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Abstract—In this paper, we discuss the requirements of cogni-
tive architectures for epigenetic robotics, and highlight the wider
role that they can play in the development of the cognitive sci-
ences. We discuss the ambitious goals of ongoing development, scal-
ability, concept use and transparency, and introduce the epigenetic
robotics architecture (ERA) as a framework guiding modeling ef-
forts. A formal implementation is provided, demonstrated, and dis-
cussed in terms of meeting these goals. Extensions of the architec-
ture are also introduced and we show how the dynamics of resulting
models can transparently account for a wide range of psycholog-
ical phenomena, without task dependant tuning, thereby making
progress in all of the goal areas we highlight.

Index Terms—Cognitive robotics architecture, concept use, con-
ceptual learning through development, ongoing development, scal-
able and generality, transparent modeling, using robots to study
development and learning.

I. INTRODUCTION

I NCREASINGLY, researchers across the cognitive sciences
are calling for an approach to modeling that can scale up

beyond simple scenarios, one that is not tailored to specific
domains and tasks, displays an ongoing developmental tra-
jectory, and is transparent in its creation and use of concepts
[1]–[5]. While many cognitive architectures aim to achieve
some combination of these goals, they too often provide only
abstract frameworks, either lacking sufficient detail for im-
plementation, or where implementation details are provided,
the complexity of the resulting system is intimidating. Despite
such complexity, to date relatively few approaches to modeling
have displayed much success beyond any one of these aims.
Arguably, such complexity may be a necessary feature of gen-
erally cognitive systems with wide ranging abilities; certainly
in robotics, the combination of supporting systems required
for such things as walking, manipulating objects, vision, and
so on introduce a great deal of complexity before the issue of
cognition and conceptual thought is even introduced. Despite
this complexity and heterogeneity, as we demonstrate herein,
significant progress can be made toward these goals of gen-
erality, scalability, development, and transparency within a
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simple homogeneous architecture based on intuitive dynamical
principles of operation. The epigenetic robotics architecture
(ERA) introduced here, provides such a homogeneous and
intuitive framework that is simple to implement, and easily
scaled and extended while making significant progress toward
achieving all of these goals. Before providing the details of
our proposed architecture, we first discuss a series of issues
highlighting what it is that we believe an architecture should
do for current cognitive robotics and cognitive science more
generally.

A. What Are Architectures For?

From the very beginning, the aims and goals of AI have been
hugely ambitious; to simulate every aspect of learning or any
other feature of intelligence. Among those at the famous Dart-
mouth conference in 1956, often cited as the birth of AI, was
Allen Newell. Newell’s concern was that psychology could not
mature by the accumulation of experimental data alone. As he
wrote years later, “Suppose that in the next thirty years we con-
tinued as we are now going. Another hundred phenomena, give
or take a few dozen, will have been discovered and explored.
Another forty oppositions will have been posited and their res-
olution initiated. Will psychology then have come of age?” [4].
Clearly, more than 30 years later, the simple answer is no. Be-
fore psychology and equally, cognitive science can mature, the
accumulation of scientific knowledge must fit, support, form,
or revise wider theoretical perspectives in the quest for “grand”
theories and/or better paradigms for understanding cognition.

While many researchers in the cognitive sciences are con-
ducting hugely important experiments and developing crucial
models exposing and accounting for various aspects of cogni-
tion, life, development, and so on, all of this takes place within
one overarching theoretical paradigm. The primary role of an
architecture as we see it, is to bridge this gap between theory
and experiments or models in a manner (at least partially) for-
malizing how they can subsequently be integrated. This is not to
suggest that models and experiments do not already fit the larger
theories, but rather that more often than not various models
and experiments which all make strong connections to the same
theory do not seem entirely compatible themselves. To continue
with Newell’s example “...our task in psychology is first to dis-
cover that structure which is fixed and invariant so that we can
theoretically infer the [collection of] method[s]” [4]. That is to
suggest, not that we replicate human biocognition in every de-
tail, for what would that tell us, but rather that we identify the un-
derlying processes and how they are influenced, interconnected,
and potentially interdependent. To this end, Newell proposed the
modeling of control structures, which later became the field of
cognitive modeling.

For Newell, cognitive modeling was intended to influence the
development of psychological theory in several specific ways,
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which we believe are equally true for cognitive architectures:
first, by providing a working model of some set of phenomena,
the theorist is forced to be explicit about the specific details re-
quired to make that account work, thus an implemented simu-
lation is far more rigorous and theoretically tight than an ab-
stract flow chart, or some other boxology. Such implemented
simulation also provides a working demonstration that the ac-
count given can truly produce the set of phenomena it is sup-
posed to explain; the testability of the theory is guaranteed.
Second, Newell suggested that modelers “...accept a single task
and model all of it” [4] which is to say that all aspects of the
phenomenon in question are explained and produced by the
same model. With respect to Newell’s first and second sug-
gestions, current cognitive modeling has been a huge success,
but this restricts the generality of the resulting models by ac-
counting only for specific tasks. Newell’s third suggestion, “to
stay with the diverse collection of small experimental tasks, as
now, but to construct a single system to perform them all” [4]
presents the greater challenge facing modern cognitive modelers
and would-be designers of cognitive architectures.

Despite the huge influence that the various computational
approaches to modeling have had in the cognitive sciences (for
example, the commonplace use of computational language),
truly integrated cognitive modeling is extremely rare, even in
modern robotics. And though Newell’s views were expressed
more than 30 years ago, and a great deal of progress has been
made since then, the essence of his critique remains highly
relevant to today’s modelers, providing a rational underling our
need for cognitive architectures. In summary, architectures for
cognitive robotics should (at least attempt to) account for the
integration of various cognitive phenomena and models from
wide ranging domains into a single unified system, while pro-
viding sufficient guidelines for implementation and subsequent
testing.

B. Why Bother With Autonomous Robots?

The use of robots forces modelers to address the integration
of cognitive features all the way from the sensory surface to
the motor surface of a robot, which while not forcing domain
generality, clearly provides a contrast to traditionally disem-
bodied and isolated approaches in which models are provided
with task relevant representations of the state of the environ-
ment, thereby avoiding the modeling of perception and intro-
ducing both design bias and grounding problems [6], [7]. In
robotics, any model that cannot span this gap is, quite simply,
insufficient to be the controller of an autonomous robot and
must be rejected. While autonomous robotics, as a domain of
research, clearly does not force the modeling and integration of
all cognitive phenomena, it is interesting that the inclusion of,
even simple, artificial embodiment forces the integration of per-
ception, thought, and action, and represents a significant step
toward the truly unified systems required to provide the inte-
gration that cognitive scientists ultimately require of their the-
ories. This would seem not only to be a tool for better under-
standing human cognition, but also for understanding and de-
veloping cognitive systems more generally.

Of course, the development of cognitive robots is, for many
researchers, a goal in itself, but the radical changes in the ways

that we design and model cognitive systems, resulting from cog-
nitive robotic enterprises, have wider implications for under-
standing cognition. It should also be obvious that such inte-
gration of the facets of cognition, whether through cognitive
robotics or cognitive modeling, does not need to have a lot to
do with embodiment or sensorimotor approaches. Indeed, there
are various notable approaches to the integration and unifica-
tion of computational models. Perhaps the most well-known
example is the subsumption architecture [8] in which complex
behaviors are decomposed into layers of behavioral modules,
each implementing successively more complex goals while sub-
suming the decisions of previous layers. Thus, the decisions
of low levels producing obstacle avoidance can be influential
in higher layers, producing goal-directed movements. Such ap-
proaches to behavior-based robotics follow a different decom-
position to more traditional Sense-Model-Plan-Act decomposi-
tions, thereby solving engineering problems and hinting at po-
tential biological solutions. As with most cognitive architec-
tures, the complexity of implementation quickly becomes intim-
idating and difficult to manage. Though subsumption does not
necessarily have to be achieved computationally or even hand
designed, in practice it typically is.

In another branch of embodied modeling following a dynam-
ical systems approach [9], [10], agents are typically controlled
by neural networks evolved to solve minimally cognitive tasks.
Here, the complexity of integrating perception, thought, and ac-
tion is offset by the simplicity of the environment, embodiment,
and task, and rarely is the resulting control system considered
in traditionally cognitive terms. Nevertheless, such approaches
consistently provide surprising insights into both the biolog-
ical and psychological processes underlying cognition. Unfor-
tunately, with current methods the search/design problem scales
exponentially with the complexity of desired behavior of the
resulting agent, which along with the increasing difficulty of
evaluating the fitness of phenotypes, is the primary reason why
evolutionary models remain at the level of minimal cognition.
Despite these problems, there are some promising approaches
attempting to resolve these issues [11].

From a dynamical systems perspective, embodiment itself
is equally crucial to understanding cognitive processes, which
emerge from the coupling between agent and environment. For
example, though bipedal robots can be made to walk using
largely disembodied methods, such as zero moment point,
careful consideration of the human body (and bodies of other
animals) reveals an ability to walk in a narrow range of con-
ditions purely based on passive dynamics. This narrow niche
can then be extended through the addition of powered move-
ments working with and influencing the forces exerted on the
body’s natural dynamics [12]. Such powered passive dynamics
approaches require a fraction of the computational power of
more traditional methods for nondynamic bodies such as zero
moment point. They also provide similar energy consumption
during walking to their human counterparts, and result in far
more natural walking gates [12], [13]. The point here is to
highlight the many and varied roles that embodiment can play,
and that seemingly (computationally) complex phenomena can
often be offloaded to some large extent into the body and the
environment, massively simplifying the computational control
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structures and processes required. Such paradigms clearly have
much to offer, providing a radically different interpretation of
cognition from the traditional computer–mind metaphor.

Taking advantage of this requires careful consideration of the
role of the body and the environment in extending our cogni-
tive abilities [1], [14]. Moreover, careful consideration, not only
of embodiment and autonomy, but also of the interdependence
of cognitive functions leads to a reappraisal of the boundaries
of cognition. For example, areas traditionally treated separately
such as action production, skills, scene analysis, and representa-
tion are, following these developments, better considered as in-
separably interdependent and fall under the more general label
of perception. These varied reasons all support the important
role that cognitive robotics research can play in the development
of cognitive architectures.

II. WHAT SHOULD AN ARCHITECTURE DO?

Having both summarized the highly ambitious motivations
for designing cognitive architectures and emphasized some of
the important contributions that cognitive robotics can make, we
now turn to the question of exactly what we want to achieve with
our cognitive architecture. Clearly, a fully transparent model of
all cognition (if such a thing is even possible) would be fantastic,
but in making steps toward that ultimate goal, we are currently
setting our sights a little lower. In light of the arguments that we
have reviewed in the introduction, this section now defines three
aspects of cognition that are central to cognitive architectures in
epigenetic robotics.

A. Ongoing Development

In developmental psychology and epigenetic robotics, it is
clear that cognitive systems should not be viewed as static
systems that, once designed, are to be performing perfectly in
their designated niche, but rather should undergo an ongoing
development through interaction with their environment. Cog-
nition, at least in any natural form, is never the result of genetics
alone [15], [16], but results from the interplay of genetics (or
in the case of nonevolved artificial systems, algorithm design)
and the environment such that new behaviors, skills, and abil-
ities emerge throughout the lifetime of the system. In many
cases, this ongoing development follows a necessary sequence
where the acquisition of certain abilities is a prerequisite of
subsequently emergent ones. modeling cognitive systems that
display an ongoing emergence or developmental path is proving
highly challenging and progress in this important aspect of
cognition has to date been extremely slow. Nevertheless, we
believe that the importance of ongoing development should be
a high consideration in the design of any cognitive architecture.

B. Concepts and Transparency

Following the aims of cognitive architectures set out in the in-
troduction, cognitive architectures must account in some trans-
parent way for the existence of the resulting cognitive behaviors
and capacities. As we have already indicated, a fully detailed
model of human biology would remain a biological theory, and
on its own, would not necessarily advance our understanding
of human cognition. Having said that, insights and abstractions
from biology are extremely important, but equally important in

developing an understanding of cognition is that there is some
transparency in the principles of operation in a model or ar-
chitecture. In even partially accounting for cognition, without
transparency it would remain unclear that our models really are
cognitive rather than simply appearing so. To this end, we stress
that the hallmark of human cognition is the ability to develop,
ground, manipulate, and otherwise use conceptual knowledge
of the world. While we fully accept that cognitive architectures
with alternative goals do not need to emphasize the importance
of conceptual knowledge, for us this is a central requirement. By
the same rational, it is not sufficient to simply assume and de-
sign-in the existence of concepts, symbolic, or otherwise, as this
would not truly account for their existence. Rather, knowledge
organized in recognizable conceptual structures should emerge
from the system through interaction with its environment.

C. Scalability and Integration

Our final requirement is that a cognitive architecture should
not be bound to a single domain of cognitive performance, but
should integrate a wide range of phenomena and be scalable in
its potential to integrate more. This would seem to constitute the
major difference between a model and an architecture. In the
next section, we now briefly review one theoretical paradigm
having some potential to address the aspects of cognition that
we have identified as central to the development of an epigenetic
robotics architecture.

III. CONSTRUCTIVISM AND SENSORIMOTOR THEORIES

Constructivist accounts of cognition assume that cognitive
agents (human or otherwise) have an innate, but limited, and
in some cases absent, knowledge of the world they inhabit, the
actions that they can perform, and the likely effects of those ac-
tions. Extensions of this knowledge gained during the lifetime
of an agent must then be constructed; developing from and re-
maining grounded in innate knowledge (primitives), the experi-
ences that the agent has with its environment, and combinations
thereof [6], [17]. Though typically focused on experience rather
than innate knowledge, sensorimotor theories provide a highly
intuitive account of the construction of world knowledge and
other cognitive capacities during the lifetime of an agent. Such
intuitive accounts also provide insights into the processes and
mechanisms involved in biological cognition, question some of
the well-established assumptions in cognitive science, and sug-
gest a route to modeling the artificial development of cognitive
systems in robotics, of which ERA is an example.

In considering both innate primitives and experience, the
latter is viewed as a far richer source of information about an
agent’s current environment than innate primitives bestowed
through evolution, which are presumably (but not necessarily)
far less adaptive at the timescale of an individual. Despite
this bias, it is important to view both cognitive and physical
development as resulting from the interplay between an agent’s
genetic inheritance and its environmental experiences. Neither
ontogeny nor cognition can result from nature or nurture alone
and drawing such dichotomies can be highly misleading [15],
[16]. Experiences then can never be the nature free experiences
of an objective world that, as developed cognitive agents, we
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are sometimes disposed to assume, rather for any agent, expe-
riences are both embodiment and cognitive centric in that they
are experiences of that agents bodily interactions with a world
interpreted in the light of past experiences. They exist in the
combination of sensory, somatic (available indictors of bodily
well being, primarily; internal bodily sensations, metabolic
factors, and hormonal influences), and motor factors. This is
not to claim, as others have [18], that all knowledge has a
motor component, nor that all knowledge is inextricably tied to
the sensory, somatic and motor surfaces. To clarify, though all
knowledge is clearly grounded in either these surfaces, innate
primitives, or combinations thereof, much of the development
and construction of cognition is a process of abstraction to the
extent that all cognitive capacities reside on a continuum with
these basic sources of information at one extreme [19]. Thus,
proposing a continuum of abstraction rejects the necessity for
qualitative distinctions and specialized mechanisms beyond
those already implied in the most basic of sensorimotor learning
systems. So while the developed human brain clearly makes use
of a great deal of specialized circuitry, much of this circuitry
is itself a product of the ongoing development of the agent in
interaction with its environment [20], [21].

At the heart of all sensorimotor theories of cognition is the
claim that perception is, to a large degree, based upon the use of
sensorimotor knowledge in predicting the future sensory conse-
quences of an action, either overtly executed or covertly simu-
lated [3], [5], [22], [23]. From a modeling or architectural per-
spective, such an approach is appealing for two distinct reasons;
first, as the sensory consequences of executed actions are readily
available, most learning methods are applicable and there is no
need for distinct training or learning phases. Second, sensori-
motor accounts of cognition are inherently both modality and
domain general in that they do not presuppose any specialized
process specific to any particular modality or domain, rather the
general process of sensorimotor learning is applied to whatever
input/output streams happen to be available, and in whatever do-
main the information therein pertains to.

A. Perception

Our perception of continuous contact with a rich visual world
laid out in front of us is somewhat misleading. In fact, our ac-
tual sensory input is highly impoverished. For example, visual
acuity is focused on an area the size of a thumb nail at arm’s
length. From a sensorimotor perspective, our perception of ob-
jects outside the fovea (including those outside our current field
of vision) is largely constructed from predictions of what you
would see if were you to look in this or that direction. It is worth
noting that such perception is clearly supported by processing
of the sparse input from the periphery of our visual field, and
mechanisms drawing attention to movement, flashes, and other
changes and that these mechanisms are supportive of sensori-
motor learning rather than inherently bound to it. As we move
away from “low-level” sensorimotor predictions, objects should
be identifiable through the profile of interactions that they af-
ford. To use a common example; we can perceive a plate as
round, not because it projects a round image onto our retina,
but rather because we can predict how our sensory contact will
change as we move a little this way or a little that way. This

rather sparse account supposes that such profiles can be con-
structed and recognized leading to the recognition of objects in
the world in terms of their Gibsonian affordances [24]. This con-
struction of profiles of interaction is both crucial to the ability of
sensorimotor theories to account for high level cognitive/mental
perception, and is also the least detailed and most challenging
aspect. Few sensorimotor theories do more than just suppose
an ability to do this. Nevertheless, such embodiment centric ac-
counts of perception are supported by a large number of psy-
chology experiments exposing various bodily biases in catego-
rization.

Barsalou et al. [25] highlights some of the ways in which
body posture and action effect perception and cognition. For
example, subjects rated cartoons differently when holding a pen
between their lips than when holding it between their teeth. The
latter triggered the same musculature as smiling, which made
the subjects rate the cartoons as funnier, whereas holding the
pen between the lips activated the same muscles as frowning
and consequently had the opposite effect [26]. Moreover, bodily
postures influence the subjects’ affective state, e.g., subjects
in an upright position experience more pride than subjects in
a slumped position. Further compatibility between bodily and
cognitive states enhances performance. For instance, several
motor performance compatibility effects have been reported in
experiments in which subjects responded faster to “positive”
words (e.g., “love”) than “negative” words (e.g., “hate”) when
asked to pull a lever towards them [27]. Smith and Samuelson
[28] demonstrate that the typical spatial location of (and hence,
body posture when reaching for) objects relative to the subject
can be a stronger influence in learning their names than the cor-
relation between hearing the new name and attending to a new
object. We will return to Smith and Samuelson’s experiments
later in this paper, using them to demonstrate aspects of the
implemented architecture.

IV. CONCEPTUAL SPACES

Having identified the transparent generation, grounding and
use of conceptual structures as a key target of our architec-
ture, we now briefly review the conceptual spaces theory of
concepts. A classical distinction in most conceptual theories
is whether concepts should be represented as theories them-
selves or as values in some parameter space. While the former
method would be most suitable for a symbolic account of cogni-
tion, the latter would seem more compatible with connectionist
and neural approaches. An interesting position in the middle is
the so-called conceptual space (CS) as described by Gärden-
fors [29]. Conceptual spaces are postulated as a way to represent
knowledge on a level that resides in between the symbolic ap-
proaches on the one hand, and connectionist modeling on the
other. Connectionist models and neural networks are seen as
subconceptual, providing detailed processing of the lowest level
of information units, while symbolic processing is seen as the
most abstract form. To account for both the construction of con-
cepts and their transparent use, our architecture must bridge this
apparent methodological gap. As such, the CS is posed in be-
tween these levels, describing concepts in terms of geometrical
shapes that are linked or grounded in sensory properties, but
may also exhibit symbol-like behavior [19]. A CS consists of a
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geometrical representation in vector space along various quality
dimensions. In a nutshell, a CS is a collection of one or more
domains (like color, shape, or tone), where a domain is postu-
lated as a collection of inseparable sensory-based quality dimen-
sions with a metric. Examples of quality dimensions are weight,
temperature, brightness, pitch, loudness, and RGB values. For
instance, to express a point in the color domain using RGB
encoding, the different quality dimensions “red,” “green,” and
“blue” are all necessary to express color values and are hence,
inseparable. Other domains may consist of one or more quality
dimensions. In its simplest form, a concept can be represented
as a point in the conceptual space, where the coordinates of
the point determine the features of the concept. For example,
an instance of the concept RED may be represented as a point
(255, 0, 0) in the RGB color domain and an instance of the con-
cept BLUE as another point (0, 0, 255) in the same space. In
principle, any domain may be used, although for some domains
it might be easier to extract the relevant dimensions than for
others.

A system equipped with conceptual knowledge structured in
a CS can classify newly observed stimuli as belonging to a par-
ticular concept by calculating the weighted distance from the
stimuli to every other instance of concepts already present in
the CS. The observed stimulus is then assigned to the closest
existing concept. Furthermore, a CS allows for the representa-
tion of concepts through prototypes, which enables it to display
typicality effects observed in human conceptualization. Rosch
[30] pointed out that many everyday concepts are prototypical
in nature, i.e., humans regard certain instances for a specific con-
cept to be more typical than others. For example, for the concept
BIRD, the instance ROBIN is thought to be more “bird-like”
than the instance PENGUIN. Hence, it seems that specific in-
stances exhibit a graded membership to an idealized prototype.
A conceptual prototype is built through the addition of exem-
plars for the specific concept, where the mean values of all
quality dimensions encode for the coordinates of the prototype,
and the variance of all exemplars determines the prototype’s
size. More general conceptual prototypes will therefore, due to
their high variance, typically not be exact points in the CS, but
rather define a certain convex region, while more specific proto-
types may consist of an exact point in the CS. Through distance
calculation from exemplar to prototype, it is possible to derive
the most prominent exemplars for a certain concept, allowing
the CS to exhibits both prototype and exemplar properties.

A. A Need for Richer Representations

Even though a CS could potentially be suitable for the rep-
resentation of concepts, a number of drawbacks can be identi-
fied. First, it is not always clear from Gärdenfors work how the
quality dimensions that are needed to express concepts can be
found automatically as they are typically either defined before-
hand or through multidimensional scaling. Second, the ability of
CSs to represent nonlinear classes is highly limited. Gärdenfors
suggests that nonlinearity can be dealt with by stretching dimen-
sions through weighting depending on attention mechanisms,
but this would clearly not work for many nonlinear classes. Even
once proto-concepts are formed their subsequent use must be

further explicated. Common use of concepts can be understood
in terms of

• Priming and Association: the way humans use concep-
tual knowledge as part of their cognitive ability appears
to be more elaborated than a simple matching of features
process. For instance, priming (both perceptual and lex-
ical) can greatly influence the way humans perceive and
classify objects. So the manner in which an object is per-
ceived depends not only on its perceptual features, but also
on any priming that may have occurred before the obser-
vation. Also, an observation will typically not just activate
one specific concept, but rather activate a “web” of asso-
ciated concepts. For instance, when perceiving FIRE, the
concept of FIRETRUCK, FIREMAN, and WATER may be
readily available for most people, even though there is no
clear perceptual similarity between these concepts.

• Compositionality: this refers to the ability to combine con-
cepts into new concepts. This is not a simple conjunction
of two concepts, where the meaning of the new one lays
in between the other two. Rather, the first concept will act
as a modifier on the second by imposing contextual limits
and/or extensions on the features of the second concept.
Sometimes this may be relatively straightforward, e.g.,
BIG CUP denotes a specific subset of all CUPs, namely
the ones that are big. Others are notoriously harder, e.g.,
STONE LION (example given by Gärdenfors), because
the modifier STONE creates a lot of properties that are not
normally associated with LION, only the shape remains
intact.

• Hierarchy/Taxonomy: concepts are typically part of a
taxonomy, so knowledge about the properties of a con-
cept higher up in the taxonomy tree generates access to
knowledge about subordinate concepts. For instance, if
it is known that a CAT is a subordinate of the concept
MAMMAL, all sorts of properties may be inferred even
though they do not need to be observed as belonging to
CAT explicitly. In this case, we may know that MAMMAL
is typically warm-blooded and feed their young, so this
is inhered by the concept CAT. Such a hierarchical or-
ganization needs to be viewed separately from associative
structures, as concepts may be associated with each other
even though they are not in the same taxonomy (as is the
case with the FIRE example given above)

V. THE ERA

Following the extended discussion of the rather ambitious re-
quirements that we have set out for a cognitive architecture, and
several theoretical positions having relevance to meeting those
varied requirements, we now introduce the core of ERA as an
architectural framework and provide a simple example of imple-
mentation and use. On first appearances, the ERA architecture
is rather simple, perhaps overly so consisting only of a homo-
geneous hierarchy, yet we believe the ERA framework to be;
extremely powerful, consistent with constructivist sensorimotor
theories, easily extended, and perhaps most importantly, to pro-
vide advances in scaling up beyond simple scenarios, in integra-
tion, cumulation and generality, and in displaying an ongoing
developmental trajectory. We do not claim to have solved all of
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the issues and developed an architecture that can do it all, rather
our more modest claim is that we have made progress toward
these ambitious goals as we shall discuss further at the end of
this paper. We now turn to a more formal mode of modeling and
describe the elements that constitute the ERA architecture.

A. The Basic ERA Unit: Structured Association Between
Self-Organizing Maps

The basic unit of the ERA architecture is formed by the
structured association of multiple self-organizing maps [31],
resulting in structures with a strong resemblance to localist
Interactive Activation and Competition (IAC) models which
have a long history of use in modeling psychological phe-
nomena [32]–[34]. Each self-organizing map (SOM) receives
a subset of the input available to that unit and is typically
partially prestabilized using random input distributed across
the appropriate ranges for those inputs. For example, a SOM
receiving three inputs as the average red, green, and blue values
from a region of an image, can be prestabilized by training
with randomly generated RGB input values such that it forms
a conceptual color space. Increasing the probability of extreme
values in the randomly generated training data ensures that the
resulting stable map fully covers the range of possible input
values, without this step mid-range values would tend to pull in
the extremities of the map resulting in poor coverage of those
extremes. Standard equations for generating SOMs are shown
below.

Initial activation of SOM units

(1)

where is the resulting activity of each node in the map fol-
lowing a forward pass, is an input, and is the weight be-
tween that input and the current node. The winning node is the
node with the smallest value for .

Final activation of SOM units

(2)

where is the final activation of the th node in the map, is
the distance from node to the winning unit, and is the total
number of nodes in the map. Note: units not within the neigh-
borhood size are set to zero output activation, the neighborhood
size and learning rate are monotonically decreased and the map
is taken to be stable when the neighborhood size is zero.

Weight changes

(3)

where is the weight between input and unit , and is the
learning rate.

1) SOMs and CSs: A SOM bears considerable resemblance
to a CS in the sense that both allow for clustering of multidimen-
sional data. The formation of convex regions in CSs, serving as
prototypes, may be seen as an analogue to the SOMs classifi-
cation of topological locations encoding certain regions of the

input data space. However, some differences can also be noted.
These are, among others, the fact that SOMs are able to com-
press high dimensional data into a lower dimensional structure,
from the input space to the SOM space, in effect economizing
the representation. While such compression is important to the
function of the ERA architecture as we shall see in the next sec-
tion, to understand the functioning of the basic ERA unit it is
useful to consider the weight space of the SOM rather than the
lower dimensional SOM space and hence ignore the dimension-
ality reduction for now.

While data representation within a single domain (such as
color) may yield similar results when using either CSs or SOMs,
CSs tend to include dimensions from different domains (e.g.,
color, size, and texture), while SOMs in general tend to be ap-
plied only to one specific domain (though nothing in principle
precludes their use in multiple domains). Even so, where dif-
ferent modalities drive different SOMs it is possible to use each
SOM as a lower level representational structure incorporated on
a higher level in a CS-like fashion with other SOM based lower
level structures [29]. This would be somewhat analogous to the
usage of special “hub” SOMs as we shall now demonstrate.

2) Putting SOMs Together: Many recent models of cogni-
tion have combined multiple SOMs together through associa-
tion with great success, both in modeling the connection be-
tween different brain regions and in modeling psychological
function. For example, Westermann and Miranda [35] demon-
strate that associations between auditory and vocalization maps
can be used to model “b”abbling leading to the emergence of
vowel categories. Li et al. have demonstrated age of acquisi-
tion effects [36], and vocabulary spurts [37], following similar
map-based modeling, while Mayor and Plunkett [38] demon-
strate taxonomic responding where visual and auditory maps are
associated. Caligiore et al. [39] demonstrate compatibility ef-
fects in biologically structured networks of maps, more closely
related to the hierarchies discussed herein.

In the simplest case, the ERA architecture comprises of
multiple SOMs, each receiving input from a different sensory
modality, and each with a single winning unit. Each of these
winning units is then associated to the winning unit of a special
“hub” SOM using a bidirectional connection weighted with
positive Hebbian learning using the following equation.

Positive Hebbian learning

(4)

where is the weight between node and node is the
learning rate is the activity of the winning node in
one map, and is the winning node in ahub map.

In some cases, one of the existing input SOMs can be selected
as the hub but more often the hub SOM will provide pattern
recognition over the activity of the other SOMs in the ERA unit
(see Fig. 1). This can be achieved by taking the coordinates of
the winning units (in SOM space) of each input SOM as an input
to the “hub.” Again, if we know the number of SOMs connecting
to a “hub,” then we can prestabilize that “hub” by training with
random values in the appropriate ranges.

The absence of antihebbian learning leads to the possibility
of certain SOM units having connections to many “hub” units
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Fig. 1. Basic ERA unit. Multiple SOMs receive and classify different inputs,
the winning units of which are associated to the winning unit of a “hub” SOM
which either classifies the activity of the multiple input SOMs or classifies an-
other external input.

and vice versa, however, as associations are built up between
“hub” units and units in the other SOMs, and as the “hub” itself
is differentially sensitive to the context of activity over the other
SOMs, this rarely happens in practice and is not detrimental to
the functioning of the overall model. If the “hub”is not special-
ized and instead an existing input SOM is used as the “hub,”
then an abundance of Hebbian connections is far more likely
to become a problem and methods for reducing the number of
connections must be considered. Obvious examples to consider
would include the normalization of connection strengths, the ad-
dition of antihebbian learning, or the decay of connections. Each
of these methods have their own drawbacks and it is up to the
modeler to make decisions appropriate to the domain of their
modeling even though such decisions will ultimately limit the
domain of application of the resulting models.

Having established the winning units in the various SOMs via
a forward pass from the input activity, activity within the ERA
unit then spreads via the bidirectional Hebbian connections in
much the same way as an IAC network, allowing the presence of
features or concepts in one map or CS to prime features or con-
cepts in the other maps/conceptual spaces. In comparison to lo-
calist IAC models, each map can be considered to be equivalent
to a pool of mutually inhibitory conceptual units and thus, the
mutual inhibition and self-excitation already present in the SOM
continues to operate. As with localist IAC models, the priming
effect between SOMs/pools not only conforms to psycholog-
ical priming [33], [34], but behaves as a content addressable
memory, displaying graceful degradation, default assignment,
flexible generalization, and crucially emergent schemata [40],
[41]. Furthermore, such structures have, in explicitly localist in-
carnations, been shown to display a very wide range of psycho-
logical phenomena resulting from the same functional structure
and so, in a very real sense, this structure or model seamlessly
integrates those phenomena such that every such structure will
display all of these phenomena in the domain of input used.

As Mike Page comments with reference to such localist
models, “I make no claim to be the first to note each of these
properties; nonetheless, I believe the power which in combina-
tion they afford has either gone unnoticed or has been widely
underappreciated.” [41]. We are in complete agreement with
Page on this and further suggest that the ERA unit as described

Fig. 2. General architecture of the model. SOMs are used to map the color
space, the body posture, and the word space. These maps are then linked using
Hebbian learning with the body posture map acting as a central “hub.” The
model can easily be extended to include other features such as visual and touch
information in additional SOMs.

here relaxes the localist constraint of IAC models, and provides
a grounded process of learning and development for these
structures. As a simple demonstration of the basic unit of ERA
in use, we now summarize the work published in Morse et al.
[42]

3) The ERA Unit in Action: In a series of experiments related
to Piaget’s famous A-not-B error [43], and derived from exper-
iments by Baldwin [44], Linda Smith, and Larissa Samuelson
[28] repeatedly showed children between 18 and 24 months of
age two different objects in turn, one consistently presented on
the left, and the other consistently presented on the right. Fol-
lowing two presentations of each object, the child’s attention
is drawn to one of the now empty presentation locations and
the linguistic label “modi” is presented. Finally, the children are
presented with both objects in a new location and asked, “Can
you find me the modi?” Not surprisingly, the majority (71%)
of the children select the spatially correlated object despite the
fact that the name was presented in the absence of either object.
Varying the experiment to draw the child’s attention to the left
or right rather than to the specific location that the object, when
saying “modi,” resulted in a similar performance where 68% of
the children selected the spatially linked object. The results of
this experiment challenge the popular hypothesis that names are
linked to the thing being attended to at the time the name is en-
countered.

The “modi” experiment, and its variations, strongly suggest
that body posture is central to the linking of linguistic and vi-
sual information, especially as large changes in posture such as
from sitting to standing disrupt the effect reducing performance
in the first experiment to chance levels. In the basic ERA unit,
we take this suggestion quite literally, using body posture infor-
mation as a “hub,” connecting information from other sensory
streams in ongoing experience. Connecting information via a
“hub” allows for the spreading of activation via this “hub” to
prime information in one modality from information in another.
Furthermore, using the body posture as a “hub” also makes a
strong connection to sensorimotor theories of cognition; as ac-
tions, here interpreted as changes in body posture, also have the
ability to directly rather than indirectly prime all the informa-
tion associated with that new position and hence, indicate what
the agent would expect to see were it to overtly move to that
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Fig. 3. Percentage of spatially linked objects selected in each experimental condition for both robot data and for the human–child data.

posture. As already discussed, such predictive abilities are the
foundation of sensorimotor theories.

For this demonstration, we use the humanoid robotic plat-
form iCub, an open source platform which has been recently
developed as a benchmark platform for cognitive robotics ex-
periments [45]. It has 53 degrees of freedom, allowing experi-
ments on visual, tactile and proprioceptive perception, manipu-
lation. and crawling. Initial iCub experiments were carried out
in simulation through the open source iCub simulator [46], and
then adapted and tested on the physical robot platform.

As the maps are linked together in real time based on the ex-
periences of the robot (see Fig. 2) strong connections between
objects typically encountered in particular spatial locations, and
hence in similar body postures build up. Similarly, when the
word “modi” is heard, it is also associated with the active body
posture node at that time. Finally, at the end of the experiment,
when the robot is asked to “find the modi,” activity in the “modi”
word node spreads to the associated posture and on to the color
map node(s) associated with that posture. The result is to prime
particular nodes in the color map, and the primed color is then
used to filter the whole input image and the robot adjusts its pos-
ture to center its vision on the region of the image most closely
matching this color.

The information linked via the body–posture hub is the re-
sult of processing visual input from the iCub robots cameras,
taking the average RGB color of the foveal area and using this
as an input to a 2-D SOM [31] described in (1), (2), and (3).
The SOM provides pattern recognition over the input space pre-
serving input topology while capturing the variance of the data.
The body-posture “hub” similarly used the joint angles of the
robot as input to another SOM. For simplicityherein, only two
degrees from the head (up/down and left/right), and two degrees
from the eyes (up/down and left/right) were actually used, thus
the body map of the iCub robot has four inputs, each being the
angle of a single joint. Finally, auditory input is abstracted as
a collection of explicitly represented “words,” each active only
while hearing that word. In this demonstration, “words” are ac-

tivated using the open source CMU Sphinx library (http://cmus-
phinx.org/) to provide voice processing. More detail on these ex-
periments and a discussion of the results can be found in Morse
et al. [42], but the main results (shown in Fig. 3) demonstrate a
close fit between the data from the robot and that of children in
the “modi” experiments.

By using the body posture as a central “hub” or orchestrator,
the model predicts that while changes in posture (such as from
sitting to standing) will disrupt the spatial naming effect, sub-
sequent changes (such as moving back to sitting) will reinstate
the effect. At the time of writing, these predictions are currently
being tested in children. For comparison purposes, if the body
posture was merely another input SOM and the “hub” was in-
stead instantiated through simple SOM pattern recognition (a
standard SOM with input as the x and y values of the winner in
each input SOM), then changes in any input domain would be
equally and weakly disruptive and the pattern of results shown in
Fig. 4 would not be achieved. To give a clearer example, presen-
tation of an object in a location is learned, however, the absence
of the object and the presence of the spoken word is likely to
result in a different “hub” unit winning, and so the connection
between the spoken word and the visual object is lost.

B. The Full ERA Architecture: Hierarchies of ERA Units

Hierarchical structures are increasingly becoming popular
in neural modeling, whether processing different levels of
abstraction or operating with different time constants, examples
can be found throughout the recent literature (e.g., [47]–[49]).
While there is no requirement that cognitive robotics must
mimic the underlying biology and neuroscience of human and
animal cognition, the general structure of pathways is evident
in the cerebral cortex of all vertebrates, all of which share the
same basic brain organization [50]. While structures in the
developing cortex vary significantly, Jones and Powell’s [51]
study of converging pathways highlights that information from
each sensory modality, arriving in different regions of cortex,
follows a similar path through the cortex. By implication, this



MORSE et al.: EPIGENETIC ROBOTICS ARCHITECTURE (ERA) 333

Fig. 4. Connection diagram showing the major pathways by which sensory
information reaches specific regions of the rat cortex. The thickness of the con-
necting lines indicates the size of the projection.

would suggest that different modalities, including the motor
cortex, are treated in much the same way.

Thus, sensory information is projected into different regions
of cortex where it progresses through several unimodal regions
(such as the visual and somatosensory cortexes shown in Fig. 4)
to various polymodal regions and then onto regions associated
with motor function, and finally to the motor cortex itself.
Brown and Aggleton [52] provide a more detailed map of the
connectivity or flow of information via major pathways, in
both the macaque monkey and rat cerebral cortex, a simplified
version (including fewer sensory modalities) of which is shown
in Fig. 4. Many such maps of the pathways between regions
exist and all such maps can form the basis of modeling with
the full ERA architecture, we simply selected this one as an
example.

1) A Basic Hierarchy: Following on from the basic ERA
unit, and roughly following Hawkins and Blakeslee. [48],
Swanson [53], and Downing [2], [54], each microcolumn in
a unimodal input region receives topographical input from a
small area of whichever sensory modality targets that region.
For example, each microcolumn in a rat’s somatosensory cortex
may receive input from a single whisker, and each microcolumn
in the input region of the visual cortex (area V1) may receive
input from a small area of the retinal image. To this end, every
SOM in a particular ERA unit should now only receive a small
number of inputs from neighboring areas of a specific modality.
Many such ERA units may be required to fully cover the input
stream from one modality. As microcolumns in any one region
are not significantly interconnected (other than local inhibition),
then the processing of sensory input in any one ERA unit is
unable to function as a detector for features distributed more
widely than its input. Thus in these regions, only relatively
small, specific, and fast changing (due to the movement of the
body), features can be detected (to use vision as an example,
blobs, line segments, orientations, gradients, and so on).

Following the example of the visual cortex, in the human
brain visual input targets area V1 which can be modelled as a
large number of ERA units with some overlap of the regions of
visual input to which they are responsive. Major pathways then
connect area V1 to V2, combining the output of several cor-
tical microcolumns in V1 into single microcolumns in V2. This
is abstractly modeled in ERA by taking the “hub” SOMs from

Fig. 5. Combining ERA units in hierarchies, a minimal example.

several ERA units in the input layer as input to “hub” SOMs in a
new ERA unit in the next layer. Repeating this process through
several layers allows high dimensional inputs such as images
from a camera to be distributed across a large number of input
layer SOMs and gradually combined through subsequent uni-
modal layers (see Fig. 5).

In practice, it is advantageous in unimodal regions to use the
same SOM weights for each input SOM, as the same feature
will then be identified as such despite changes in its position.
Polymodal regions can be also constructed in much the same
way by taking the output of “hubs” from ERA units operating
in different modalities and combining them in new ERA units
following known pathways between different brain regions,
or even as a basic hierarchy ignoring biological pathways.
Functionally, in the brain, each biological microcolumn or
ERA unit detects and classifies features in its input, passing
these feature classifications onto the next region [48]. Central
to the functioning of both the real cortex and the ERA model
is that while classifications of detected features flow up this
hierarchy, top–down connections also project back along these
pathways such that partial patterns are completed top–down
providing anticipatory input based on the presence of other
sensory features. This mechanism is essential to the architecture
put forward here. As pathways from different sensory regions
converge in polymodal regions, these regions, or ERA units, are
able not only to detect multimodal features, but also to predict
features in one modality based on information from another.

As an example of this bottom–up and top–down structure,
though far from being a sensorimotor model, a popular and rela-
tively successful approach to object recognition in computer vi-
sion is to generate a hierarchy of increasingly complex features;
at the initial level we may find very low level features such as
orientation and line detection, derived from raw image data. At
the next level, these features can be combined into more com-
plex organizations such as corners and edges, and at the next,
perhaps shapes like curves, squares, and so on. While features
at each level can be learned in a bottom–up way from experi-
ence of the coactivation of features in the previous layer, such
hierarchies also allow for top–down projection, meaning that
bottom–up partial evidence for a feature, sufficiently activating
that feature leads to a top–down projection, from that feature,
activating or priming the missing features at the previous levels.
If this process of bottom–up and top–down spreading activation
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is managed in an interactive activation and competition (IAC)
manner [55], [56] as is the case in the ERA model then the
process can be highly successful at visual scene based object
recognition [57], [58]. There is a strong analogy between the
workings of the ERA architecture and this kind of feature hier-
archy in computer vision, though the methods of its implementa-
tion differ considerably. To avoid any confusion where we refer
to a hierarchy, it is of this kind and we do not mean to imply any
kind of executive control hierarchy.

This concludes the description of the ERA architecture. We
now turn to a discussion of its relation to the theories introduced
in the introduction, a discussion of possible extensions, and fur-
ther examples of its use in cognitive robotics.

VI. ERA IN RELATION TO THEORY

The ERA architecture whether interpreted as a set of guide-
lines for integration or as a specific modeling paradigm makes
strong links between various theories in cognitive science and
a level of modeling, especially robotic modeling, appropriate to
their instantiation and integration. We begin with the relation to
theory.

A. ERA and Constructivist Sensorimotor Theories

The design of the ERA architecture is the result of a long
lineage of models specifically aimed at instantiating theories of
sensorimotor perception [3], [5], [22], [23]. At the heart of these
theories is the ability to predict the future sensory consequences
of actions, which ERA allows for by the spreading of activation
between connected subhierarchies of sensory and motor modal-
ities. When actions are performed they are associated with the
sensory input at that time, thus any consistent consequences on
sensory input become strongly associated to those motor ac-
tions. By this mechanism the covert simulation of motor actions
will result in the priming of the predicted consequences of those
actions. Even in a nonhierarchical form, such as the “modi”
experiment discussed previously, activation in potential motor
areas or in the resulting body posture acting as a hub can di-
rectly stimulate, via a spreading of activation, sensory regions as
predictions of the sensory consequences of actually performing
those actions. Similarly perception or recognition of any object
will, again via a spreading of activation, prime specific motor
areas and can itself be disrupted by competing activity in the
motor cortex (resulting in primed competition). Such motor ac-
tivity resulting from perception is completely compatible with
the significant body of evidence of activity in the motor cortex
being part of even nonmotoric perceptions.

1) The Importance of Context: While it is fairly easy to see
how the ERA architecture can predict the sensory consequences
of actions in simple and contrived scenarios, a more complex
account of the dynamics of ERA models is required for a more
general account of sensorimotor perception. The first step is to
consider the strong analogy between the basic ERA unit and
connectionist IAC models. The mutual inhibition implied in the
winner-takes-all execution of each SOM is analogous to the mu-
tual inhibition explicitly implemented in each pool within an
IAC network (see Fig. 6). Once a subset of the localist nodes in
the IAC network are activated, this activity spread via the posi-

Fig. 6. Comparison between the basic ERA unit (left) and a localist IAC model
(right). In the IAC model each node has a localist interpretation and inhibitory
connections to other nodes in the same pool (represented by circles).

tive connections to nodes in the hub (which are also competing
via inhibition) and from there to other localist nodes.

The network will eventually relax or settle into a locally op-
timal state satisfying as many relations as possible, with higher
priority given to the stronger relations. Such a process is called
“relaxing to a solution” or “relaxing to an interpretation,” and
always moves from a state satisfying fewer relations to a state
satisfying more relations [59], or remains in a stable state with
bias toward satisfying the input conditions. While IAC networks
do not capture the learning aspects of schemata, the behavior of
this structure does seem to capture the way our learned knowl-
edge manifests in behavioral dispositions. Thus such structures
provide an insight into a possible dynamics that is able to ac-
count for many aspects of cognition [32], [34], [41].

In comparing the two networks, the ERA unit implements ex-
actly the same structure and dynamics as the IAC model, though
with a relaxed requirement for the localist interpretability of
each SOM node. Furthermore, the structure of the ERA unit
is learned from the networks experience and so entities are
grounded in whatever data stream is input to the network. By
exhibiting the same context sensitivity, default assignment, and
generalization properties as an IAC network, we can now see
that the sensorimotor predictions of the ERA unit will equally
be sensitive to context.

2) The Importance of Abstraction: Having considered the
dynamics of the individual ERA units, we must now consider
the importance of abstraction in sensorimotor prediction. From
the perspective of object recognition, we can see that each layer
of the hierarchy, by classifying combinations of the classifica-
tions of previous layers, is able to capture increasingly abstract
entities. These abstractions need not all be directly related to
the recognition of objects but will, in higher levels of the hier-
archy, typically respond to things such as visual flow field direc-
tions, looming, and other sensorimotor effects. In combination
with context sensitivity, such abstraction enables the prediction
of the sensory consequences of actions with abstract general ef-
fects rather than simply relating to local object directed trans-
formations.

B. Transparency and Conceptual Spaces

Unlike many evolved dynamical systems, the transparency of
ERA allows an understanding of the behavior of the architecture
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in terms of concepts. As already discussed, there is similarity be-
tween the classifications of SOMs in terms of their weight space
and the geometric representations of CSs, ERA goes further by
also reproducing the schemata-like priming of IAC networks
thereby, demonstrating the use of these concepts. Of course, the
interpretability of the SOMs as conceptual will be dependant
on the interpretability of the input streams driving those SOMs.
For example, where red, green, and blue pixel values form the
input to a SOM, it is easily interpreted as a color space. As we
move up the hierarchy, increasing levels of abstraction from the
raw input, some work will be needed to analyze what the con-
cepts are that play a role in the overt behavior of the system as a
whole. Nevertheless, we can still understand the behavior of an
ERA architecture even without explicitly tagging the concepts
it uses.

C. Behavior and Sensory–Sensory Relations

So far the use of ERA to generate overt behavior in a robot
has not been discussed, however, the use of priming in motor
regions can easily be used to directly influence behavior. If the
motor regions map something akin to the body-space used in
the “modi” example, then motors can be activated to explicitly
achieve those body postures. This would of course require an ad-
ditional subsystem, and in some cases, such as the use of ERA to
simulate potential actions and their consequences this may not
be desirable. Decisions on how to direct overt behavior will be
both dependant on the tasks it is being used to model and on the
specific motor system and representation used. In some cases, it
may also be beneficial to provide copies of the actual motor sig-
nals rather than a body-space thereby separating proprioceptive
and motoric modalities.

ERA also goes beyond pure sensorimotor relations inter-
preted as the prediction of sensory input following motor
actions, by allowing for sensory–sensory predictions. As an
example, on seeing part of a car (say partially occluded) the
system should be able to predict the sensory activity of the
whole car including the occluded part following the spread of
activation between the previously associated subparts of the
car.

D. Development and Habituation

As an architecture that continuously learns, ERA models also
display a developmental trajectory whereby new experiences
scaffold new behavioral abilities. However, it is necessary to
provide some initial behaviors to kick-start the exploration re-
quired in order to generate experience from which to learn. Such
initial behavior could take the form of random exploration (per-
haps implemented by adding weak noise to the motor regions),
innate reactive responses, or could be guided by human–robot
social interaction through various methods. One simple example
would be to add an attention mechanism causing the robot to
look at moving or changing objects in the visual field (as was
used in the “modi” experiment).

Goal directed behavior is another aspect of the system that
must be carefully designed in relation to what you want your
ERA based models to do. One possibility is to include a reward
modality of input to the architecture and block the motor re-
sponses associated with poor rewards, or use it to bias the dy-

namics of the ERA model toward rewarding states. This aspect
of modeling with the ERA architecture has not been signifi-
cantly explored yet and further work is required to explore and
find satisfactory methods of achieving goal directed behavior.
Care must be taken to provide appropriate initial experience for
any ERA model as habit formation can quickly produce self-re-
inforcing repetitive behaviors. Nevertheless, habit formation is
a property of human cognition, and is therefore not seen as a
drawback of ERA-based models.

VII. EXTENSIONS TO ERA

The ERA architecture as described is intended to form a set of
modeling guidelines and methodologies for modeling in epige-
netic robotics, and though we provide a formal implementation,
we do not wish to overly constrain models. As such we antici-
pate many variations and extensions following the basic princi-
ples of operation that we have outlined. As an example of one
potential variation and extension, we now summarize the use of
reservoir systems as input filters and their relation to the biology
of the cortex.

The cerebral cortex is evident early in embryonic devel-
opment (from the five-vesicle stage) from which point its
sheet-like growth in mammals is tremendous, leading to gyri,
separated by sulci (folds caused by the skull restricting growth).
While the extent of this folding varies in different species, re-
gionalization of the cerebral cortex somewhat based upon these
gyri is generally agreed upon. In adult human brains, different
regions of cortex are associated with different functions though
as Karmiloff-Smith et al. [20], [60], [61] has shown with
extensive functional magnetic resonance imaging (fMRI) work,
many functions such as language are globally processed in
young children and gradually become locally processed by
adulthood. For other regions, function is determined by con-
nection to particular sensory modalities, for example the visual
cortex is present very early and develops visual functionality
quickly during normal development. However, as Sharma et al.
[21] have shown, cutting the optic and auditory nerves and
crossing them over in infant ferrets leads not only to relatively
normal sight and hearing, but also the development of structures
only ever normally present in the visual cortex, developing in
the auditory cortex instead. ERA models would also display
similar plasticity as each modality is processed in much the
same way, but the resulting cognitive structure depends entirely
on the associations based upon relationships present in the
input streams. While this example is rather extreme, evidence
of the plasticity of the cortex and its ability to reorganize both
functionally and structurally following changes in input are
persistent throughout the neuroscience literature. The general
conclusion is that the brain is not like a Swiss army knife
with functional modules genetically prespecified to emerge
at certain stages of development, but rather that its structure
is developmentally contingent upon its interactions with the
world [15], [16].

Focusing at a different scale, and again following Swanson
[53], the neocortex consists of the same number of layers
throughout, six layers in both humans and rats while phy-
logenetically older parts of the cerebral cortex, such as the
hippocampus only have three layers. In rats, as in humans, the
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first (outer) layer of the neocortex consists mainly of wiring and
has relatively few cell bodies, layer 2 and 3 typically contain
small pyramidal neurons which project to other cortical regions
in the same and different hemispheres respectively. Layer 4
consists mainly of granule cells which form local circuits,
while layers 5 and 6 contain larger pyramidal neurons typically
projecting descending connections to the brainstem, thalamus,
and spinal cord, as well as to the motor system broadly defined.
The precise makeup of these layers in terms of the density of
cell bodies in each layer varies considerably in different regions
of cortex. Projections to the thalamus from the cerebral cortex
are reciprocal (thalamocortical loops) and topographically
arranged. Other topographic loops exist between much of the
cortex and other brain areas such as the basal ganglion which is
hypothesized to be a centre for action selection [50], [62].

Following Mountcastle [63], the layered cortex is also
vertically differentiated into cortical microcolumns, each con-
sisting of between 10 and 100 000 cells. Microcolumns in rat
somatosensory cortex typically consist of around 100 neurons
[64], [65]. Lateral connectivity between columns is typically
inhibitory and local while excitatory connectivity via layer 1
or via connectivity below layer 6 is typically between columns
in different regions of cortex, or descending projections to
subcortical areas of the brain and brain stem. For many, the
cortical microcolumn is viewed as the basic computational unit
of the cortex and accordingly provides the basis for our cortical
model [48], [53], [63].

A. Abstract modeling of the Cortical Microcolumn

One of the major limitations of the ERA architecture is its
poor ability to capture temporal and nonlinear relationships,
which can be crucial to accurate prediction and behavior pro-
duction. To address this shortcoming, and in relation to the un-
derlying biology of the neocortex, dynamic reservoirs can be
used as input-filters to some or even all of the SOMs in an ERA
architecture.

Claiming that dynamic reservoirs are models of cortical mi-
crocolumns generally causes some concern to neuroscientists.
For this reason, we must make it absolutely explicit that our
aim here is not to mimic the specific circuitry and make up of
cortical microcolumns, but rather to abstractly capture the fol-
lowing properties:

• cortical microcolumns are nonchaotic;
• cortical microcolumns do not display stable attractor dy-

namics (their activity quickly decays on cessation of input);
• input size to cortical microcolumns is sparse relative to the

size of the microcolumn;
• the state space achieved by an active “firing” microcolumn

is large and sensitive to its input [64], [65].
These properties of biological cortical microcolumns have
very useful computational implications; first, by making highly
nonlinear features linearly separable (much as a kernel warping
function does in a support vector machine), and second, by
acting as a fading memory [66]. These properties and the
computational advantages they imbue are well documented in
the reservoir computation literature for both the liquid state
machines and echo state networks (ESN) [67]. As a starting

point then, we use the ESN as a simple and very abstract model
of a cortical microcolumn. The ESN we use is a discrete time
neural network derived from a random weights matrix typically
populated with 30% connectivity and adjusted so as to have
a , i.e., , where is the
eigenvalue of which has the largest absolute value, this
typically ensures that the resulting neural network implements
a single null point attractor and so its dynamics are always input
driven. The reservoir is then cycled according to the following
standard equations.

The net input activity of discrete ESN

(5)

The output activity of a discrete ESN

(6)

All inputs to the ESN use the same update rules via a similar
random weights matrix generated with 30% connectivity. As the
output of a cortical microcolumn is hypothesized to be a clas-
sification of its input [48], yet a readerless ESN has no output.
In using ESN’s as input filters, their entire state should then be
passed as input to the connected SOM (which should be signifi-
cantly larger than the ESN), thus the SOM classifications are no
longer interpretable as a conceptual space, classifying rather the
region of state space in which the input filter ESN is currently
in. Despite the lack of easy interpretation in terms of concepts,
the same dynamics will follow as is found in the nonextended
ERA architecture and so by analogy the resulting behavior of
the system will remain predictable and transparent.

One of the problems with a reservoir systems approach is
that because networks are randomly initialized, one can never
know in advance if a particular random instantiation will be
good as solving the problems you are interested in. Both Jaeger
and Maass suggest that if you find a reservoir system unable to
solve the problem you are interested in then you can either make
larger reservoir systems (containing a greater range of dynamics
hopefully more suited to your task), or alternatively you could
evolve your reservoir in order to find one that is suited to your
task [67], [68]. These suggestions are, however, unsatisfactory
for two different reasons; first, evolving the reservoir would go
against the idea of having a general purpose structure able to
help solve (by linearising) a wide range of problems. Second,
while making larger and larger reservoirs clearly does work, it
would seem to be biologically implausible beyond some range
of parameters. If reservoir dynamics are present in cortical mi-
crocolumns, as we and others suggest, then the size of a reservoir
should not exceed the size of a cortical microcolumn. It should
be noted here that the size of cortical microcolumns (in terms
of the number of neurons) does indeed vary considerably in dif-
ferent regions of the mammalian brain with some microcolumns
containing in excess of 1000 neurons [53]. So we can still have
quite large microcircuits, but there is clearly an upper limit im-
plied here. An alternative solution to the problem of finding a
reservoir that produces the right kind of dynamics for your par-
ticular problem, whatever that problem may be is to use a net-
work of reservoirs predicting each other’s activity, and this is
precisely what we think the cortex is doing.
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Fig. 7. Abstract model of a cortical microcircuit. Input perturbs an ESN reser-
voir, which is then read by a SOM. The SOM also provides an input to the ESN
and the location of the winning SOM unit in SOM space is provided as the
output of the unit.

Our solution to this problem rests on the use of feedback
into a reservoir, achieved by the addition of echo state networks
to the SOMs already present in ERA as shown in Fig. 7. As
Jaeger and Maass have both demonstrated, feeding back the re-
sponse of a trained readout as an input to reservoir typically en-
hances the ability of the resulting network to accurately perform
the readout, and further allows for a reciprocal relationship be-
tween the inputs and readouts of that reservoir. For example,
Jaeger [67] demonstrated that a readout trained to produce a
value consistent with the frequency of an input, where feedback
(both from reservoir to input, and from readout to reservoir) was
used, was also able to produce a sign wave of the appropriate
frequency in the input by clamping the value of the readout.
In Morse et al. [69], we provide a detailed analysis of the ef-
fect of an external feedback signal and show that inputs that
generally correlate with some (presumably nonlinear) feature
of the input enhance the networks ability to detect such input
features. We have also shown that such feedback reduces the
detection of nonprimed features and so results in sustained inat-
tentional blindness being displayed by the model. Used within
an ERA architecture, the top–down feedback provides precisely
this signal, focusing the ESN input filter appropriately to de-
tect anticipated features of whatever input stream is driving the
reservoir.

VIII. CONCLUSION

The ERA architecture as presented here forms a set of guide-
lines for the integration of SOM based modeling efforts into a
system both capable of exhibiting a wide range of psycholog-
ical effects and, at least in its nonextended version, one that op-
erates transparently with concepts. Such transparency makes it
relatively easy to extend the architecture with the integration of
other systems beyond the current scope of ERA. What we be-
lieve we have achieved is an approach to modeling that can scale
up beyond simple scenarios, is general in that it is not tailored

to specific domains and tasks, and displays an ongoing develop-
mental trajectory. Clearly, much of this remains to be demon-
strated in future work and, equally clearly, there are limitations
in the extent to which ERA satisfies each of these goals. Never-
theless, such an approach to modeling not only makes connec-
tions to a wide range of theories in the constructivist and sen-
sorimotor paradigms, but demonstrates a simple method of the
integration of many psychological phenomena, including devel-
opment, within a single model. The basic architecture and vari-
ations thereof have already be used to demonstrate various phe-
nomena which we have not discussed herein, examples include
conditioned learning [70], various forms of priming, the relation
between movement and orientation selectivity [71], sustained
inattentional blindness [69], as well as the “modi” example dis-
cussed herein [42]. A great deal more work is required to fur-
ther develop the ERA architecture and establish it as a modeling
methodology. We therefore invite those interested to join us in
our efforts to use and develop ERA further.
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