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Attention via Synchrony: Making Use of Multimodal
Cues in Social Learning

Matthias Rolf, Marc Hanheide, and Katharina J. Rohlfing

Abstract—Infants learning about their environment are con-
fronted with many stimuli of different modalities. Therefore, a
crucial problem is how to discover which stimuli are related,
for instance, in learning words. In making these multimodal
“bindings,” infants depend on social interaction with a caregiver
to guide their attention towards relevant stimuli. The caregiver
might, for example, visually highlight an object by shaking it
while vocalizing the object’s name. These cues are known to
help structuring the continuous stream of stimuli. To detect and
exploit them, we propose a model of bottom-up attention by
multimodal signal-level synchrony. We focus on the guidance of
visual attention from audio-visual synchrony informed by recent
adult–infant interaction studies. Consequently, we demonstrate
that our model is receptive to parental cues during child-directed
tutoring. The findings discussed in this paper are consistent with
recent results from developmental psychology but for the first
time are obtained employing an objective, computational model.
The presence of “multimodal motherese” is verified directly on the
audio-visual signal. Lastly, we hypothesize how our computational
model facilitates tutoring interaction and discuss its application
in interactive learning scenarios, enabling social robots to benefit
from adult-like tutoring.

Index Terms—Attention, infant-directed communication, multi-
modality, social learning, synchrony.

I. INTRODUCTION

I MAGINE you are a stranger in a foreign country. Every
time a rabbit runs by, the people say “gavagai.” What gives

you the basis for the assumption that “gavagai” refers to the
rabbit? In pointing to the ontologic relativity, Quine [1] sug-
gested that it can also be the “rabbitness”—as a more abstract or
superordinate category—or “rabbit’s leg” as a more specific or
subordinate category. Imagine you are a child that learns lan-
guage. You see a round thing that can roll. Your parents say
“ball” to it. What gives you the basis for the assumption that
“ball” refers to the object and not to the action of rolling? In
pointing to this mapping problem, researchers in developmental
psychology and linguistics have identified this reference process
as central in word-learning theories. A child has to know what
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the word refers to in order to map, i.e., to remember the ap-
propriate link. Concerning the problematic situation sketched
above, Quine teaches us that we cannot resolve the reference
through ostension exclusively. His considerations should invite
us to look for additional sources for reference resolution. What
else if not the ostensive context alone can help to resolve the
reference?

Some researchers criticize the view that in the process of
learning language, words are just mapped onto existing con-
cepts about objects. Tomasello [2], for example, attacks the false
metaphor of mapping and suggests that we lose the exclusive
cognitive and associative view on learning in favor of a more so-
cial perspective on learning [46]. The social approach is in line
with late Wittgenstein’s philosophy of language. In this view,
it is not about two parts, a word and an object, that need to be
linked; it is about the situation, in which a person uses a symbol
for the purpose of redirecting another person towards the ob-
ject (see also [3]). “In fact, if attention is guided, little ambi-
guity in interpretation need result” [4, p. 720]. In this social ap-
proach, it is not only the word as the sole information avail-
able to the hearer for the reference resolution. Also the behavior
of the speaker and the circumstances of a situation as well as
the hearer’s experience contribute to the formation of meaning.
It is important to note that in the social-pragmatic approach to
learning, there is still a place for word-referent correlations. The
critique targets more the exclusivity of the mapping process. It
suggests instead that the attentional processes of the participants
involved in the situation are important as well. Furthermore, we
are convinced that social learning is in its fundamentals driven
by perceptual cues that convey learning-relevant information.
This is why we take a closer look at the signal level in social
learning scenarios.

A. Multimodal Motherese

Recent approaches to word learning take advantage of in-
teractive processes between participants. Zukow-Goldring [5],
[46] investigated naturalistic situations, in which mothers were
interacting with their children. She suggested that the partici-
pants develop a sense of shared understanding of actions, on
which basis children learn language. Gogate et al. [6] took an
experimental approach and investigated how mothers interact
with their children when they try to teach them a new word.
In this study, two new words were given to two new objects and
two words referred to actions with the new objects. In coding the
mothers’ action, the authors discriminated between situations in
which target words were presented i) in synchrony with a mo-
tion of the referent object, ii) asynchronously to an object mo-
tion, iii) without any object motion, and iv) while the infant was
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holding the referent object. For the goal of the paper, it is impor-
tant to emphasize that in this semi-experiment, a manual coding
system was used for the analysis. The authors found out that
when mothers were asked to teach a new word for the objects
or actions, they moved the objects in temporal synchrony with
the new label. They observed that when the children were more
experienced with language (starting from 21 months of age),
the synchronous action was less pronounced in their mothers.
Gogate et al. [6] argue that preverbal and early verbal children
need temporal synchrony in order to make the reference to the
object or its action on the one hand. On the other hand, these
data also show that parental behavior responds to the needs of
the child. Thus, the multimodal communication towards infants
is adapted to infants’ increasing abilities to find out word–object
relations on their own.

A further experiment by Gogate and Bahrick [7] investigated
seven-month-olds’ abilities to map a syllable onto an object.
Infants were presented the new object moving either in tem-
poral synchrony with the new label or in an asynchronous way.
Infants could remember the label of the objects after 10 min
only when they saw the stimulus in a synchronous condition.
The authors interpret the results as consistent with the view
that prior to symbolic development, infants learn and remember
word-object relations by perceiving redundant information in
the vocal and gestural communication of adults. Against this
experimental background, Gogate et al. [8] propose a basis for
the understanding of spoken words: It is the “early detection
of intersensory relations between conventionally paired audi-
tory speech patterns (words) and visible objects or actions.” As
Tomasello [2] suggested, Gogate et al. view the learning process
as dynamic and in reciprocal interaction, supported strongly by
general intersensory perception and selective attention.

B. Intersensory Redundancy

The intersensory redundancy hypothesis (IRH) [9] attempts
to explain how synchrony of signals can guide infants’ selec-
tive attention and contribute to the learning process. The starting
point is the fact that humans perceive the environment over var-
ious modalities like vision, touch, and hearing. For example,
when driving a car, one sees the street and other cars, hears mo-
tors or maybe sirens, and feels the wheel and the gearshift. Con-
sequently, we can represent our environment in terms of several
modalities at the same time.

Since the 1990s, it is increasingly realized that not just the
isolated modalities but also their interplay drives our percep-
tion and cognition. Multimodality provides a unary, integrated
understanding of our environment [9]. According to recent re-
search, integration across modalities occurs before each stim-
ulus is fully processed unimodally [10], [11]. In this interplay,
stimuli from one modality can help interpreting stimuli from an-
other modality that are ambiguous on their own. A well-studied
example is lip-reading. Here, the view of the mouth can enhance
the recognition performance of the heard words [12], [13]. What
binds the modalities together and helps to interpret the incoming
signal are amodal properties such as synchrony, rhythm, or in-
tensity [9]. For example, a crashing glass produces a sharp stim-
ulus in vision and hearing, appearing at the same time. Thus,
they are temporally synchronous. Synchrony has been demon-

strated to affect attention: Signals that reinforce each other on
the basis of amodal properties promote earlier processing. They
thus attract the attention of perceivers and become foreground
in contrast to other properties to become background [9]. The
power of cross-modal binding has been shown for newborn and
young infants as auditory stimulation has been found to facil-
itate the visual attention [14], [15]. Infants as young as two
months are sensitive to voice–lip synchrony during speech [16].
Furthermore, recent studies by Zukow-Goldring et al. [17] using
eye-tracking technology with video confirms that infants 9 to 15
months old prefer looking at objects that are presented in a syn-
chronous word–object condition. In addition, children showed a
better comprehension of the word when it was uttered matched
with the rhythm of the object movement. The infant’s initial sen-
sitivity to amodal information such as synchrony—as has been
shown in the study by Gogate et al. [6]—provides an econom-
ical way of guiding perceptual processing to focus on mean-
ingful, unitary events [9].

Even though it was experimentally shown that parents modify
their behavior and show an object in synchrony with its label [6],
little is known about whether adults synchronize their behavior
in other than word-learning contexts. Yet the problem of refer-
ence is considered to be similar. It is plausible to assume that
while synchronizing actions from different modalities, parents
increase the saliency of specific action segments [18] and pro-
vide structure to the input, from which children learn. It seems
like the sensitivity towards amodal properties on the learners’
side and the modified behavior that provides lots of amodal
overlap between modalities on the tutor side, is a crucial part
in social learning scenarios. They can be seen as one key to the
reference resolution problem sketched above.

C. Approach

In designing artificial systems, we have to consider such sym-
biotic way of interaction and attempt to systematically take ad-
vantage of them [19]. Within the set of mechanisms that will be
needed to enable robots to learn from humans in a socially in-
teractive way, we take the perspective of the infant and model
its sensitivity to synchrony as an attention guiding cue provided
by the tutor. Thus, we are constructing attention via synchrony.
As sketched above, this guidance has been identified as a crucial
ingredient of social learning. However, before synchrony cues
can be used in any way, they have to be detected by the robot’s
perceptual system. In our approach, we focus on the detection
of synchrony between auditory and visual information. In our
notion, detection is about discriminating synchrony and asyn-
chrony in the spatiotemporal domain in the course of interaction.
In order to make use of synchrony for the guidance of attention,
we use low- or rather signal-level information. Those features
are known to be available at preattentive stages [20] of cortical
processing and are plausible to be available even on early stages
of development. We interpret the detected synchrony directly in
terms of attention: visual stimuli that are most synchronous to
the audio domain receive the most attention. We describe our
computational model for synchrony detection in Section II. In
Section III, we present an experiment, where we tested the re-
ceptiveness of our model to child-directed cues in parents’ tu-
toring and its applicability for the guidance of attention. Lastly,
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we discuss our method and results in the context of interactive
social learning and robotics in Section IV.

II. COMPUTATIONAL MODEL

Research on temporal intermodal perception of synchrony
mostly builds on the notion of events [6], [21], [22]. While most
studies lack a precise definition of “synchrony,” a common for-
malization of the term is completely missing [23]. In particular,
the temporal relations between two modalities become compli-
cated when not just a single event on each modality has to be
considered. Lewkowicz et al. [21] describe a whole hierarchy
of relations across simultaneity/synchrony, shared intensity, du-
rations, and rhythms. All of those concepts are not trivial to for-
malize, particularly when not each event has a counterpart in an-
other modality. For instance, Matatyaho et al. describe forward
arm movements, simultaneous with speech labels for a held ob-
ject, while backward movements in between have no counter-
part in the speech domain [24].

Here, we go in line with [22] and [25] and basically regard
synchrony as the property of two events to occur at the same
time—i.e., they have simultaneous on- and offsets. However,
this does not immediately yield a good formalization in the case
of multiple events in each modality and not exactly simulta-
neous timing.

The notion of an event is likewise hardly formalized. While
Gogate et al. [6] define events mainly according to discrete word
on- and offsets, this notion is hardly applicable when facing a
nonsegmented, continuous perceptual stream. But basically, we
must consider any visual and auditory perception as a nonstruc-
tured stream and define synchrony in order to end up with a
structured representation following a “developmental pathway.”
The challenge is thus to define synchrony measures on low-level
and preattentive features. There is, for instance, broad evidence
that features like color or simple motion are computed massively
parallel all over the visual field [20] before attention is actually
constructed [26].

At that level, temporal correlation between signal flows can
be seen as direct adoption of synchrony to continuous signals:
stimuli gain high correlation when the signal values decrease
or increase simultaneously in several modalities. In fact, stimuli
can also gain gradual correlation when a small temporal delay
is introduced between them, as long as the delay is smaller than
the basic period length of the stimuli. At first, this notion is
conceptually orthogonal to the notion of synchrony defined for
events: i) events in two modalities do not necessarily gain signal
correlation due to the concrete shape of the continuous signal
and ii) also in the absence of anything considered as event there
can be correlation. However, the differences depend on both the
definition of an event and the choice of features. Events can,
e.g., be defined as peaks in signal values [27]. Also, one can use
features that directly indicate events. Thus temporal correlation
provides a generic formal notion of synchrony that is natural at
signal level but also applicable at event level.

A. Synchrony Detection

Our method is based on an algorithm proposed by Hershey
and Movellan [23]. The algorithm detects temporal correlations
(synchrony) between visual features and auditory features.

Therefore, each image location (i.e., pixel) is treated separately.
The statistical analysis is restricted to a small window in time
that is shifted over the audio/video stream. Since each pixel
yields independent estimates of synchrony, the result is a
topographic map of synchrony. As the final synchrony estimate
is a mutual information measure, such maps are also referred
to as “mixelgram” (see Fig. 1). Like many other approaches
to signal-level synchrony, the algorithm was originally de-
veloped for statistical sound-source localization (see [28] for
an overview). In that scenario, it is assumed that physical
sound-sources provide synchronous patterns across modalities.
Stimuli that provide synchrony but do not correspond to an
immediate sound-source are considered as false positives or
disturbances. However, our application context is broader since
we want to detect social cues that do not directly refer to
physical sound sources. For our purposes, the algorithm has
two important properties.

1) The algorithm contains no assumptions about the kind of
visual or auditory stimuli. It is for instance not specific
to human faces and voices. From the learning perspec-
tive, this is important since such specific patterns shall be
the result of, but not a prerequisite for, an overall learning
process.

2) The algorithm is fast enough to detect synchrony in real
time with reasonable video resolutions and sampling rates.
The goal is to employ the method also in artificial intelli-
gent systems like robots as discussed in Section IV. Here,
the method is to be used within a closed interaction loop.

The model has already been compared to infants’ abilities in
synchrony detection by Prince et al. [29]. They showed that the
method can indeed model the infants abilities in some situations.
However, we make use of more sophisticated methods for fil-
tering and quantitative synchrony estimation, which we describe
in the following.

1) Statistical Estimation: The basic mathematical assump-
tion for the statistical analysis is that the values of visual and au-
ditory features originate from a joint probabilistic process. This
process is assumed to be stationary and Gaussian for a short pe-
riod of time

Here we denote the set of audio features over time as
and the set of video features for each pixel .
is the joint ( -dimensional) Gaussian distribution with

mean and variance .
For the synchrony detection, the parameters and are es-

timated from the video data , where
denotes the index of a video frame and the number

of frames in a video. Hershey and Movellan suggested to esti-
mate and over a time window of frames

, with . For practical
reasons, we do not use a hard time window but compute expo-
nentially smoothed estimates of and . The
data from a current frame receive a constant
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Fig. 1. Schematic overview of synchrony detection: a video feature is per pixel compared to a audio feature for a short window in time. Mutual information is
computed based on a linear correlation coefficient, yielding a topographic map of synchrony.

weight and are recursively combined with the previous
estimates of mean and variance

This update rule has several advantages: first, this scheme allows
very efficient frame-to-frame computation without bookkeeping
of other frames than the current one. Secondly, it yields smoother
estimate characteristics over time: though rapidly changing new
stimuli cause rapid changes of the estimates, forgetting is gradual
and does not cause discontinuities. Thirdly, it is also smooth in
the influence factor , which is not the case for varying values
of for a fixed time-window. Small changes in only reweight
the past samples slightly, without making abrupt changes.

The estimates of (co)variances are then used to
express the degree of synchrony between audio and video in
terms of mutual information . Assuming a Gaussian distribu-
tion yields an immediate relation

In the case of each audio and video feature ( ),
this relation can be simplified [23] and expressed in terms of a
Pearson correlation coefficient

Fig. 2. (Top left) Original RGB-frame from a test video. (Top right) Mutual in-
formation obtained with image intensity and audio energy as features and � �

���� at 25 fps. Background noise causes intensive correlation artifacts. In the il-
lustration, white corresponds to a mutual information of 0.51, which is a Pearson
correlation of�0.8. Black indicates zero correlation. (Bottom left) A threshold
of � � �� on video variance. Static background pixels are mostly excluded.
(Bottom right) An additional morphological erosion removes remaining back-
ground pixels and also outstanding noise pixels in regions with activity.

Thereby , , and are the now scalar estimates of
variances and the covariance of audio and video feature.

The overall result is one mutual information image (mixel-
gram) per frame. High values of mutual information are visu-
alized with lighter grayscale values (see Fig. 2) and express a
high degree of synchrony between audio and video. In the orig-
inal scenario of sound-source localization, high mutual informa-
tion reflects a possible sound-source at a certain image location.
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However, in our scenario, we are less interested in such physi-
cally causal correlation. Instead, we rather try to investigate the
role of synchrony for attention in tutoring. Hence, it is assumed
that the model is also perceptive to synchrony induced by the
tutoring process itself. Therefore, a mixelgram can directly be
interpreted in terms of attention so that image regions with high
mutual information receive the highest degree of attention.

2) Filtering: Pearson’s correlation and mutual information
as measures of interdependence between audio and video indi-
cate the significance of a relation between both modalities. It is
noteworthy that the significance of the signal is not taken into
account, since they are independent of shift and scale of feature
values. In fact, most pixels in an image are usually static apart
from noise, thus providing no significant change over time. Nev-
ertheless, those pixels can cause high correlation just by chance
(see Fig. 2). This behavior is not desirable since noise should
not be the driving force in attention.

We propose a two-stage filter process to exclude insignifi-
cant visual stimuli and noise. The first stage excludes pixels
without activity. As measurement of activity, we use the vari-
ance over time on each pixel. Note that the variance is already
available due to the correlation estimation. If the variance on
a pixel is below a specified threshold , mutual information
is set to zero. Fig. 2 illustrates the effect: large areas of sta-
tionary background are filtered out. Still, there is notable noise
in regions that must be considered to be active. This noise re-
sults in single, outstanding pixels with high mutual information
[Fig. 2 (bottom left)]. These single pixel distortions are effec-
tively handled by the second filter stage: a morphological ero-
sion. Each pixel value is replaced by the minimum value of
its direct neighborhood. Thereby, single outstanding pixels are
completely erased, while massive regions of mutual information
are retained [Fig. 2 (bottom right)].

B. Quantitative Analysis

An empirical problem in using this method is that it does
not yield an immediate estimate of overall synchrony contained
in a video. This problem was already addressed in [29]. How-
ever, the proposed solutions appeared to be very specific to the
kind of incoming stimuli to overcome the noisy properties of
the mixelgrams. Due to our filtering procedure, we can apply a
straightforward averaging method to get quantitative estimates
of synchrony.

1) Synchrony Measurement: As a first step, each mixelgram
is condensed to a scalar estimate of synchrony for that
time in the video. Therefore, we average over the set of pixels

that was not set to zero within the filtering process

(1)

(2)

The only assumption that has to be made is that a sufficiently
large number of pixels is not filtered out—which is the case
when motion is present in the visual appearance of the scene.
This assumption is consistently fulfilled in our experimental

Fig. 3. The artificial test video contains a black rectangle that moves from left
to right after staying on the left side for 2 s. The movement takes five frames and
goes along with a beep. The combination of different visual features and audio
energy provides the expected synchrony maximum at a zero delay.

study. Finally, the values of are averaged over time to gain
an estimate of synchrony for a whole video

(3)

2) Example: As a basic test case for the synchrony es-
timation, we used an artificial test video containing a black
rectangle that makes a horizontal movement across five video
frames (see Fig. 3). The audio channel contains a beep tone
that is exactly aligned in time with the rectangle movement.
Thus audio and video are highly synchronous. In order to test
the synchrony estimation, we adopted an experimental scheme
from [30]: the audio stream is delayed against the video stream,
yielding a gradual desynchronization of both modalities. The
estimated degree of synchrony is then compared for different
delays, whereas the maximum of synchrony should be located
at delay 0. Fig. 3 shows that the measure [(3)] is basically
able to discriminate between synchronous and asynchronous
conditions. Here we used difference images as video feature,
audio energy for the sound modality, and a smoothing factor

.
3) Normalization: The proposed measure is basically an

average value of mutual information, where the size of active
image regions is compensated. The measure yields a good
basis to compare highly related stimuli with respect to their syn-
chrony (as shown in Fig. 3) or to compare different parame-
ters or features. However, our empirical goal is to compare dif-
ferent videos or rather scenes. Though they are comparable on
a semantic level, they show radically different patterns at signal
level. Therefore, we introduce an additional normalization step:
in a separate computation, the original audio track is replaced by
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Gaussian white noise. Then synchrony is measured in the same
way as with the original audio track. The result provides
a baseline for the synchrony with the original audio track. Since

is per definition a stochastic measure, the average across
instantiations of Gaussian noise is used (here ). Then we

use the ratio between both estimates as measure of synchrony
contained in a video

(4)

This measure indicates the mutual information gain of the orig-
inal audio track, relative to pure audio noise—and thus how syn-
chronous audio and video are. Note that is neither zero
nor constant across different videos—also not its expectation
over different instantiations of noise. The independent Gaussian
distribution of the white noise provides indeed no mutual infor-
mation to any other probability distribution. However, the algo-
rithm deals with sampled values of both the audio and the video
signal; thus correlation can occur by chance. Also, the video sig-
nals do in practice not fulfill the two assumptions made in corre-
lation computation: that the samples are i) independently chosen
ii) from a Gauss-distribution. Therefore, measures how
prone the visual patterns are to spurious correlations, which can
be caused by violations of those assumptions. Thus it provides
a clear baseline for the mutual information, and normalizing
against it yields a more interpretable and robust measure.

III. EXPERIMENT

The major goal of this experiment is to investigate synchrony
in a social learning scenario in terms of child-directed commu-
nication. It is important to note that the data for our analysis
encompass a contingent interaction since we analyzed parental
behavior during a real situation with their children. In this situ-
ation, they continuously reacted and adapted to their child. The
basic hypothesis is that during a demonstration, parents pro-
vide additional learning cues by synchrony. The hypothesis is
tested by comparing the degree of audiovisual synchrony be-
tween adult- and child-directed communication. In order to use
such synchrony cues provided by a tutor, it is important to un-
derstand what is synchronous and when. Therefore, we discuss
several examples of the spatial distribution of synchrony.

A. Scenario and Setup

1) Participants: We investigated 184 videos showing 48 par-
ticipants. The data stem from the original video corpus (also
used in [15] and [16]), which contains videos of 66 parental
couples interacting with their children. The infants’ age ranged
from 8 to 30 months. For this analysis, the selection of the sub-
jects was restricted to setups that comprise both mother and
father, demonstrating the interaction to both partner and child
(four runs) without disturbance. The excluded videos included
the experimenter walking through the scene, the infant pulling
the tablecloth down, verbal interaction with the experimenter,
and crying from the infant. Further, only videos with an existing
speech annotation were used.

After all the selection process, 192 videos were selected for
the analysis. They were equally distributed over four tasks, each

Fig. 4. Investigated scenarios of multimodal motherese: parents demonstrate
different object interactions to either their child or their partner.

with 12 parental couples in four runs. For the salt shaker demon-
strations, only 11 parental couples could be used due to missing
speech annotations. Further, two videos (one bell-task and one
salt shaker, both child-directed) were excluded due to a cor-
rupted audio track. As a direct comparison was impossible for
these two videos, the corresponding adult-directed demonstra-
tions were also excluded, yielding a final number of 184 videos
available for analysis. The videos thereby show 24 different
parental couples and thus 48 different subjects. All videos were
analyzed in the original resolution of 720 576 pixels at 25 fps
applying our proposed computational model. The audio tracks
contain mono sound, sampled with 44 100 Hz.

2) Materials: For this analysis, four tasks were selected (see
Fig. 4): the cup stacking, in which parents demonstrated how the
cups can be stacked; the wooden bricks, in which tasks parents
were instructed to put a block on a pole (altogether three blocks
were put); the bell, which rang after pressing the red button;
and the salt shaker, which was filled with salt, with the parents
demonstrating how to shake the salt on a the blue tray.

3) Procedure: In the study, both parents interacted with
their child and with an adult. The first run was an adult–child
interaction, in which one parent (randomly selected) and her
or his child sat across the table. The parent was instructed to
demonstrate the function of the objects to the child. Here, the
parent was free to teach the word, the action, or both (those two
acts were in fact mostly inseparable in the collected data). We
asked to move the white tray and to give the objects to the child
only after the demonstration. The child was attending to the
demonstration and interacting with the parent. In a following
adult–adult interaction, the same parent was asked to demon-
strate the object to her or his partner. In the third run, the second
parent demonstrated the objects to the child. In the fourth run,
the same parent demonstrated the objects to an experimenter.

4) Measurement and Features: As basic measure of syn-
chrony for our experiment, we used [see (4)]. The
videos selected for analysis still contain a wide range of visual
and acoustic disturbances. Therefore, we restricted the aver-
aging of mutual information over time to those frames that
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(a) (b)

Fig. 5. (a) Grayscale image and (b) gradient strength image conducted from
Sobel edge filters.

show the parent speaking. For our empirical purposes, this is
a reasonable method, since we are interested in the parents
behavior with respect to synchrony between speech and motion
signals.

As audio feature, we consistently used audio energy (as
used in [23] and [31], or similarly root mean square values
in [29]), which is the average squared sample value within a
chunk of audio data. As video features, we used image intensity
(grayscale values) and gradient-strength images alternatively
(see Fig. 5). In a preliminary study, we found these two image
features to gain the best discrimination performance between
synchronous and asynchronous stimuli. In contrast, we could
not find reasonable discrimination for dynamic features like
difference images or optical flow, which are traditionally ar-
gued to be better suited to audio data [28], [32]. We tested
both intensity and gradient-strength images with three temporal
smoothing factors . The variance threshold
was defensively chosen and fixed at for both features.

B. Results

1) Adult- Versus Child-Directed Tutoring: The goal of this
experiment is to compare synchrony in adult- and child-di-
rected communication. For this purpose, each video showing an
adult–adult (AA) interaction is compared to the corresponding
adult–child (AC) video. Fig. 6 exemplarily shows the synchrony
results for gradient-strength feature and . Each point in
the plots corresponds to a pair of an AA and AC video, where
the synchrony in the AA video is plotted on the -axis and the
synchrony in the AC video on the -axis. The first observation
is that all except for three videos gained synchrony values above
1.0. That means that the video signals gained higher mutual
information with the original audio track than with audio noise.
Hence a real synchrony could be detected.

For a direct comparison between AA and AC conditions, the
main diagonal (i.e., ) is shown in the plot. A point above
this diagonal indicates that more synchrony is found in the child-
directed interaction than in the corresponding adult-directed sit-
uation. Indeed, most points (here 62 out of 92) lie above the di-
agonal. Both median and mean show higher synchrony for the
child-directed situation. For this parameter setting, the median
synchrony is 2.32 for AA videos and 2.68 for AC videos. The
significance of this effect was tested with a two-tailed sign test.
The sign test between paired random variables
thereby tests the null hypothesis

. Here the null hypothesis is that synchrony in AC has

the same probability to be higher or lower than in the corre-
sponding AA situation. On the dataset presented here, this null
hypothesis can be rejected with high significance (error proba-
bility ). The effect can be reproduced across diverse
parameter settings (see Table I). In all tested settings, the me-
dian of AC synchrony exceeds the median of AA synchrony.
The effect also reaches significance in most of the settings. For
longer time windows ( ) the effect starts to vanish, and
also the values of decrease. This indicates that gener-
ally less significant synchrony is found, which can be caused by
a mixing of time-frames with positive and negative correlation
[23], resulting in a close-to-zero linear correlation.

With respect to the different interaction tasks (bottom of
Fig. 6), the wooden brick scenario shows a significant ( )
trend towards more synchrony in child-directed communica-
tion. For all scenarios, the median of AC synchrony is higher
than the AA median, indicating that the effect is rather task-in-
dependent.

2) Correlation AA/AC: An additional observation in the re-
sults is that synchrony in child-directed situations is positively
correlated with the synchrony in corresponding adult-directed
situations. Due to individual differences, parents tend to
produce high synchrony in AA situations (relative to other
participants AA synchrony) when they also produce relatively
high synchrony in AC situation. We measure this effect with the
Spearman rank correlation coefficient. Analogous to Pearson’s
correlation, it indicates positive correlation with values between
0.0 and 1.0 but is more robust to outliers. For the settings shown
in Fig. 6, Spearman’s correlation is 0.480. The effect shows
to be significant with respect to the null hypothesis that the
variables are uncorrelated ( with a two-tailed t-test).
Also this effect can be reproduced across several parameter
settings (see Table II). Thereby a positive correlation is also
found within each task. In the setup shown in Fig. 6, rank
correlation ranges from 0.34 ( ) in the bell task to 0.51
( ) in the cup-stacking task. So the overall correlation is
not an artifact of the different task means.

3) Spatial Distribution: If multimodal motherese provides
additional learning cues due to synchrony, it is important to un-
derstand what these cues actually indicate. In this section, we
discuss some exemplary scenes with respect to the spatial distri-
bution on mutual information in the video sequences. Child-di-
rected tutoring was already investigated [18] with respect to the
spatial distribution of visual saliency [33]. Thereby, a part of
the same cup-stacking demonstrations towards infants was in-
vestigated as used in this work. The most salient image position
in each frame was categorized as parents’ face, parents’ hands,
demonstrated object, and any other image location. It was shown
that different motion patterns in adult- and child-directed com-
munication caused higher saliency on demonstrated objects in
child-directed situations. These results indicated which features
and parts of the scenes might be relevant. However, the respec-
tive location of the maximum is often not congruent with the
focus of the current action loci within the tutoring process. In
order to analyze whether the proposed model of mutual infor-
mation can provide a richer attentional cue in this scenario, it is
therefore important to understand where mutual information is
located and how it differs from purely visual cues.
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Fig. 6. The plots show the synchrony results for gradient-strength as feature, ������, and � as measure. Synchrony in each adult–adult video is plotted
against the synchrony in the corresponding adult–child video. Both plots show the same data set, where the second plot shows the different object interactions. The
median is shown as larger point for each category.

A comparison between attention via saliency and synchrony
can generally be done in two ways: first of all, the entire saliency
map (or the mixelgram) can be interpreted in terms of covert
attention [34]. As the potential importance of each image region
is encoded in those maps, one can directly compare, e.g., face
and hand of a subject with respect to their importance relative

to each other. A more condensed view can be gained in terms of
overt attention [34]: each saliency map and each mixelgram is
reduced to a single attended position—a focus of attention. For
saliency maps, this is simply the position with the highest value.
Thereby we basically used the same saliency configuration as in
[18], evaluating intensity, color, orientation, difference images,
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TABLE I
COMPARISON BETWEEN ADULT-DIRECTED AND CHILD-DIRECTED

COMMUNICATION FOR INTENSITY IMAGES AND SOBEL-BASED

GRADIENT STRENGTH AS FEATURES AND DIFFERENT VALUES

OF �. THE MEDIAN FOR AC-SYNCHRONY IS HIGHER THAN

FOR AA IN ALL SETTINGS. THE LAST COLUMN SHOWS

THE SIGNIFICANCE WITH RESPECT TO THE NULL

HYPOTHESIS � � � �Sync � Sync �
�� �Sync � Sync � � ���

TABLE II
SPEARMAN RANK CORRELATION COEFFICIENTS FOR ALL TESTED PARAMETER

SETTINGS. ALL SETTINGS SHOW A SIGNIFICANT POSITIVE CORRELATION

BETWEEN SYNCHRONY IN ADULT- AND CHILD-DIRECTED SITUATIONS

and optical flow by means of Itti and Koch’s saliency map model
[33].

In contrast to [23] and [29], we do not find this location within
a mixelgram by means of a center of gravity since we are not
interested in a huge region of synchrony but in a region of high
synchrony—whatever size it has. However, a pure maximum-
pixel detection is not reasonable, since such a pixel does not
necessarily reflect a robust maximum in the image region. Here
we apply a 15 15 Gaussian filter to yield a smooth spatial
behavior before detecting the maximum. The pixel with the
highest value can thus be assumed to reflect a robust maximum.

The analysis of two exemplary videos is shown in Figs. 7 and
8. In terms of covert attention, the average saliency map and
mixelgram over time was computed. Thereby again only those
frames contribute to the average that go along with speech from
the parent. Also, the located maxima of each saliency and mu-
tual information during parental speech are visualized. Here the
maximum location within each frame contributes with a smooth
spot to the visualization. Frequently attended locations appear
brighter since the spots are overlaid.

The first video shows the demonstration of cup stacking
(Fig. 7). A high amount of mutual information is concentrated
on the face but also on the shirt. The richly structured texture
of the pullover causes high activity in the image features due
to minimal body movements. The highest average saliency is
primarily found at the shoulders, where the subjects pullover
sharply contrasts the background. In most frames, the maximum
mutual information is located on the subject’s face, whereas
the maximum saliency is mostly found in the subjects action
space (in the vicinity of the tutor’s hands). Some exemplary
frames are shown in Fig. 7(a). In some frames, the global
mutual information maximum is located directly on the cups

Fig. 7. Subject demonstrating cup stacking towards an infant.

shown to the infant. Obviously, the cups are no source of sound
in these situations but provide synchrony due to the interplay
of parents’ speech and motion.

The second video shows a demonstration of the wooden
bricks (Fig. 8). On average, both saliency and mutual informa-
tion show high values on the face and the right hands action
space. The maximum mutual information is mostly found in
the action space and—contrary to the first video—less often
on the face. However, the synchrony is, in some frames, dis-
tracted towards, e.g., the infant’s head, moving into the camera
view. Also the saliency maxima are mainly restricted to this
action space but not exclusively to the hands and objects as
a maximum can, for instance, be found on the shirt’s sticker.
Generally, saliency is, however, less attracted by the subjects
clothing compared to the first discussed video.

Taking both videos into account, one has to note that a per-
fect detection of task-relevant locations can be expected nei-
ther from synchrony or saliency nor from any bottom-up atten-
tion strategy. However, we can state that synchrony quite often
points toward those locations and is hardly vulnerable to con-
spicuous modality-specific stimuli like textures or colors, where
saliency maps are by design.
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Fig. 8. Subject demonstrating wooden bricks towards an infant.

C. Discussion

The results presented in this section give a clear indication
that multimodal motherese indeed involves a higher synchro-
nization between gestures (or generally movement) and speech.
Though this effect was also described by Gogate et al., it is re-
markable that it can be detected even at signal level. Moreover,
our results show the synchronization for the first time by means
of an objective, gradual measurement—avoiding a human’s bi-
nary decision whether a condition is synchronous or not. The
finding that more synchrony is detected throughout all four in-
vestigated tasks strengthens this observation. Also the signifi-
cant correlation between AA and AC conditions indicates that
our signal-level synchrony method is able to uncover systematic
communication schemes.

It has been argued that cues from child-directed communi-
cation help to guide attention towards important parts of either
the speech signal or the visual scene [35], [36], [6]. The shown
spatial distributions and example frames suggest that mutual in-
formation can indeed be used to find relevant image locations.
Gogate et al. found that object motion is often used synchro-
nously to a word label in multimodal motherese. Though the

correlation analysis is performed on an entirely different level,
this is consistent with the observation that high mutual infor-
mation values can be found on shown objects during parental
speech.

However, we cannot generalize our results to a general com-
munication scheme, since our analysis is limited to two videos.
Here future investigations could, e.g., continue on the scheme
used in [18], counting occurrences of maximum mutual infor-
mation on the face, hands, and demonstrated objects throughout
an entire set of videos. In particular, the relation between mutual
information cues and purely visual saliency cues should be in-
vestigated. If audiovisual synchrony truly is an additional mean-
ingful cue in multimodal motherese, there should be significant
statistical differences between saliency and mutual information
maxima.

So far we did not analyze the temporal characteristics of syn-
chrony. It was argued [37] that child-directed speech has the
function to arouse and guide the infant’s attention. Whereas our
study focuses on the guidance, it is also likely that synchrony
in multimodal motherese is used to arouse the infant’s attention
when the child is currently not attending to the parent or the task.
In that case, an increased level of synchrony might be measur-
able. Both functions are highly plausible in the context of the
intersensory redundancy hypothesis [9] as young infants have
been shown to preferentially attend to synchronous stimuli.

IV. CONCLUSION AND OUTLOOK

We started right away from the question of how the mapping
between words and concepts in word learning of infants is
achieved. Following the arguments of Tomasello and others,
we argued that it is crucial to consider it not as a simple batch
learning task but rather as an interactive, social process. In
our approach, we targeted a developmentally early modeling
of binding, rather than a signal level, but in the context of a
social learning scenario. In this scenario, we analyzed parents’
behavior in a contingent interaction with their children. The
effect that parents behave differently when tutoring infants
compared to other adults by providing information in a more
structured way has been termed “multimodal motherese” [6].

The driving research question for this paper was whether, and
how, synchrony cues provided by a tutor can be detected with
a computational model at signal level. Here, we clearly showed
that the proposed model is able to uncover these cues. Though
Prince [29] already confirmed that the model is basically suited
for modeling infants synchrony detection, our work is the first
to analyze this kind of model in an interactive tutoring situation,
thus placing it in the context of social learning.

In congruence with the findings by Gogate et al. [6], also
our results suggest a stronger intentional aim of the tutor when
interacting with infants. The observed increase of correlation
in infant-directed tutoring compared to adult-directed tutoring
underpins the awareness of the tutor about how to manipulate
the learner’s attention, namely, by exploiting the infant’s pref-
erence for intersensory redundancy. In particular, by our study
and model, the presence of “multimodal motherese“ is verified
directly on the audio-visual signal in adult–infant tutoring.
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Fig. 9. The humanoid infant-like robot iCub.

A. Application to Learning-Enabled Robots

From the very beginning of the conception of our algorithm,
its applicability for artificial intelligent systems and its usability
to enable them to learn has been in the focus of investigation.
Consequently, one rationale for choosing particularly this com-
putational model lies in its simplicity and efficiency. We partic-
ularly strive to endow robots—e.g., humanoids like iCub [38]
(see Fig. 9)—with learning abilities resembling those of hu-
mans to a certain extent. In this sense, the work is a contribution
to social robotics in general and to attentional models in robot
learning in particular.

Specifically, interactive learning—also in robots—demands
models of joint attention, in particular to assure an appropriate
solution to the binding problem. Joint attention describes the
effect that a social partner can influence the attention, which al-
lows the interacting agents to simultaneously engage on one and
the same external thing and form a kind of mental focus [39].
Kaplan and Haffner [40] distinguish four major requirements in
order to achieve learning-enabling joint attention in robots: i) at-
tention detection as the ability to understand attentional cues of
the interaction partner; ii) attention manipulation relating to the
ability to proactively affect the interaction partner’s attentional
behaviors; iii) social coordination controlling the actual course
of interaction involving requirements such as turn-taking; and
iv) intentional stance covering mutual context-aware interpre-
tation and prediction. In the notion of Kaplan and Haffner, the
presented computational model focuses on the detection of at-
tention. It has been seconded by our findings that multimodal
synchrony is a major cue for this detection.

For the challenge of attention detection, our computational
model should, however, not be seen as an exclusive alternative
to existing bottom-up attention models like saliency maps [33].

Rather, it provides a valuable addition and extension to them.
Regarding subsequent processing, synchrony and saliency maps
have the same structure and interpretation as they provide a to-
pographic map of importance over the visual scene. Hence, it
can be directly applied in any learning scenario exploiting vi-
sual saliency, such as presented by Nagai et al. [18].

An immediate integration of both concepts can, for instance,
be accomplished via feature weighting schemes, which are also
discussed as top-down strategy for visual search tasks [41],
[42]. Since synchrony is always caused by the dynamics in a
scene, more weight can be given to dynamic features (difference
images, optical flow) in situations with high audiovisual syn-
chrony. When there is no synchrony, the system can focus on
static features like intensity, color, and orientation. In fact this
view is consistent with the intersensory redundancy hypothesis
[9]. The IRH claims that infants preferentially attend to amodal
information in the presence of synchrony or redundancy across
modalities. As amodal information, Bahrick et al. refer to,
e.g., temporal, dynamic patterns. In the absence of redundancy
across modalities, infants focus on modality-specific informa-
tion like color.

Generally, this approach could be denoted with two weights
and for the static and dynamic features.

The resulting saliency map is then a weighted sum of con-
spicuity maps, each conducted from a single feature. Increasing

—and therefore the relevance of the difference image
and optical flow features—under synchronous/amodal stimu-
lation forces a shift towards dynamic parts of the scene. An
example of the possible impact of this approach is shown in
Fig. 10.

The presented work fits in line with our general goal, which is
to move away from batch learning in robotics towards “learning
by interacting,” as detailed in [43]. The assumption is that,
similarly to infant-like learning, a lot of structuring is directly
conveyed by interaction and that this structuring facilitates
the learning also in robots. But up to now, most of the work
regarding interactive social learning in robots—for instance,
Leonardo [44] and BIRON [45]—only take already predefined
interaction models as a means to facilitate learning. They build
upon rather high-level interaction strategies and abilities such
as gesture recognition and production, emotional modeling, and
multimodal dialog management in order to achieve interactive
tutoring. Hence, they regard objectives ii)-iv) identified by
Kaplan and Haffner. Though these are also features of learning
by interacting, they start at a higher level of cognitive abilities
corresponding to later stages of development. For specific tasks
and research questions, this is undoubtedly necessary; however,
this paper was focused on the basal principles of learning in
terms of the general binding problem to facilitate learning from
scratch. With our focus on modeling the bottom-up pathway of
multimodal attention in infant’s learning, we lay a cornerstone
to learning by interacting in robotics. Though for now we
focused on an open-loop attentional model from the infant’s
perspective, it is assumed that it constitutes a prerequisite
to any closed-loop interactive behaviors. In order to further
analyze such closed-loop interactions, taking a closer look at
the infant’s and adult’s responses to the multimodal tutoring is
subject to ongoing investigations.
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Fig. 10. Feature weighting based on a global synchrony measure: conspicuity maps are computed from a video stream. The bottom row shows different weights
for the static features (intensity, color, and orientation) and dynamic features (difference images and optical flow). In situations without synchrony, high weight can
be assigned to static features (left). In the presence of synchrony, the weighting promotes the dynamic features (right). A neutral, symmetric weighting is shown
in the middle.

B. Now, What is a “Gavagai”?

In fact, we did not try to answer this question but contributed
to lines of research that investigate formation of multimodal
binding to support, e.g., word learning but did not discuss the
word learning itself. So, the question tackled here is more likely:
“Which cues contribute to our knowledge about a gavagai?” In
order to contribute to the complex space of answers to these
questions, we focus on the analysis of multimodal synchrony,
following the line of the intersensory redundancy hypothesis.
In this view, intersensory redundancy is an important source of
selective attention and learning in infancy [9]. A computational
model correlating visual and auditory signals into a multimodal,
spatial saliency model has been put forward as well for the of-
fline analysis of adult-infant interactions as also for the online
use as an attentional cue to facilitate learning in artificial intel-
ligent systems. Relating our findings to the notion of synchrony
of events as outlined in Section II, it can be stated that we pre-
sented a model to detect the on- and offsets of events implicitly
present in the perceptual signals by synchrony. Thus, by means
of these implicit event boundaries, information is structured and
learning-relevant information is conveyed by tutors. Similar to
preverbal infants, this information shall be exploited in order to
enable robots to achieve a basal level of word-learning abilities
following the developmental pathway, but in a social learning
setting. Hence, one day our robot shall be enabled to answer
what its own understanding of “gavagai“ is.
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