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Abstract—Agency is the sense that I am the cause or author of
a movement. Babies develop early this feeling by perceiving the
contingency between afferent (sensor) and efferent (motor) infor-
mation. A comparator model is hypothesized to be associated with
many brain regions to monitor and simulate the concordance be-
tween self-produced actions and their consequences. In this paper,
we propose that the biological mechanism of spike timing-depen-
dent plasticity, that synchronizes the neural dynamics almost ev-
erywhere in the central nervous system, constitutes the perfect al-
gorithm to detect contingency in sensorimotor networks. The co-
herence or the dissonance in the sensorimotor information flow im-
parts then the agency level. In a head-neck-eyes robot, we replicate
three developmental experiments illustrating how particular per-
ceptual experiences can modulate the overall level of agency inside
the system; i.e., 1) by adding a delay between proprioceptive and
visual feedback information, 2) by facing a mirror, and 3) a person.
We show that the system learns to discriminate animated objects
(self-image and other persons) from other type of stimuli. This sug-
gests a basic stage representing the self in relation to others from
low-level sensorimotor processes. We discuss then the relevance of
our findings with neurobiological evidences and development psy-
chological observations for developmental robots.

Index Terms—Contingency detection, self-agency, sensorimotor
integration, spiking neural networks.

I. INTRODUCTION

T HE arising of self-agency and body-ownership constitutes
undoubtedly one of the most important stage of infants

development. The sense of agency corresponds to the prere-
flective experience or sense that I am the cause or author of a
movement (e.g., an experience that I am in control of my ac-
tion [1]–[3]). Babies, early in their first months, acquire rapidly
this sense of self distinct from others that allows them to de-
velop later on higher cognitive skills such as social interactions
and imitation. For many developmental roboticists, this issue is
considered to be central for replicating infants developmental
stages in robots and to permit them to apprehend themselves as
distinct entities (e.g., for interacting with people); see [4]–[7].
To this aim, computational models should be confronted to bi-
ological and psychological data. Many evidences suggest that
ownership and agency are perceptual experiences that are likely
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to be generated by 1) low-level sensorimotor processes and 2)
contingency perception.

For instance, Gibson suggested that this stage corresponds to
the period when infants are caught themselves in the act and “co-
perceive” the world in the same time as the perceiver and actor
in their environment [8]—emphasizing perceptuo-motor inte-
gration. During this period, babies construct a mental represen-
tation of their body dynamics in the central nervous system—a
body image, whereby they expand their sensorimotor capabil-
ities of interaction within the environment (i.e., acquisition of
the first affordances [9]).

Other proponents, on the other hand, insist on babies’ ability
to sense contingency between different modalities (the timing
between events) as an important paradigm to bring forth self-
awareness (see [10]–[14]): experiencing sensorimotor contin-
gency makes them to perceive the agency of their own body,
whereas lags in sensorimotor information flow generate con-
flicts that disrupt this feeling. Watson hypothesized that this
skill is owed by contingency detectors in the central nervous
system (acquired or ad hoc) dedicated to learning and to rea-
soning about temporal events during exploration of their own
body and during their early interactions with the environment.
This corresponds to a first stage of intermodal calibration where
the babies explore systematically their body (e.g., self-touch,
predominance to look at their hand) to define the stable and ro-
bust cross-modal causal relations.

In line with Watson, Rochat envisions it as the primordial
bootstrap to the acquisition of the sense of self-awareness (see
[14] and [15]). Babies calibrate their proprioceptive information
to define a mental representation of their own body distinct from
other individuals by detecting the causal effects between the
self-produced contingent activity of their own actions and the
induced sensory information (e.g., spatial position, somatosen-
sory or visual or sonorous information). From this stage, they
soon distinguish the even of integrated proprioceptive informa-
tion from the odds of nonstrict contingent information. This
permits them to extract themselves from the external environ-
ment—for instance, to recognize themselves in front of a mirror
or from a live video projection [16]. The disrupting of senso-
rimotor synchrony as little as a few hundreds of milliseconds
delay, in contrast, alters or even destroys the feeling of self-per-
ception (see [15] and [17]).

Recent findings in cognitive neuroscience comfort these re-
sults and reveal the importance of the temporoparietal cortex,
premotor cortex, insula, and primary somatosensory cortex for
agency and ownership (see [1] and [2]); abnormal sensorimotor
and/or multisensory processing due to damages in these areas
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reveal modulation in performance and experience of agency and
ownership. Mainly two neurocomputational theories of agency
are advanced [18]: the comparator model, which emphasizes the
functional role of the motor system (for comparing reafference),
and simulation theory, which assumes shared representations of
self and others. Taken together, these considerations suggest to
us that understanding the neural mechanisms underlying timing
integration in sensorimotor networks for a biological system ex-
posed to multimodal sensory information is a primordial step
toward the understanding of self-agency. Modeling self-agency
in robots may permit then to understand how the further devel-
opmental stages, more complex, might arise in infants.

From a biological viewpoint, the mechanism responsible
for neural communication and information propagation in the
central nervous system is the one of spike timing-dependent
synaptic plasticity (STDP); see [19]–[22]. It regulates the spike
timing delays between the neural pairs and sustains the phasic
(temporal) information processing for both encoding and
retrieving tasks such that neurons that fire contingently wire to-
gether. Within a network, the many neural pairs constituted can
assemble and aggregate themselves into consistent long-range
spatiotemporal clusters [23], [24]. In a previous paper, we
suggested that these clusters can encode actions sequences and
represent action primitives in cross-modal networks [25]. In
this paper, we further develop our study and propose that this
mechanism of STDP can constitute a biologically plausible
model for detecting contingency between multimodal events
and permits, for an agent, to “experience” its own agency during
motion in line with developmental and neurocomputational
theories; these two works pursue some preliminary works in
which we first addressed the agency problem in the context
of dynamical systems exploiting the mechanism of phase
synchronization [26]. For babies, it means to learn the temporal
rules existing between afferent and efferent information (sen-
sorimotor integration), which can produce then representations
of their own body and of their own actions [27], [28].

In experiments with a head-neck-eyes vision system, we in-
vestigate how such primary skill can emerge within sensori-
motor networks. We show that the embodied system self-drives
its dynamics through the continuous interplay with the environ-
ment. Without any other bias except the one to move, the system
generates sensorimotor information, focusing and shifting its at-
tention to salient objects. Over time, it explores its parameters’
space in a self-organized manner and learns the simple sensori-
motor causal relations associated to its own motion (e.g., turning
the head in direction of salient objects). It follows the emer-
gence of sensorimotor links (contingency detectors), which an-
ticipate and estimate within milliseconds order in advance the
next motor status and visual response. These short scripts syn-
chronize dynamically the sensorimotor maps and maintain the
overall integrity of their dynamics. The level of this global co-
herency provides then a quantitative measure of the system’s
agency. Beside the normal case of live enaction, we show that
other types of perceptual experiences can modulate differently
its level such as delaying the visual and proprioceptive infor-
mation, scrutinizing its own reflection in front of a mirror, or
observing someone else, each corresponding to different senso-
rimotor coordinations.

This paper is organized as follows. In the first part, we present
the head-neck-eyes robotic device used in our experiments, the
visual processing we are relying on, and the neural architecture
that represents the system’s self-produced visuo-motor infor-
mation. We conduct four experiments replicated from develop-
mental psychology to reveal the system’s agency (see [11], [15],
and [17]). In the first experiment, we explain how the neural
system acquires simple sensorimotor primitives by interacting
with the environment. Over time, the system learns to antici-
pate the saccades and the foveations with the specific temporal
relationship associated between the vision and the motor events.
We define then a measure of one agent’s agency based on infor-
mation retrieval theory [29] to calculate the distance between
the predicted sensorimotor state and the realized ones. Then,
we explain how different perceptual experiences can affect dy-
namically the system’s behavior and its associated agency level.
For instance, delaying the visual information disrupts the sen-
sorimotor coordination flow, whereas fixating its own reflection
in front of a mirror or facing another person produces a strong
global entrainment in the neural dynamics, which modulates the
overall agency level. Based on our results, we discuss the pos-
sible relevance of our findings for rising agency and self-per-
ception limited to the here and now in infants and its link to the
further development stages involving self–other distinction and
social interactions.

II. FRAMEWORK

We present the characteristics of our head-like device, its vi-
sual system, and its embedded neural system. The network pro-
cesses the robot’s intensity-based visual information and motor
information into spike trains and controls back its orientation.

A. Description of the Robot

Our robot is a camera-based device aimed to replicate the
basic kinematics of the human head-neck-eyes system (see
Fig. 1). It is composed of two cameras that pan (move left and
right) with relative angles on their own pan axis
and mounted on a common platform that can also rotate in
the vertical axis with absolute angle . Three servo-mo-
tors control the respective kinematics of the parameter set

limited between 6 6 . The angles
are joint variables. We set their values with the

formula such that they fixate the
same focal point. As a result, the overall system complexity
can be reduced to two dimensions : this system,
although simple, is sufficient to study agency arising in agents
and sensory-motor integration.

B. Visual System

Infants are not passively exposed to multimodal sensory in-
formation. By moving their body, they actively structure their
sensory input and generate statistical regularities (e.g., it has
been found that neonates rhythmically agitate their limbs to
acquire the general movements). In turn, these regularities en-
able appropriate perceptual experiences that can produce cer-
tain developmental changes in learning (see, [30]–[32]). For
instance, the morphological and visual processing done in the
retina permits better representing this information to ease skills
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Fig. 1. Photo of our head-neck-eyes device (three degrees of freedom). Our
purpose is to induce sensorimotor coordination and contingency perception of
salient objects in the scene during motion. Its architecture, though simple, will
permit us to study the system’s visuo-motor (mis)matching and its agency.

like foveating and attention to others (see [33] and [34]). The
particular log-polar topology of the retina involves eye move-
ments to center the objects of interest in the fovea, where recep-
tors are denser (and the information more detailed), rather than
in the periphery. It produces a first “morphological computa-
tion” of the visual attention by decaying exponentially informa-
tion from the fovea (see [35] and [36]). Moreover, the successive
transformations done in the ganglions layers realize a complex
filtering on the images into a set of spikes, which permits dis-
criminating the salient information from a scene; the so-called
saliency maps (see [37] and [38]). Four principles guide the
Itti–Koch model.

1) Visual attention is based on multiple features.
2) The saliency of a region is affected by the surrounding

context (conspicuity).
3) The saliency of locations is represented by a saliency map.
4) The winner-take-all and inhibition of return are suitable

mechanisms to allow attentional shift [39].
In our experiments, we limit the modeling of visual attention
by computing the saliency map from the image’s intensity, the
color opponency filters, and the relative motion gradient fea-
tures; we neglect the orientation, winner-take-all, and inhibition
of return from the original Itti–Koch model.

The different stages of the visual processes are done as fol-
lows. The incoming RGB visual information is first filtered into
three feature maps to discriminate the color-based spatiotem-
poral patterns. Their respective center-surround maps are then
combined into a unique saliency map transformed next into log-
polar coordinates in order to emulate the foveal vision. We first
extract the intensity and the two color opponency filters from
the image by applying the classic formula

and by separating then the color information
and (“yellow”) according to and .

Next, we extract the relative motion gradient. Motion detec-
tion is a very salient feature. When the head moves, it gener-
ates lot of information aligned in the direction of displacement.
This global flow becomes the referent gradient so that an object
moving in the opposite direction becomes then the most salient
object in the scene: its relative saliency is inversely proportional
to the global motion orientation. To compute its saliency, we
first calculate the motion gradient of the derivatives and

from two consecutive intensity-based images and

(1)

The gradient orientation is then assigned from the formula

,

else. (2)

Then, from the orientation histogram built, the global ori-
entation angle is calculated from the histogram max-
imum. A possible measure of one object saliency is to com-
pute the angle difference between located at , ,
and the referent motion orientation normalized between

.
The three feature maps processed, we transform them into

their respective conspicuity maps, which highlight the parts of
the scene that strongly differ from their surroundings depending
on that feature. Practically, this is achieved by using a center-
surround mechanism (a difference of Gaussians filters). It is
implemented as the difference between fine and coarse scales
(implementation details in [37], [39], and [40]). The resulting
conspicuity maps are combined into one saliency map weighted
equally. The map with Cartesian coordinates is finally
transformed into the log-polar coordinates

(3)

From there, the pixel output of the saliency map located
at is normalized between [0,1] to provide the excitatory
current distribution associated to its th neuron

(4)

Fig. 2 summarizes the successive image processing performed
from pixels to spikes.

C. Neuron Model

We define the neurons dynamics with the neuron model pro-
posed by Izhikevich [41]

(5)

where is the external input, with the auxiliary after-spike re-
setting

if mV, then (6)

with representing the membrane potential of the neuron, a
membrane recovery variable (see [41] and [42]), and and
their temporal derivate. The variables set defines the
neuron attributes—whether it is excitatory [
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Fig. 2. From pixels to spikes. Intensity, color, and relative motion detection features are extracted from the Cartesian RGB images and filtered by a center-surround
mechanism. The three resulting feature maps are combined then into a saliency map in log-polar coordinates so that the first indexed neurons of the vision map
receive first the pixels information from the fovea and the last-ranked neurons those from the periphery.

and ] or inhibitory [ and
].

D. Neural Network Architecture

Four specific maps compose the entire neural network. They
process separately the incoming information from the two cam-
eras (visual input) and the motors (the neck and eyes’ orien-
tations). The motor maps deliver then the motor commands.
The schematic in Fig. 3 describes the coupling between the
neural system and the robot head. The two vision maps re-
ceive, respectively, the left and right camera visual information
(640 480 pixels) subsampled to 80 60 resolution (4800 neu-
rons) and filtered as described in Section II-B. The pixel’s value
of the retina layer located at provides the excitatory
current distribution to its associated neuron with index
such that [see (4)], transforming the two-di-
mensional map into a one-dimensional vector. It is noteworthy
that the first-ranked neurons receive first the activity from the
fovea, whereas the last-ranked neurons receive those from the
periphery. The first neurons are therefore topologically biased
to receive more information than the last ones. The two motor
maps are discretized into the interval 6 6 in 256
bins, such that the th neuron is associated to the angle with
the formula . The motor command is re-
trieved back from a winner-take-all-like mechanism, where the
location of the spikes is denser with the inverse formula

.
All the neurons within the four maps are excitatory. We add

a hidden layer composed exclusively of inhibitory neurons to
stabilize the overall activity. This layer is composed of 1000
neurons. For all the neurons, whether excitatory or inhibitory,
we initialize the neurons with 100 synaptic links randomly se-
lected so that the one-third correspond to local connections with
spatially proximate neurons inside their maps and the other two-
thirds correspond to long-distance links to other maps. The local
connections between neural pairs follow a normal distri-
bution centered to the neuron with index and variance
so that the neuron with index is comprised between 150

150 . The distant neural pairs , on the other hand,
follow a uniform distribution within the entire network. The
neural pairs within the same map are responsible for the in-
tramap neural activity, and the neural pairs belonging to dif-
ferent maps are responsible for the intermap neural activity. We
justify our choice to have an initial ratio within the network be-
tween specialized processing (intramap activity) and intermodal

Fig. 3. Schematic of the head-neck-eyes vision system coupled to its neural
system. The device is constituted of two cameras controlled jointly, converging
to the focal point equidistant to the neck central axis. Two motors control
each camera’s relative angle, and a third one commands the orientation of the
neck-like ensemble. Four maps of spiking neurons compose the neural network
receiving the respective visual and motors signals and commanding back the
motors.

integration (intermap activity). Before learning, we initialize all
the synaptic links with same weight so that the network
has no particular organization. We expect that during enaction
the embodied network integrates the visuo-motor neural pairs
and builds up a multimodal representation of its own actions.

E. Learning Mechanism

STDP is the bidirectional adaptation mechanism that dynam-
ically regulates the long-term potentiation (LTP) and long-term
depression (LTD) in synaptic plasticity, readjusting the synaptic
weights to the precise timing interval between the initiating
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and the targeting neurons (see [19]–[21]). They are signifi-
cant mechanisms for both activity-dependent development of
neural circuitry and adult memory storage. The time delay

between the presynaptic neuron spiking
and the postsynaptic neuron firing corresponds to

the interval range of activation of their synaptic plasticity and
weight adaptation ; see Fig. 4

(7)

if

if
(8)

The synaptic weights decay exponentially depending on the
time delay between the pre- and postsynaptic neurons in the
interval range . Each time a postsynaptic neuron fires,
its synaptic weights are decreased by (LTD), and
each time a synapse receives an action potential, its synaptic
weight is incremented by an amount (LTP); we
set and ms in all our
experiments. It follows that the contingent neurons strengthen
their links, whereas the incongruent neurons weaken their ones
(Hebb’s law). Within the network, the neural pairs can be
viewed as small conditional scripts, which can detect/encode
the contingency at the local level

if neuron fires at time

then neuron fires at time

This mechanism, although simple at the neurons’ scale, can
generate very complex dynamics as the neural pairs can aggre-
gate themselves into long-range spatiotemporal clusters [e.g.,
Fig. 4(b)]; see [42] and [43]. In sensorimotor networks, we
propose that these assembled spatiotemporal patterns constitute
a repertoire of commands or action primitives as Wolpert con-
ceives them (see [25] and [43]). They represent internal models,
which are the building blocks used to construct intricate motor
behaviors with an enormous range. In our experiments, the
(mis)match between the online visuo-motor information with
one of these rules will correspond to the level of sensorimotor
coordination and, thus, to the perception of agency associated
with it (explanations thereinafter).

F. Agency Index

According to Tsakiris, the coherent experience of the body
depends on the integration of efferent information (motor) with
afferent information (proprioception) in action contexts [2]. The
sense of agency is generated by or at least linked to the motor
commands sent to the muscles and the accompanying efference
copy that is internally processed within the predictive models
of the motor system [27]. A possible quantitative measure of
agency is then to compute the accuracy between the afferent
visual and proprioceptive information and the efferent predic-
tions using the F-measure in information retrieval theory [29];
another measure of the neural dynamics coherency could have
been the synchrony index used in [24]. In our framework, this
situation occurs when a presynaptic neuron #1 and an input
stimulus #2 activate both at the same time their common neuron

Fig. 4. Mechanism of STDP with�� � � � �� and � � � � 20 ms.
(a) Each time a post-synaptic neuron fires, its synaptic weights are decreased by
� , and each time a synapse receives an action potential, its synaptic weight is
incremented by an amount � . (b) Based on this mechanism, different neural
pairs can assemble themselves into asynchronous neuronal groups (polychro-
nized groups; see [23]).

Fig. 5. Contingency detection. The sense of agency arises from the matching
between afferent (proprioception) and efferent information (motor prediction).
In our model, it corresponds to the synchronization between the presynaptic
neuron #1 and the incoming input stimulus #2 that activate in the same time
neuron #2. To fire contingently with the input, the presynaptic neuron #1 must
trigger in advance.

#2 (i.e., contingency matching); see Fig. 5. The agency index at
current time is therefore computed as the number of correctly
predicted stimuli divided by the number of all returned predic-
tions done at time , either correct or false (the “precision”), and
the number of correctly predicted stimuli divided by the number
of predictions that should have been returned (the “recall”)

precision

recall

agency idx
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Fig. 6. Vision and motor neural activity during enaction. The embodied system generates a spontaneous activity through the interaction with the environment
dynamics switching between foveation and attentional shift (vision map), saccades, and long spike trains (in the motor maps).

where the size current input corresponds to the size of the cur-
rent input pixels values binarized (size current input

. In this form, the agency index is normalized such that
the lowest values (e.g., agency idx ) correspond to com-
plete mismatch between sensory inputs and motor predictions
(no agency), whereas the highest ones correspond to perfect
contingency prediction (maximum level of agency).

III. EXPERIMENTS

We propose to study how agency arises in visuo-motor
networks for different perceptual experiences. During enaction,
sensorimotor maps integrate their dynamics and learn simple
perceptuo-motor patterns between the current motors state
(eyes and neck orientation) and the visual scene. We show
that the pattern (mis)matching between the neural activity and
the incoming information flow modulates its agency level.
Moreover, other perceptual experiences can affect the system’s
agency level in various fashions, e.g., when a visual feedback
delay is imposed or when it scrutinizes its own reflection in
front of a mirror (perfect synchrony and maximum relative
motion saliency) or someone else. We reproduce these three
experiments and study the possible relations entangling agency,
self-recognition, and self–other distinction.

A. Sensorimotor Primitives Learning

Before enaction, the network’s architecture has no specific
organization. The neural network is initialized with local and
global couplings, and the node connectivity has a uniform dis-
tribution (equal synaptic weights); see Section II-E. The con-

nected neurons inside the same map sustain the intra-map infor-
mation processing, whereas the connected neurons belonging to
different maps support the intermap information transmission.
We expect the sensorimotor maps to self-organize under the ac-
tion of STDP and of its embodiment (i.e., the log-polar repre-
sentation combined with the saliency maps). We place the head-
neck-eyes device in the normal daily-life conditions—enclosed
and enlightened environment with salient objects and quite dy-
namic persons (the laboratory room and its researchers)—and
start our experiment in this situation without prior knowledge
or supervised learning.

During enaction, the incoming signals starting with the initial
motors and visual inputs proceed to the visuo-motor maps. The
first spikes ignite then their respective associated postsynaptic
neurons, whether located inside or outside the originating map.
These neurons, at their turn, trigger others, affecting either the
vision maps or the motor maps; thus the motor commands. At
this point, the new state of the motor commands changes the
neck and the cameras’ orientation, and a new cycle can begin
with this new configuration. Gradually, a spontaneous activity
bootstraps in the whole network in closed loop with the envi-
ronment. The device dynamically switches from one orientation
to another, punctuated by short-range attentional fixation (see
Fig. 6). The long spike trains in the motor maps correspond to
fixation to certain locations (same motor angles), whereas the
bifurcations correspond to jumps to new locations (new motor
angles). Saccades to new locations in the motor maps happen al-
most in phase (at same timing). If salient information is found in
the fovea where the neurons are concentrated, a burst of spikes
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Fig. 7. Snapshots for different periods of time of the network synaptic weight
distribution. The neural network achieves its self-organization by strengthening
the most robust neural groups (weights’ value � �) and deleting the inaccurate
ones (weights’ values � �).

Fig. 8. Superposed synaptic links on the neural dynamics. The most robust
anatomical synaptic links, extracted from the connection matrix �� � ��, are
sur-imposed between the spikes of presynaptic and postsynaptic neurons [same
as Fig. 4(b)]. The links having their presynaptic neurons inside the vision map
(left vision map) are plotted in red. Those with presynaptic neurons from the
motor maps (neck and eye maps) are plotted in cyan; above, their respective
rate (number of links per 100 ms).

then activates the low-ranked index neurons. In the other case,
when the salient information is located in the cameras periphery,
it is this time the few highly ranked neurons that trigger.

During this random-walk stage, the embodied system rapidly
learns to differentiate the visuo-motor patterns associated to
salient objects in the fovea (corresponding to high firing rate)
and the other stimuli (i.e., salient objects not centered from
the fovea having a low firing rate). Via STDP, the causal rela-
tionships at the neural level between the visions and the motor
maps are reinforced, whereas the uncorrelated neurons weak-
ened their links. The snapshots at different period of the synaptic
weights histogram in Fig. 7 describe this evolution. After 10
min, most of the neural links are strengthened or sup-
pressed . In that situation, the system does not freeze to
one pattern but still continues to switch between foveation and
attentional shift, even though the synaptic weight values do not
evolve anymore. The network has reached its stable configura-
tion.

We analyze now the visuo-motor information flow exchanged
within and between the maps to understand the mechanisms un-
derlying functional integration inside the network. In Fig. 8, we

Fig. 9. Agency index during enaction. The agency index between is calculated
as the distance between the visuo-motor input patterns and their prediction by
the neural maps (see Section II-F). The system’s action produces the change of
its own degree of agency. Its averaged value represents the reference level for
coherent sensorimotor information.

superpose the synaptic links between neurons, extracted from
the connection matrix from the most robust links , on
the neural dynamics. We color those with presynaptic neurons
within the vision maps in cyan and the others in the motor maps
in red to illustrate how information propagates within and be-
tween the vision and motor maps. The graph above plots their
respective rate and evolution. As we explained in Section II-E
and -F, these links constitute conditional scripts forming contin-
gency predictors as the anticipation by one neuron (the presy-
naptic one) of not-yet-realized stimuli arriving at the right loca-
tions (the postsynaptic neurons) and the right time. The correct-
ness of the predictions, by comparison with the inputs, ensures
then the sensorimotor integrity; i.e., the system’s agency.

Fig. 9 displays the agency index computed from the synaptic
links and the input patterns with the formula in Section II-F. This
graph reveals that the agency level is not static but dynamic and
can rapidly switch within seconds. Its values, on average above
0.15, correspond to the system’s agency reference level. It will
be our standard level for comparison with in the next experi-
ences. It indicates a certain confidence level of the predictions
on the sensorimotor inputs when the device moves: its actions
afford its agency, which is in line with developmental findings.
Since the “signature” of live enaction corresponds to a certain
agency index, it follows that other kind of perceptual experi-
ences with the environment can modulate its level (e.g., visual
or somatic illusions with mirrors, feedback delays). We propose
to reproduce some of these in the following parts.

B. Visual Feedback Delays

Agency relies on the contingency anticipation and validation
of incoming signals during enaction by forward models. To this
respect, timing is a critical factor to sustain the systems’ in-
tegrity. To expose its incidence on our system, we artificially add
a delay between proprioceptive and visual information. A com-
plete cycle takes approximately 15 ms for processing data and
controlling the robot. From the referent current cycle and a
desired delay of cycles, we provide therefore the visual input
of the cycle to the vision maps.

For this experiment, we delay the visual feedback of 300 ms
(20 cycles) and plot in Fig. 10 the corresponding vision map
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Fig. 10. Agency index delay for feedback delay of 300 ms between proprio-
ceptive and visual information. The top shows the neural dynamics in the left
vision map. Despite the delay added, the vision and motor maps present very
similar neural dynamics as during enaction. The system’s behavior is however
erratic, and its agency index is low (�0.1), revealing the discrepancy between
the vision and the motor maps.

Fig. 11. Agency index for different interval range delays between proprio-
ceptive and visual feedbacks. Each value correspond to the temporal delay of
visual feedback. Delays decrease the agency index and a drastic fall occurs
around 500 ms, indicating sensorimotor mismatching (functional visuo-motor
discrepancy).

and agency index. In this situation, the system behaves differ-
ently from live enaction: motion is more erratic, but the neural
dynamics appear however preserved in the vision and motor
maps (see the top of Fig. 10). The agency index confirms this
and reflects the sensorimotor mismatch and the network dys-
functioning. Its level falls below 0.1, revealing discrepancy be-
tween the system dynamics and the inputs. A phase transition
has occurred. Timing, or the incongruence between the vision
and motor STDP neural pairs, compels therefore the network’s
enaction.

We reproduce in Fig. 11 the averaged agency level relative
to temporal delays in the interval between [0, 2500 ms]. The
graph presents a distinct separation between live enaction (delay

) and the other cases when a feedback delay is added (delay
), which is in line with developmental psychology experi-

ments [17]. The agency index varies above 0.1 for the enactive
case, while the values for the asynchronous cases decrease in
two phases. The first phase is for delays below 500 ms with a

linear decreasing, and the other at 0.05 for delays above 500 ms.
In infants, this phase transition is estimated around 300 ms de-
lays (visual processing in the visual cortex takes about 70 ms
and integration is hypothesized to take about 200 ms in the pari-
etal cortex) and discrepancy is linearly proportional to the delay
interval (see [17]).

To conclude on these two first experiments, one can say that
the system’s agency is restricted to the here and now; it does
not hold multiple representations of itself by combining present,
past, and future events. This stage might correspond to the very
initial period of infant development—the first out of five levels
in Rochat’s graduation of self-awareness [15]—limited to the
“present self” or the “ecological self,” which entails some basic
perceptual differentiation by sensing contingency in sensori-
motor flow. Three-year-olds fail to appreciate the temporal dis-
tinction of delayed self-image and to recognize themselves even
for short delays as small as 1 or 2 s (see [14], [17], [44], and
[45]). Moreover, the temporal discrepancy between actions and
visual feedback affects the performance of self-recognition (for
example, in front of a mirror) and of social interaction (eye con-
tact). We study these two cases in the following experiments.

C. The Mirror Test

The perceptual experience of self-perception in front of a
mirror (or from self-touch) is interesting since it involves the
perfect synchronization between afferent information (propri-
oception and vision) and efferent information (motor), which
might hugely contrast with other type of stimuli (e.g., observing
a visual scene or grasping an object). In our visual processing,
the observation of a scene by our system produces in normal
conditions a very low saliency since all the motion vectors are
aligned in the same direction of the global motion (saliency is
distribution in all the image). At reverse, the observation of its
own reflection, in front of a mirror and depending also on the
distance to it (less than 1 m in our case), will produce a highly
contrasting saliency map due to the high ratio between the rel-
ative motion (from its own reflection) and the global motion
(from the background motion). To increase this effect and ease
contingency detection, we put a salient mask on the device; we
found that it was difficult to achieve good results without it.
The salient information in the image is self-centered at the robot
head and cameras levels such that the most salient information
is by product located at the fovea where most of the neurons are
[see Fig. 12(b)].

We describe now the system’s behavior when we place a
mirror in front of it. The plots in Fig. 13 display the neural dy-
namics of the neck motor map and of the left camera visual map,
plus the firing rate. The dashed line at s corresponds to
the right moment when we position the mirror. Before this pe-
riod, the system is under the normal conditions of live enaction.
But rapidly after, the robot starts to fixate and to saccade in front
of its own reflection. The neural dynamics in the vision map re-
veal that an entrainment effect has occurred with a strong syn-
chrony. As expected, the motion information is very salient and
perfectly contingent to its own action (i.e., proprioceptive in-
formation), which makes the mirror perceptual experience very
unique. We plot in Fig. 14 its corresponding agency index. Com-
pared with the normal situation in Fig. 9, the agency index jumps
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Fig. 12. Mirror experience. When our head-like robot scrutinizes its own reflection in front of the mirror [camera view in b)], most of the salient information gets
centered in the middle of the scene, which is not the case in normal conditions of observation of a scene. This perceptual experience is different. To increase this
effect, we covered the device with a salient mask.

Fig. 13. Neural dynamics of the vision map in front of the mirror. When the
robot starts to observe its own reflection, a rapid phase transition emerges in the
neural space corresponding to a global entrainment. The self-produced motion
centered in the image trigger the neural dynamics in a situation not possible for
the normal case.

to a very high value , revealing the strong matching be-
tween the inputs and the motor actions. The two maps mutually
influence from each other.

D. Seeing Other Persons

In comparison with the preceding experiment, we study now
how the system’s agency index will evolve when a person faces
it; see Fig. 15. Compared to the later case, a perceptual expe-
rience with another person produces also high agency indexes,
and both are a little higher than for the case in Fig. 9 when it ob-
serves a visual scene. This result means that one person’s motion
or its own reflection induces more saliency in terms of senso-
rimotor conflicts and coordinations rather than for objects and
visual scenes. The embodied system, in a way, modulates and
combines its own agency with those of other people, sharing the
same circuits. Hence, rather than strict self–other distinction, the

Fig. 14. Agency index in front of a mirror (see Fig. 13). Soon after presenting
the mirror in front of the robot, the agency index rise too a very high peak above
the normal situation of live enaction.

Fig. 15. Agency index in front of another person. Facing a person produces
values similar to the mirror experience but higher values compared with the
observation of a visual scene. The visuo-motor maps separate self and other
stimuli with those of the static scenes. Rather than a measure of dissimilari-
ties, the agency index indicates the degree of coherence in sensorimotor interac-
tions—the shared level of agency between the embodied system and the person
that occurs during social interaction.

agency index is a measure of self–other similarities and dissim-
ilarities: the first condition for developing the self in relation to
others (see social resonance [13], [17], [46], [47]).

Fig. 16(a) summarizes the agency indexes for the three
studied cases but this time by separating the quantities relative
to afferent to efferent information ( , red circles) and to
efferent to afferent information ( , blue crosses). Their
amount and ratio vary depending on the type of perceptual



PITTI et al.: CONTINGENCY PERCEPTION AND AGENCY MEASURE IN VISUO-MOTOR SPIKING NEURAL NETWORKS 95

Fig. 16. (a) Summary of the agency indexes of the three cases studied, separating the relative quantity from afferent to efferent information (� �� , red circles)
and from efferent to afferent information (� � �, blue crosses). (b) Mean scores of agency in the three situations studied after being averaged and centered (in
blue). The red vertical lines indicate their variance.

experiences. Fig. 16(b) resumes the relative mean scores of the
three agency indexes after being averaged and zero-centered.

IV. DISCUSSION

In this paper, we propose a plausible biological mechanism
underlying the emergence of agency based on sensorimotor
timing integration in shared circuits, a description that we hy-
pothesize is consistent with simulation theory viewpoint [46],
[48] but also with the comparator model [2], [18], [28]. The
regulatory mechanism of STDP observed in many brain regions
updates and governs the synaptic conduction delays between
the neural pairs. Nevertheless, without the constraining from
the environment, this mechanism can only generate a random
network with anything common to sensorimotor rules. It is the
action of embodiment under live enaction (synchronization)
that “shapes” the sensorimotors dynamics and aligns them to
each other [31]. By doing so, the embodied system preserves
its global integrity. Over time, the most congruent sensorimotor
neural pairs are reinforced, whereas the incongruent ones are
weakened and inhibited. These robust neural pairs represent
thus the contingency detectors at a very short time scale (20
ms order) that anticipate the ongoing sensorimotor activity and
predict the embodied system’s next state. We believe that this
model is in line with Wolpert et al.’s idea of internal forward
models (see [28], [49], and [50]), which make predictions of
sensory feedback based on the motor commands to the actuator
(i.e., efferent copies). The coordination or the dissonance
between the actual state and the predicted ones becomes then
the system’s “signature” of its own agency. This integration
is suspected to occur in the parietal cortex with a separated
functioning for synchrony and asynchrony detection [17] but
sharing the same circuits for representing self and other [47].
It follows that different perceptual experiences can produce
other kinds of agency patterns, as in well-known developmental
experiments (see [1], [3], and [51]); i.e., delays between vision
and proprioceptive information or the mirror test.

Our model restricts agency to the here and now (i.e., limited
to live visual feedback). Said in the reverse, it entails percep-
tual distinctiveness between contingent and noncontingent in-
formation only, which is suggested to represent one of the first
(i.e., its most basic) levels of self-awareness (see [14] and [47]).

Children 18–24 months old can discriminate the self-produced
motion in front of mirrors as those of other persons, whereas in
the case of inanimate objects, it corresponds to completely dif-
ferent type of stimuli and sensorimotor patterns. In this case, the
system’s relative motion is perfectly aligned with the global vi-
sual feedback (low saliency), whereas the relative motion with
animated objects or persons, or from their self-reflection, pro-
duces a different saliency. To this respect, we identified that the
distance to the mirror or to the person is an important parameter
(i.e., vicinity), as well as the saliency of the robot’s face in order
to increase the matching. In future research, we plan to expand
this framework to better understand how to bridge the low-level
sensorimotor interactions described here to possible higher ones
including social interactions and imitation.
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