input. Therefore, population-cell
coding is suitable here and the gaze movement is synthesized
by a group of encoded movements {(Azy, Ay )} (1 < K <
M) associated with the similar encoded image patterns {X (*)}
(1<K < M)

In order to build a system with the possible best generaliza-
tion, it is necessary to minimize the structural risk (or the gen-
eralization error) of the system according to the theory of sta-
tistical learning [55]. For our system with M population coding
neurons involved in to represent the visual field image and syn-
thesize the gaze movement, if T is the number of targets in a test
set, the mean mea(M) and the standard deviation std (M) of the
target locating errors are formulized, respectively [see (21) and
(22) at the bottom of the page].

In literature [56], the expected prediction error (EPE) is de-
fined as an evaluation of test error or generalization error that

makes a bias-variance tradeoff. Based on it, a simplified com-
prehensive test error ce(M) can be formulated as

ce(M) = \/meaQ(M) + std?(M). (23)

Generally, it is difficult to get the best model by finding a
system with the smallest test error directly. According to the
principle of the structural risk minimization [55], the problem
can be transformed to find a system by minimizing the system’s
structural risk SR(M, N)

SR(M,N) = cey.(M) + me(N) (24)
where ceq,-(M) is the comprehensive error for the training set;
me(N) is a function of N and represents the system’s model
complexity; N is the number of coding neurons in the third
layer, representing the number of visual context patterns en-
coded in the system; M determines how many cells involved
in to represent the visual field image and synthesize the gaze
movement. Here the parameter M directly influences the target
locating error for each search, and consequently influences the
learning procedure that determines the final value of the number
N, i.e., the number of total coding neurons generated after the
training procedure.

T
mea(M) = % Z \/(Aa;(t) — A;fg(t))Q + (Ay(t) — Ag(t))z
t=1
1z M 2 M 2
== STl [ a0 =S cwazl) )+ (ay®0 -3 cpayl @1
=1 k=1 k=1
L Z - : 2
std(M) = J = <\/ (Az® = AZW)* 4 (Ay® — AgD)* — mea(M)> . 22)
=1
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TABLE III
ALGORITHM FOR DETERMINING THE NUMBER OF POPULATION CODING NEURONS

generated in the system;

MaxR, then P;, M; and N; are recoded;
END LOOP

BEGIN LOOP Pi=1 to p (0= p<1) with a step Ap(Ap<0), where P;is the factor of determining A/, i.e., the number of
population coding neurons with the first A4 largest responses;

1. Train the coding system with the given maximum error limit and the value of A4 which is controlled by the
factor P;, then get the system complexity N; after training, where A is the number of layer-3 coding neurons

2. Sort all the Nj coding neurons’ responses in a sequence from the maximum response MaxR to the minimum
response; if the (M;+1)-th (1< M;< N;) neuron’s response is the first one smaller than or equaling to P; *

Get P among {P;}, where P corresponds to the smallest N; , and then get M from P.

Therefore, how to set M (1 < M < N), the number of pop-
ulation neurons involved in visual context coding, becomes a
key problem in selecting a model for possible best performance.
Theoretically, M could be obtained by minimizing the structural
risk

M =argMin {SR(M, N)}=arg Min {cey,.(M)+mc(N)}.
(25)
However, it is practically difficult to get the value of M
in such a way. An alternative approximating method [55] is:
Setting a maximum training error limit max _ce;,.; among all
the systems whose training errors {cet,(M;)} are smaller than
max _cey, finding a system with the minimum model com-
plexity min _mec among all the model complexities {mc(N;)};
with the comprehensive training error ce,(M™*) of the found
system, getting the corresponding value of M by using

M = arg Min {mc(N;)|cew,(M;) < max _ceq, }
= M"* = arg {min _mc|cet,(M;) = ce,(M*)}. (26)

Fig. 10(b) shows that the distances {d()} (k' = 1 ~ M,
here M = 3) between the new visual field image Y and M
encoded visual field images {X(k')} in the data space are far
smaller than other distances {d} (k' = M +1 ~ N), e,
dy < do < ... < dy < dpyry1 < ... < dn. By trans-
forming the distance measurement into a similarity measure-
ment, €.g., S(p) = 1/(1 + d(k/)), Fig. 10(b) shows that there
are M encoded visual field images {X*)} (k' = 1 ~ M, here
M = 3) are most similar to the new visual field image Y, i.e.,
§1> 82> ... > Sy > Spr41 > ... > sy. Our experimental
results showed that M is not a constant parameter to be selected
directly for the system’s best performance. Instead, we used an-
other factor P = s;/s; to control M. The parameter P and M
can be obtained by Table III.

Please note that the result of M will be 1 and N when P = 1
and P = 0, respectively.

B. System Stability and Insensitivity to Weight Updating

As described in Section III-A.1, the performance of our
system using multistep learning (which updates the weights
with more than one steps) is almost the same as the performance
of the system updating its weights with only one step. We try to
explain this phenomenon by a comparison between our coding
system and a classical learning machine Perceptron [59]. Then,

the analysis is briefly extended to the multilayer Perceptron
[60].

With reference to Fig. 11(a), Perceptron is a two-layer neural
network that performs supervised learning. Its first layer is an
input layer with n + 1 input neurons, where the first » neu-
rons input a signal that can be represented as a n-dimension
vector X = (1123...7,)T, and the (n + 1)th neuron inputs
the constant 1. Its second layer is the output layer in which
there is only one neuron. It updates the connection weight vector
W = (w1ws ... w,)" and the bias weight b between two layers
till the learning is converged. For a linear responding neuron, the
system’s output function is

f(X)=WTX 4. 27)

Thus, Perceptron produces a hyperplane (f(X) = 0) as il-
lustrated by the solid line in Fig. 12(a), which segments the data
space into two subspaces, A and B. If the network outputs a
positive value (f(X) > 0), the input is classified to class A,
otherwise it is classified to class B, which is indicated by

F(X):0=XeA/B. (28)

Through a weight vector modification W; = Wy + AW
with AW = (Aw;Aws ... Aw,)", the system’s output corre-
sponds to a variation

fo(X) = WIX +b

fiX)=WIX+b=(Wo+AW)TX+b. (29)
= fo(X) + (AW)'X
Then the new hyperplane is
AX) = fo(X) + (AW)TX =0 (30)

which is shown by the dashed line in Fig. 12(a). For any X,
and X that are located on the hyperplanes fo(Xo) = 0 and
f1(X1) = 0, respectively, it can be deduced that the difference
of two hyperplanes is

AX =X — X = { —b(AW)™
AW*
where AW* L AW and ||[AW*|| = ||AW]|.

Fig. 11(b) illustrates how our cording system represents and
discriminates two classes A and B. It uses two groups of popu-
lation coding neurons in the second layer to represent classes A
and B, respectively. The numbers of two groups of population

i (b # 0)

31
otherwise D
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f(X):0=Xe A/B
FX)=WI'X+h

A/B

FAX): FBX)=Xe AB
MA(X) Mg (X)
FAX)= Y A X)) FBX)= )" /B X)
k'=1 k=1

FAX) = (WASTX BE(X) = (WBETX

()

(®)

Fig. 11. Comparison of two-class (A/B) discrimination principles of two learning systems; (a) Perceptron and (b) our population coding system.

coding neurons are Na and Ng, respectively. The responses of
two coding neurons for classes A and B are

1< ks < Np)

?

T
{fAkl o (WAA‘I)TX’ (1< ki< Na

FP (X) = (W)X,

(32)
where WA*1 and WP*2 are two weight vectors representing
two groups of connecting weights which are between the k1th
coding neuron for class A and the input neurons and between
the koth coding neuron for class B and the input neurons.

In the third layer, the two class neurons A and B are used to
compute the total responses of population coding neurons that
represent two classes. An input X activates population coding
neurons with the first (Ma (X) + Mp(X)) largest responses
{1 < K < Ma(X) < Na}and {f 1 < K} <
Mg(X) < N}, where M4 (X) and Mg(X) are numbers of
two groups of population coding neurons activated by the input
X for representing classes A and B, respectively. In other words,
the connection weight vectors {WA"Q |1 <Kk < Ma(X)} and
{WB’“é |1 < kb < Mp(X)} between these coding neurons and
the input layer are close to X. As illustrated in Fig. 12(b), a
new input Y activates one class-A coding neuron represented
with Wél and two class-B coding neurons represented with
{W5', W2} within Y’s neighborhood with radius R. There-
fore, the responses of class neurons A and B in the third layer
can be calculated by

R MAX) MAX) T
P = 8 = 3w

B Ms(X) g, Mg (X) B, T (33)
PR = 8= 8w X

where 1 < Ma(X) < Na,1 < Mp(X) < Ng. Thus, in
the local data space around the input X, the local hyperplane is
determined only by two groups of the encoded weight vectors

(W1 < K, < Ma(X)} and {W™* |1 < &, < M (X))

The local hyperplane is represented by

FAX)=FB(X) or FAX)-FBX)=0. (34

The global hyperplane or hypersurface can be also repre-
sented by (34). It is illustrated by the solid line in Fig. 12(b),
which is combined by multiple local hyperplanes and segments
the data space into two subspaces A and B. The system discrim-
inates two classes by a comparison of the responses of two class
neurons

FAX): FB(X)=> X e A/B (35)

which means if F'*(X) is larger than F®(X), then X is classi-
fied to A, otherwise it is classified to B.
Similarly, if there is a weight vector modiﬁcatign for
those relevant population coding neurons, e.g., {AW Moo=
Ay Ay A,
(Aw, TAw, T Aw, )T < K, < Ma(X)} and

(AW S = (Aw, 2Aw,? .. Awn )T < K, <
Mg(X), the responses of the coding neurons in second layer
and the class neurons in the third layer for classes A and B are
reflected with two groups of variations

Ay A\ T
i = (W) x

Ak’ A T
= <W0 L+ AW ’°1> X

A

=fo {(X)+ (AWA‘E)T X 6

B B\ T
1 k’(X) = <W1 : X

Bk’ Bk’ T
=W, > +AW % X

_ 1X) + (AWB%)TX
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( N Ma (X) Aur Ma (X) A
FR(X) = Z fi (X)= X fo H(X)
k=1 k=1

Ma(X) A, T
+ Y (AW‘ kl) X = FAX)
k=1
Ma(X) T
+ Y (awt)x
k=1
. Mp(X) B, Mp(X) B, 7
FPX)= > fH2X)= X fi *(X)
k'—l k’—l
Mg (X) BT
+ 3 (aw™) X =FEX)
kb =1
Mg (X) T
+ 3 (aw™) x.
{ kh=1

The new hyperplane or hypersurface produced by the popu-
lation coding system is

FMNX) = FP(X) = F§H(X) = Fg' (X) + (6W) "X

(38)

where W = ZQ,IA(X) AW ZQ,IB X) AW
For any X that is located on the hyperplane F A(X) =
FB(X), we have

Ma (Xo) A,‘/ T
R (Xo) = FE(Xo) = 3 <W0 ) Xq
ki=1
Mg (Xo) B\ T
— Z (WO 2) XO
K,=1
Ma (X Mg (X
where AWBA = k,j(l O)W k’—(l o)W
Correspondingly, there is a AWBA = Qlli(lxo) 1

Q{E(lxo) W after the weight vector modification. From

(39) it can be deduced that X is orthogonal to AWBA ie.,
Xo L AWBA,

As illustrated in Fig.
are two vectors across two local hyperplanes.
mean the differences of two pairs of central

Ma (X Ak’ Mg (X
(S W, ey W,

{ZQ,"L XO)Wl , Q{E(IXO)Wl '}, which  represent

classes A and B before and after the welght updating

0)»f1 '(Xo)} and

0)} of population coding neurons {A}}
ki < Ma(Xo),1 < k), < Mp(Xy)) are

A, A,
enough large, or if the weight vectors {W, kl,W1 kl} and

{W(])3 k%W]lBké} before and after the weight updating are
enough close to the data point X, the hyperplane spanned by
the vectors AWBA and AWBA is approximately orthogonal
to Xy. In other words, X is approximately orthogonal to

12(c), AWEBA and AWEA
They
vec-

tors and

A
respectlvely When the responses {f, ' (X

{fo " (X )f1 ‘(X
and{Bk;}(

AWBA e XoLAWBA or (AWBA)TX ~ 0. Thus,
using (37)-(39), we have
Fi*(Xo) = F(Xo)
= F§'(Xo) — Fg'(Xo) + (W)X,
= (W)X,
Ma(Xo) L Ms(Xo) . T
= Y AW - Y AW TR | X
k=1 k=1
Ma(Xo) A, A,
=1 X (Wlkl—W0k1>
k=1
T
Mg (Xo) By B,
- > <W1 -W, ) X
k=1
MA(Xo) . Ms(Xo) T
= > W, = > w2 X,
kf=1 k=
Ma(Xo) Ma(Xo) T
£ k/ k/
-1 > W= Y W X
K= k=1
= (AWBA)" XO—(AWOBA)TXO
= (AWP) ' X
~ 0 (40)

which means the data point X located on the hypersurface
F3(X) — FB(X) = 0 is also approximately located on the
hypersurface Fi*(X) — FE(X) = 0. In other words, the two
hypersurfaces produced by our population coding system be-
fore and after a weight updating is near to each other when the
responses of those population coding neurons activated by the
data point X, are enough large.

As illustrated in Fig. 12(a) and 12(b), the global hyper-
plane produced by Perceptron is determined by the connection
weights from the input layer to the neuron in the output layer.
Our coding system transforms such global hyperplane into
multiple local hyperplanes determined by the connection
weights from the input layer to the population coding neurons
in the second layer in Fig. 11(b). Local variation led by the
modification of weights associated with each coding neuron in
our system is limited and is not as large as the global variation
led by the modification of weights associated with the neuron
in the output layer of the Perceptron.

As for a more complex learning machine, such as the multi-
layer Perceptron (MLP) [60], which can produce a global hy-
persurface composed of multiple local hyperplanes. Each local
hyperplane is controlled by the connecting weights between a
neuron in the hidden layer and the input layer. And the global
hypersurface is controlled by the connecting weights between
a class neuron in the output layer and all the neurons in the
hidden layer rather than sparse population coding neurons as
our system does. This case is similar to that of Perceptron. Per-
ceptron outputs a global hyperplane which is controlled by the
connecting weights between a class neuron in the output layer
and all the neurons in the input layer. In other words, due to the
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(b) Our population coding system in bird-view
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(c) Local hyper-plane variation of our population coding system to the weight modification

Fig. 12. Tllustration of hyperplanes and their stabilities in Perceptron and our coding system in a data space, respectively, in a side-view and a bird-view. (a) Two
hyperplanes (fo(X) = WIX +b =0, fi(X) = W{X + b = 0) produced by Perceptron before and after a weight modification W; = W, + AW. A
test input Y is sensitive to this larger variation for it is classified to class B (fo(Y) < 0) and then to class A (f1(Y) > 0). (b) Two hyperplanes (F3*(X) =
FB(X), FM(X) = FB(X)) produced by our coding system before and after a group of weight modification { WA* = Wi 4+ AWA! WPI = W7 4
AWPBI} A test input Y is less sensitive to the smaller variation for it is always classified to class B (Fg (Y) < F2(Y), FA(Y) < FP(Y)). Our coding
system transforms the global hyperplane controlled by the connection weights associated with the output neuron in Perceptron into segmented local hyperplanes
controlled by the connection weights associated with the population coding neurons. Local variation led by the weight adjustment associated with each coding
neuron is limited and is not as large as the global variation led by that associated with the output neuron in Perceptron. (c) When the responses of the population
coding neurons activated by the input X, are enough large, or if the weight vectors W4 and { W8I WP associated with these population coding neurons are
enough close to the data point X, the local hyperplane variation of our population coding system to the weight modification is small and the hyperplane spanned
by the class difference vectors AW &4 and AW B is approximately orthogonal to X . The data point X, located on the hypersurface F*(X) = F (X) is

also approximately located on the hypersurface FA(X) = FB(X)

influence caused by the weight modification associated to all the
hidden neurons, MLP is also sensitive to the weight updating.
In addition, the number of the neurons in the “hidden layer” of
our system is not fixed as that in the hidden layer of MLP. In
MLP’s classical form, if the input neurons are viewed as the first
layer neurons, the number of neurons in the second layer or the
hidden layers is set to a predetermined number. Each hidden-
layer neuron with its connecting weights to the first layer rep-
resents a hyperplane in the data space. The number of neurons
in the hidden layer determines the corresponding number of hy-
perplanes to be learned. The weight updating means rotating and
translating all the existed hyperplanes to fit or separate the data.
However, the complexities of problems are different for various
data and tasks. It needs a flexible model with different complex-
ities to fit the different tasks. Classical MLP fails to satisfy this
requirement with its fixed number of the hidden-layer neurons
or unchangeable model complexity. Therefore, the authors con-
sider that a very important aspect to developmental learning is
how to determine the number of neurons in hidden layer or the

complexity of the model, especially for simulating the develop-
ment of a baby’s brain since he or she is born till grows to be
an adult whose number of brain neurons is stable. To address
this problem, we proposed the developmental system which dy-
namically generating new coding neurons in the “hidden layer,”
it memorizes or encodes the new visual context when it inter-
acts with the environment and fails to predict the target location
with its current visual context knowledge.

The above theoretical analysis and comparison try to explain
the phenomenon that the performance of our system using mul-
tistep learning is very close to the performance of the system
with only one step weight-updating. However, our system with
one-step weight updating is faster and stable on visual context
encoding.

V. EXPERIMENTS ON CODING FOR GAZE MOVEMENT
CONTROL IN TARGET SEARCH

We implemented two visual context coding systems, respec-
tively, by using single-cell coding and population-cell coding
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Fig. 13. Face database of the University of Bern (320 x 214 pixels).
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Fig. 14. Retina imaging simulation. (a) Input neurons composed of five overlapped visual fields with 16 X 16 cell arrays and different intervals [16, 8,
4, 2, and 1 pixel(s)] between two adjacent neurons. (b) An illustration of a simplified rectangle distribution of visual sensing cells in the primate retina

(here, only overlapped input neuron arrays in three scales are shown).

mechanisms for target searching. In addition, a full-encoding
system, k-NN-based coding system, is built for efficiency and
performance comparison. In this system, the visual context is
encoded at the learning stage regardless of the predicting results,
based on all given starting gaze points uniformly distributed on
images in all the scales. And the visual context is decoded at the
test stage by using k-NN. In other words, the system encodes
all the visual contexts it encountered at the encoding stage and
uses the first £ coding neurons with largest responses to repre-
sent a visual field image and synthesize a gaze movement at the
decoding stage.

The three coding systems are compared based on searching
two kinds of targets: the left eye centers and the mouth centers of
humans. The head-shoulder image database from the University
of Bern [57] has been used. In this database, totally there are 300
images from 30 people in ten different poses (ten images each
person). The image size is 320 x 214 pixels. The average radius
of the eyeballs of these 30 persons is 4.02 pixels. Fig. 13 lists
the first ten images.

For each target center, two experiments were designed to
compare the systems’ performance. The first experiment (Exp.
1) used a training set consisting of 30 images (the frontal pose
image of 30 persons) and a test set with 210 images (30 people
in nine other different poses). The second experiment (Exp.
2) used a training set with 90 images (nine people in these 10
different poses), and a test set with 210 images (21 people in
these 10 poses), respectively.

A. Structure of Coding Systems

All the coding systems have a group of visual fields in
five scales (256 x 256, 128 x 128, 64 x 64, 32 x 32, and

16 x 16 pixels). These visual fields are used to input global or
local images by sampling the training and the testing images
(320 x 214 pixels). For each scale (or resolution), in the first
layer of a coding system, there are five 16 X 16 input neuron
arrays with different intervals (16, 8, 4, 2, and 1 pixels).
These neurons simulate the distribution of the visual sensing
neurons in primate’s retinas. In a primate’s retina, the density
of sensing neurons is high in the central fovea and low in
the surrounding area. Each input neuron samples a pixel or a
small region [16 X 16, 8 X 8, 4 x4, 2 x 2, and 1 x 1 pixel(s)]
at the corresponding position of images. Illustrated in Fig. 14
there are totally 5 x 16 X 16 = 1280 input neurons in the first
layer of this coding structure.

Fig. 2 shows that there are 256 kinds of extended LBP fea-
tures for each receptive field. In the second layer of the coding
system, each feature neuron extracts an extended LBP feature
from its receptive field of 3 X 3 input neurons. Each receptive
field has 1/2 overlap with its neighboring receptive fields in five
visual fields. Thus, there are totally [16 — (3 — 1)]? x 256 x 5 =
250 880 feature neurons. Among these feature neurons, at most
250880 x (1/256) = 980 neurons (the first m feature neurons
with largest responses, m = 1 for sparsity, see Section II) con-
tribute to activate the single or population coding neurons in the
third layer.

The number of coding neurons in the third layer is dy-
namic, which is dependent on the natural categories of the
visual context and different data and tasks.

The number of gaze movement control neurons in the
fourth layer is two. The two control neurons output two
values representing gaze shifts in x and y directions,
respectively.
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(b)

Fig. 15. Visual context learning and testing. (a) Encoding or learning visual
context between the mouth center and a group of initial gaze points uniformly
distributed on the image. (b) Decoding or testing for gaze movement control for
mouth center search from a group of initial gaze points randomly distributed on
the image.

B. Experiment on Encoding or Learning

In Section IV, we proposed a model selection algorithm that
determining the number of the first M coding neurons. In order
to verify the algorithm to be reasonable and feasible, we carried
out an experiment on encoding the visual context and searching
the mouth center.

Illustrated in Fig. 15, the visual context was encoded (or
learned) with a group of initial gaze points uniformly distributed
on the image, and decoded (or tested) with a group of initial
gaze points randomly distributed on the image. The system was
trained and tested on mouth center searching based on visual
context encoding and decoding strategies.

Table IV listed the experimental results obtained by using the
algorithm shown in Table I to construct the coding system where
Exp. 1 used 30 images for training and 270 images for testing;
Exp. 2 used 90 images for training and 210 images for testing;
the parameter P is the similarity factor defined in Section IV
for determining the value of M (the number of the population
coding neurons with the first M largest responses); the averaged
M means the average number of coding neurons participated in
visual context encoding or decoding procedure; N is the number
of total coding neurons generated in the third layer, which repre-
sented the system’s model complexity; the system’s generaliza-
tion error (or test error) is evaluated by the comprehensive error
Vmea2 + std? (unit: pixel) described in Section IV-A. It com-
bines the mean (mea) and the standard deviation (std) of target
locating errors. The model consistency was evaluated according
to the comprehensive test errors generated with different model
complexities by using these two datasets. The evaluation results
are plotted in Fig. 16.

It can be seen that for Exp. 1 (30 training images versus 270
testing images), the smallest model complexity (N = 2.875
thousand coding neurons) corresponds to the best generalized
performance (comprehensive error = 3.54 pixels) when
P = 0.8. For Exp. 2 (90 training images verus 210 test im-
ages), the smallest model complexity (N = 7.703 thousand
coding neurons) corresponds to the third best performance
(comprehensive error = 3.34 pixels). These two experiments
indicated that the method which we proposed to select a system
with good generalized performance is practical and reasonable.

C. Experiments on Gaze Movement Control for Target Search

We carried out a group of visual context coding experiments
for searching two targets: the left eye center and the mouth

Model Complexity N

@ (thousand neurons)

—8— Comprehensive Error
(pixel)

Model Complexity N

(thousand neurons)
—@—Comprehensive Error
6k (pixel)

9 H
10 09 08 07 06
(b)

05 P

Fig. 16. Correspondence between system complexity and comprehensive test
error. (a) Exp. 1: when P = 0.8, the smallest model complexity (N = 2.875
thousand coding neurons) corresponds to the best generalized performance
(comprehensive error = 3.54 pixels). (b) Exp. 2: when P = 0.9, the
smallest model complexity (N = 7.703 thousand coding neurons) corresponds
to a performance (comprehensive error = 3.34 pixels) close to the best
performance (comprehensive error = 2.91 pixels) when P = 0.8.

center. These experiments were carried out in two ways: in-
dividual search and sequential search. The individual search
means encoding and decoding the visual context for the left
eye center and the mouth center independently. The sequen-
tial search means encoding the visual context from initial gaze
points for the first target, and then encoding the visual context
from the points around the first target to the second target. After
encoding, these sequential contexts are decoded to search two
targets one by one.

From Table IV, we know that P = 0.8 and P = 0.9 make the
two systems have the smallest complexities for Exp. 1 and Exp.
2, respectively. Their corresponding average values of M are
2.92 and 1.95 (coding neurons), which means that two groups
of population cells are responsible for visual context coding.
When P = 1.0 the average value of M is one, which means a
single cell is responsible for coding. We compared the single and
the population cell coding with a benchmark coding system, the
k-NN-based coding system. Table V presented the comparison
results with fields: the number of feature neurons in the second
layer of our coding system, the number of coding neurons in the
third layer, the number of connection weights between feature
neurons and coding neurons, the mean and the standard devia-
tion of locating errors and the comprehensive test error.

According to our experimental results, the k-NN-based
coding system provided the best performance with k£ = 3. The
experimental results listed in Table V can be summarized in
following three aspects:
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TABLE 1V
MODEL SELECTION: COMPLEXITY VERSUS GENERALIZATION ERROR
learning P 1 0.9 0.8 0.7 0.6 0.5
i1
parameters average M (neuron) 1 167 | 292 | 549 | 1058 | 22.28
Fxp.1 ::)(;s;}exily N (neuron) 3068 | 2956 | 2875 | 3484 | 3603 | 4493
(30 vs. 270) mean (mea) 258 | 228 | 244 | 263 | 298 | 427
- standard
i(;ci:;t;lx)lg error deviation (sid) 442 3.21 2.57 292 2.85 5.67
comprehensive 512 | 394 | 354 | 393 | 412 | 7.10
error v mea® + std? ) 3
Jearning P 1 0.9 0.8 0.7 0.6 05
E=4
parameters average M (neuron) 1 1.95 3.96 8.00 16.69 | 35.28
'“"dei . N (neuron) 9991 | 7703 | 8513 | 7921 | 9642 | 9532
Exp.2 complexity
(90 vs. 210) mean (mea) 2.29 2.39 235 2.48 2.72 3.26
. standard
5 < | o
i(i))(i:;t;ll;ng eITOr | 4 intion (std) 253 234 1.72 1.87 1.93 3.04
comprehensive 341 334 | 291 | 311 | 334 | 446
error v mea® + std* ) > 3
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»
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Fig. 17. Two examples illustrate that the system trained with vertical frontal
images can search targets (left eyes and mouths) in other poses to some extent.
Located results are represented by two white points in each image.

1) With large samples, in the case of Exp. 2 (90 images are
selected as training images), the population-cell coding
system provide the similar target locating accuracy as
the single-cell coding system and the k£-NN-based coding
system did. However, it required the lest encoding infor-
mation. For example, the ratios of the average encoding
quantity (0.35 million connection weights for the left eye
center) required by the population-cell coding system to
the encoding quantities (0.43 and 6.87 million connection
weights for left eye center) required by the single-cell
coding system and the k-NN-based coding system are
about 77% and 5%, respectively;

2) With small samples, in the case of Exp. 1 (30 images are
selected as training images), the locating accuracy for the
left eye center by the population-cell coding systemis 3.11
pixels which is 35.6% and 16.4% higher than the accu-
racies (4.83 and 3.72 pixels) provided by the single-cell
coding system and the k-NN-based coding system, respec-
tively. Meanwhile, the encoding quantity required by the
population coding is 12% and 95% smaller than the single
and k-NN coding systems;

3) Sequential search can save 16.4% encoding quantity in
contrast to individual search with the similar locating
accuracy.

In Exp. 1, although the coding system is trained with vertical
frontal images for searching eye centers and mouth centers, it
can handled the face images in different poses to some extent as
two examples illustrated in Fig. 17.

VI. CONCLUSION AND DISCUSSION

In this paper, a population cell coding mechanism for visual
context learning and gaze movement controlling are presented.
The encoding algorithm proposed in our paper has the de-
velopmental and incremental learning characteristics. The
fast learning properties of the encoding algorithm with only
one-step weight-updating was theoretically proved and com-
pared with the classical learning machines in terms of efficiency
and stability. A practical method of model selection in terms
of determining the number of the first M population coding
neurons for good generalization performance is suggested ac-
cording to the statistical learning theory. In order to apply it to
practical object detection tasks, the issues of encoding quantity
and locating accuracy were discussed. The main measures for
solving the problems include population cell coding, making
use of sequential context, and the computation of maximum
density of final gaze points.

Our theoretical analysis and experimental results indicated
that the population-cell coding system is generally more effi-
cient than the single-cell coding system and the k-NN-based
coding system in representing the visual context and control-
ling the gaze motion for target searching. The population-cell
coding has demonstrated a significant advantage on the case of
small samples over other two coding systems. It reached 35.6%
and 16.4% higher target locating accuracies and required 12%
and 95% lower coding quantities compared with the single-cell
coding system and the k-NN-based coding system, respectively.

Because this paper intends mainly to discuss the efficiency
of visual context encoding and its top—down control for gaze
movement in target search, some respects are not included in
the current system. Correspondingly, there are several limita-
tions in our system. 1) Authors temporally did not make use of
the bottom—up saliency and the top—down target cues to search
and verify targets, so the system assumes that targets are ex-
isted in images. These two cues will be utilized in next version
of the system. 2) the system assumes targets are in a strong-
relevant context. We found that there are two types of visual
context: strong-relevant context and weak-relevant context. The
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TABLE V
EXPERIMENTS: PERFORMANCES OF THREE CODING SYSTEMS FOR MULTITARGET SEARCH
number of
number | number c?c:i:;:;gn locating error (pixel)
of of
. coding feature | coding b?t\\een
target experiment system neurons | neurons teaturlc comprehen-
in layer | inlayer neur(;n_s and Mean ;‘a"d?rd sive error
’ ' codin iat
ncumng s (mea) fod‘)o“ Nmea®+ std®
(million)
f}‘,'jleo)“” 250,880 | 2314 0.43 2.15 433 4.83
Exp.1 Population ” "
(30 5. 270) | cell (p=0.9) | 250880 | 1906 0.35 1.93 244 311
Left eve k-NN (k=3) 250,880 | 37379 6.87 2.10 3.07 3.72
center z;‘;%lcofe” 250,880 | 7340 5.02 164 | 147 220
Exp.2 Population
(90 vs.210) | cell (P=0.8) 250.880 5405 1.02 1.89 1.22 225
k-NN (k=3) 250,880 | 111801 20.7 1.86 1.01 2,12
Single cell < "
Exp.1 (P=1.0) 250,880 3068 0.57 2.58 4.42 5.12
Mouth | (30vs. 270) | Population | 55, ggy | 75 053 244 | 257 2.95
center cell (P=0.8)
(individual Single cell A 2
search) Exp2 (P=10) 250,880 | 9991 1.88 2.29 253 341
(90 vs. 210) | Population 3
cell (P=0.9) 250,880 7703 1.46 2.39 2.34 3.34
Single cell ” -
Exp.1 (P=1.0) 250.880 2794 0.54 17 3.83 44
Mouth (30 vs. 270) | Population " " N
center cell (P=0.8) 250,880 2469 0.48 227 223 3.18
(sequential Single cell 5
search) Exp.2 (P=1.0) 250,880 7700 1.55 2.11 248 3.26
(90 vs. 210) | Population 3
cell (P=0.7) 250,880 6186 1.20 2.56 1.77 3.11

strong context exists between a target and other surrounding
objects, which are interconnected in a relatively stable mode,
such as between the target eye and the objects nose, mouth, and
head, or between the target license plate and the objects of car
lights, car windows, the car driver, and the car body. The weak
context exists among objects that are interconnected in a rela-
tively loosing mode, such as among hands, feet, and the head,
or among humans, cars, roads, trees, and the sky. The current
system for the weak-relevant context does not perform as well as
for the strong-relevant context. The reasons are: a) there are no
bottom—up saliency cues for reducing the candidate regions to
be searched; and b) “it does not allow accurate estimation of the
x coordinate” of the target by using globe futures or context [19].
To address these issues, the top-down context and target cues
should be combined with the bottom—up saliency cues and ap-
plied in a temporal reasoning mechanism for locating the target
accurately.

We still have much work to do for improving our proposed
population-cell coding model. In a 2010 Intenational Joint Con-
ference on Neural Networks (IJICNN 2010) panel session [58],
the organizers Weng and Roy put forward an open problem: as
the brain is “skull-closed,” how does it fully autonomously de-
velop its internal representation from one task to the next? For
our system presented in this paper, this question becomes: for
the visual context encoded for searching the eye center, how to
transfer this internal representation to the task of searching the
mouth center or other targets? The mouth can be viewed as an
equal object that is similar to the eye, because both of them are
contained in a face object. To search an eye, we need to reason
with the encoded visual context that is from the scene to the
human body, from the human body to the face and from the face
to the eye. For searching a different target such as a mouth, the

first two parts of the visual context can be shared. Therefore,
the system only needs to encode the local context from the face
or the eye to the mouth. For a more difficult task, such as to
search a car, there is no much encoded context knowledge can
be shared. However, there is still some weak-relevant context
can be helpful on searching. For example, cars usually run on
the roads or stop in a car park or beside houses. The car-relevant
objects, such as roads, the car park and houses, have relations to
humans, where humans often exist. So the encoded context from
the scene to the human can be utilized. Of course, in this case,
the top—down cues of car features are more important. How to
share the encoded representations for different objects is a chal-
lenge. Fortunately, there is a great amount of research work have
been carried out on transfer learning in the literature [61]-[63].
They can be utilized to study the autonomous mental develop-
ment. We will explore these issues in our future research.
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