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Goal Babbling Permits Direct Learning
of Inverse Kinematics

Matthias Rolf, Jochen J. Steil, and Michael Gienger

Abstract—We present an approach to learn inverse kinematics
of redundant systems without prior- or expert-knowledge. The
method allows for an iterative bootstrapping and refinement
of the inverse kinematics estimate. The essential novelty lies
in a path-based sampling approach: we generate training data
along paths, which result from execution of the currently learned
estimate along a desired path towards a goal. The information
structure thereby induced enables an efficient detection and
resolution of inconsistent samples solely from directly observable
data. We derive and illustrate the exploration and learning process
with a low-dimensional kinematic example that provides direct
insight into the bootstrapping process. We further show that
the method scales for high dimensional problems, such as the
Honda humanoid robot or hyperredundant planar arms with up
to 50 degrees of freedom.

Index Terms—Goal babbling, inverse kinematics, motor explo-
ration, motor learning.

I. INTRODUCTION

L EARNING to control our own body is a fundamental
problem in human development. In early childhood,

infants need to learn the most basic skills like reaching for an
object. The ability to learn control from scratch also allows us
to master the change induced by body growth and to learn more
complex tasks like writing or riding a bicycle [1]. The control
of such tasks can be well-understood with the notion of internal
models [2]. Internal models describe relations between motor
commands and their consequences. Once internal models are
established for a certain task, a forward model predicts the con-
sequence of a motor command, while an inverse model suggests
a motor command necessary to achieve a desired outcome.

How can internal models emerge from initially uncoordinated
behavior? Before internal models can be applied for coordi-
nated control, experience must be gained by exploration. The
crucial question is how to acquire that experience, i.e., how in-
fants explore their bodies for coordination. Piaget suggested that
human– (motor) development progresses in several stages [3].
At first, infants react purely reflexive. From an age of six weeks
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to approximately four months, the development is characterized
by primary circular reactions. Infants try to reproduce observa-
tions that initially only occur by chance. Infants repeat those
actions over and over again. At the age of eight months, infants
then intentionally reach for objects. This finding inspired Melt-
zoff and Moore [4] to derive the concept of “body babbling,” re-
lated to the vocal babbling [5] of young infants. They describe
body babbling as an initial stage in which experience is gath-
ered. Infants then use this experience to attempt goal-directed
action and fine-tune their skills on the fly. Similar to Piaget’s
work, a conceptual difference is introduced between exploration
(gathering experience) and control (application of experience).

Contrary to Piaget’s suggestions, evidence over the last
decades clearly shows that infants perform goal-directed move-
ments from the very beginning. For instance, von Hofsten
has repeatedly highlighted the role of goal-directed action for
infant motor development: “Before infants master reaching,
they spend hours and hours trying to get the hand to an object
in spite of the fact that they will fail, at least to begin with,” [6].
Statistics revealed that already days after birth, infants attempt
goal-directed action by means of arm and finger movements
[7], [8]. Even behaviors that were previously regarded as re-
flexes have been rediscovered as goal-directed actions [9], [10].
These findings of early goal-directed actions clearly suggest
that “learning by doing” plays a central role in infant motor
development. Infants learn to reach by trying to reach. Whether
learning by doing—or rather exploration by trying to do—is a
sufficient exploration strategy or other strategies are needed as
well is, however, not clear.

A. The Learning Problem

Before infants, but also robots, can master deliberate
reaching, inverse models must be learned for their limbs or
even the full body. All joints must be coordinated in order to
move the hand. In the present work, we investigate the kine-
matic control of redundant systems. Formally, we consider the
relation between joint angles and effector poses

(e.g., the position of the hand). Thereby, is the
number of degrees of freedom (DOF) and is the dimension
of the target variable (e.g., for the spatial position of a
hand). The forward kinematics function describes the
causal and uniquely determined relation between both sizes. It
cannot be used directly for coordination and control, because
to position the hand at some desired target , an inversion
mechanism is needed to find appropriate joint angles that
apply the desired position .

An inverse function, however, is not uniquely defined if the
number of joint angles exceeds the number of controlled di-
mensions . Even for , there are typically multiple so-

1943-0604/$26.00 © 2010 IEEE



ROLF et al.: GOAL BABBLING PERMITS DIRECT LEARNING OF INVERSE KINEMATICS 217

Fig. 1. Robot arm (length 1 m) with two joints. The left display shows the joint space. The bottom axis encodes the angle of the first joint between �� and ��
radiant and the left-hand axis encodes the angle of the second joint with the same range. Nonconvex sets of configurations [see, e.g., postures (a)–(c)] can be used
to reach the same height of the end effector and are marked by colored contours in the joint space. Multiple configurations that apply the same height [e.g., (a)–(c)]
must not be averaged, because the average may result in a different height [see posture (d), the average of (a)–(c)].

lutions for a target . If there are more degrees of freedom
, an infinite number of joint angles exists for the same

target. Several learning schemes to find appropriate joint angles
have been proposed including feedback-based learning schemes
(e.g., [11]) which resemble Jacobian-based controllers [12], as-
sociative procedures (e.g., [13]) as well as feed-forward-based
schemes(e.g., [14]).Wefocusonthefundamental taskof learning
a single inverse function/model that returns joint an-
gles for a given target such that . Evidence for
the relevance of this task comes, for instance, from prism-glass
experiments on human learning of new sensorimotor maps [15].
Thedirect inversefunction here,selectsexactlyoneofthese
joint angles, which describes adevelopmentally plausiblepath by
first learning one valid solution before trying to remember all so-
lutions. Despite being seemingly simple in terms of control, the
earlier proposed methods for the learning of a direct inverse func-
tion are either unplausible from a developmental point of
view or fail in the case of redundancy. It is the aim of this paper
to provide a method that both can deal with redundancy and is
developmentally plausible.

A minimal example of redundant control is shown in Fig. 1:
a robot arm with two joints and a
total length of 1 m is controlled to achieve a certain height of
the effector . Left/right movements of the effector are
ignored in this example. The redundancy appears in form of
manifolds through the 2-DOF joint-space, on which all joint
angles apply the same effector height. Some of these manifold
are visualized by colored contours (see Fig. 1).

The geometry of the arm defines the forward kinematics func-
tion as

(1)

An inverse kinematics function in this example must return
joint angles for each desired effector height .
Such an estimate can be visualized by a one-dimensional man-
ifold through the joint space. Figs. 2(a) and 2(b) show two ex-
amples. For several target heights , the joint angle estimates
are shown by colored markers on the manifold and visualized
by corresponding postures in the 3-D simulation. Small green
markers show the examples used for learning. An accurate in-

Fig. 2. Direct inverse learning with random motor babbling as exploration
process does not yield a correct inverse estimate because of the nonconvex
redundancy manifolds. Goal babbling finds an accurate solution. The small
green crosses show the position of the example configurations used for learning.
(a) Motor Babbling and (b) Goal Babbling.

verse estimate positions all markers on the contour with the
same color.

Two substantial problems must be solved when an inverse
model shall be learned from experience.

1) Inversion of causality. It is difficult to get at least one
correct solution for a target . In the case of forward
kinematics, or generally forward modeling, the correct out-
come for a model input can simply be probed by ap-
plying (the cause) and observing . This probing is not
possible for inverse problems, where a cause is searched
for a desired outcome.

2) Nonconvexity. It is also difficult to deal with the pres-
ence of multiple solutions. The sets of solutions in redun-
dant systems typically form nonconvex sets (see Fig. 1).
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Learning algorithms that average between multiple correct
solutions consequently fail [14].

Existing approaches to the exploration and learning of
inverse kinematics split into two groups: error-based and ex-
ample-based methods.

Error-Based Learning: Error-based methods follow the
“learning by doing” approach. An estimate of the inverse
kinematics is used for trying to reach for a target position

. Using the joint angles returned by
the inverse estimate, the resulting position of the effector is
evaluated with the forward kinematics function , and
will generally differ from the target position . Error-based
approaches then aim at improving the inverse estimate at
the target position . One group of mechanisms is based
on the “motor error.” The motor error is a correction of
the joint angles that is added to the estimated joint angles in
order to improve the performance. If such a value is available,
it can directly be used to improve the inverse estimate. In
feedback-error learning [16], [17], it is simply assumed that a
mechanism to compute that motor error is already available. In
learning with distal teacher [14], [18], an estimated forward
model is used for learning. A motor error can be derived
analytically by differentiating the forward model. The forward
model must be pretrained with an exhaustive, nongoal-directed
exploration of the joint space [14], which is very inefficient for
many degrees of freedom. Both methods can, in principle, deal
with redundant systems. The critical problem is that the motor
error is not directly observable. The prior existence of a module
for computing the motor error is not plausible for problems that
exceed the control of a single muscle. Neither is the analytic
differentiation of a forward-model.

A special case of error-based learning has been developed in
[19] and [20]. The error in the effector space is used
directly for learning. The idea is to correct mistakes a priori by
shifting the target positions. The information used in this case is
fully observable, but the method has not been shown to work for
redundant degrees of freedom , and requires a rather
accurate inverse estimate in advance.

Example-Based Learning: Example-based methods use ex-
ample configurations for the learning of an
inverse estimate . This kind of learning has also been named
direct learning of inverse kinematics. The existing approaches
differ in the way how such examples are generated. Motor bab-
bling [21], [22] is a pure random form of exploration. It has
been proposed as an implementation of the “body babbling” in-
troduced by Meltzoff and Moore, but was used also before body
babbling was introduced [23], [24]. Joint angles are randomly
chosen from the set of all possible configurations , and
the outcome is observed. This approach can solve the
inversion of causality, if enough examples are generated such
that will come close to any desired (and possible) effector pose

. However, it is subject to the nonconvexity problem and the
curse of dimensionality. An outcome of motor-babbling for in-
verse kinematics learning is shown in Fig. 2(a).

A few goal-directed exploration approaches have also been
investigated. Experience is generated with an initially chosen
inverse estimate that is used for trying to reach for target
positions . Using the joint angles computed by

the inverse estimate, the resulting effector pose is
evaluated. Samples are generated for several target po-
sitions and the inverse estimate is iteratively updated with
those samples. It was shown that such exploration and learning
processes can be successful for discrete redundancies
if a “good enough” initial estimate is available [25]. In general,
no success can be guaranteed even if the system is not redundant
[26]. As the entire exploration depends on the inverse estimate,
the success depends on the extrapolation of the used function
approximation method. If an outcome is observed, the model
is not necessarily improved at the target position and the same
mistake might be repeated. The approach—as previously dis-
cussed in literature—is unable to invert causality in a reliable
fashion. Moreover, also the goal-directed approach is subject to
the nonconvexity problem.

Example-based learning of inverse kinematics has only been
shown to be successful if training data without incon-
sistent solutions is already available [27]. This requires an ex-
pert to generate such training data—either another controller
that moves the robot or, e.g., a human caregiver by kinesthetic
teaching. Autonomous approaches to learn inverse kinematics
based on examples have so far consequently failed on redun-
dant systems.

II. GOAL BABBLING

With “goal babbling,” we generally refer to the successful
bootstrapping of some motor skill by the: 1) repeated process
of; 2) trying to accomplish; and 3) multiple goals related to
that skill. Goal babbling means learning by doing from scratch.
We use this terminology in order to highlight the similarities,
but also the differences to previous concepts. The exploration
process focuses on the goals of action instead of the means. The
emphasis in this approach is on “trying to accomplish,” which
means to generate paths towards the given goal with the cur-
rently learned system and to evaluate samples along this path.
It turns out that this path-based approach remedies the major
flaw all previously proposed methods share: they all consider
samples in isolation. We show that we can exploit additional
information provided by the fact that the executed motion, and
therefore, the samples are continuous along the paths generated
by “trying to reach” for goals. In the present work, we use a
random selection of target positions, but which may ultimately
be selected by a higher cognitive mechanism. Intimately related
to the original concept of vocal- as well as body-babbling, rep-
etition is important. A goal must be tried to be accomplished
again and again in order to succeed.

In the remainder of this paper, we introduce and evaluate a
computational model for goal babbling, inspired by the findings
of goal-directed action in infants. We show that the developmen-
tally plausible method is a successful bootstrapping strategy for
the inverse kinematics of redundant systems.

A. Goal-Directed Exploration

As starting point, we introduce goal-directed exploration as
in [25] and [26]. Examples are generated with an un-
trained or inaccurate inverse estimate , where are the
parameters adaptable by learning. In principle, any standard ma-
chine learning approach can be chosen for , e.g., neural
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networks, local learning schemes, or polynomial regression. If
the parameters are not necessary for the discussion, we will
write for short. Initially, a set of target positions is chosen:

. The inverse estimate is then used
to acquire respective training data: .
The set of generated examples is denoted as

(2)

Note that this set has no particular predictable structure in the
joint space, because were chosen arbitrarily. The parameters

of the inverse estimate are then updated to minimize the com-
mand error [26]

After the adaption of the parameters, the process is repeated. We
will refer to this method as plain goal-directed exploration. The
overall goal of learning inverse kinematics is to minimize the
performance error

(3)

Plain goal-directed exploration does not necessarily reduce the
performance error. It fails to invert causality in a reliable way.
For instance, if the output of the inverse estimate is constant

, only one effector pose will be observed. The
command error is zero in this case, since is
already achieved. The performance error is not zero if other goal
positions than exist. A further problem is that the inverse
estimate is unstable in the nullspace of movement, i.e., along its
orthogonal direction. Any drift of the inverse estimate in that di-
rection may self-reinforce in the next step and cause the inverse
estimate to drift away. An example of the learning dynamics is
shown in Fig. 3. The inverse estimate drifts away into the upper
regions of the joint-space visualization. Finally, inconsistent ex-
amples can also exist under goal-directed exploration.

B. Path-Based Inconsistency Detection and Resolution

Two samples and are inconsistent, if they
represent the same effector pose , but different joint
angles . Regardless of the kind of exploration that is
used to generate samples, two samples with exact same effector
pose will rarely be found. Resolving inconsistencies solely
based on the samples is therefore hardly possible. We argue
that inconsistency resolution becomes feasible if we take into
account the sample generation method itself, which is not the
case in plain goal-directed exploration.

Structure of Inconsistencies: For redundant systems, incon-
sistent configurations generally exist, where

is the set of possibly generated joint configurations. To
gain further insight, we assume that two inconsistent samples

are generated in the goal-directed explo-
ration . These samples must originate from
two different target positions (for identical target po-
sitions , it follows that because

).

Fig. 3. Learning dynamics with plain goal-directed exploration from (a) to
(d). Learning occurs from inconsistencies, as the controlled manifold intersects
some redundancy manifolds multiple times. The estimate drifts in its orthogonal
direction, where no training data is available.

We now perform the crucial step in our analysis, which moti-
vates to evaluate samples along paths. We use the inverse es-
timate to attempt a linear target motion between and
[see Fig. 4, (left)], i.e., perform “trying to reach” for . The
system starts from the joint configuration , corresponding to

, moves its joints along some path and ends up in joint con-
figuration . At the beginning and end of the movement, the
effector has the same pose . When the effector is ob-
served while trying to follow that straight path, two cases can
occur.

1) An effector motion occurs while using the inverse estimate
to follow a linear target motion between and

. Since the effector returns to the same position, the ob-
served effector movement must have a closed shape [see
Fig. 4, (right)]. The goal is to follow a straight line, i.e.,
to keep the movement direction constant, but the observed
movement direction changes.

2) The effector pose remains constant, in spite of the joint
movement from to . This case can occur when the
inverse estimate moves exactly along one redundancy
manifold. This case is characterized by a minimum of
movement efficiency as defined in (5). While the joints are
moved, the effect on the effector is zero.

We conclude that along a path between two target points,
inconsistencies occur only if either: 1) unintended changes
of movement direction; or 2) movements with zero efficiency
are present, which both can be detected from observation of
the movement. For goal babbling, we consequently propose
to sample data along paths between the target positions ,
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Fig. 4. (Left) Space of target positions � . A linear target motion shall be produced between two targets. (Right) Space of results � � ����� ��. An inconsistency
occurs, e.g., when the grid is folded. The formerly straight line now has a circular shape.

e.g., using intermediate samples between and . Data
are therefore connected on a -dimensional manifold inside
the dimensional joint-space that is defined by the inverse
estimate. Along this manifold, we obtain temporally
ordered targets and data points , where

are the samples corresponding to the
original targets .

Inconsistency Resolution: We now provide a mechanism to
exclude inconsistent samples along the generated paths using
the insights from the last section. We assign weights for
each example , and take into account the temporal order
of the examples. Unintended changes of movement direction
can be tackled with a scheme that bases upon a special case: If
the observed movement direction never deviates by 90 or more
from the intended movement direction, circular shapes as shown
in Fig. 4 can not occur. We utilize this fact in the following
weighting scheme:

(4)

Thereby, is the angle between the in-
tended and actual movement direction of the effector. If both are
identical the angle is 0.0 and the weight becomes .
If the observed movement has the exact opposite direction, the
angle is 180.0 and the weight becomes . If a circular
motion occurs for a linear target motion, one half of the motion
receives a higher weight than the other one and the inconsistency
can be broken. If the estimate is rather accurate and the
intended movement direction can always be realized, all sam-
ples receive full weight 1.0.

The second case of an inconsistency (low movement effi-
ciency) can be resolved by weighting with the ratio of effector
motion and joint motion, which becomes 0.0 if the joints move
without effector motion

(5)

Since both weights are necessary for inconsistency resolu-
tion, they are multiplied such that an example is ignored if any
of the two criteria assigns a weight zero

(6)

The weighting scheme relies on the temporal order of samples
along the trajectory, since the actual and the last sample is taken
into account. In particular, it relies on goals: unintended changes
of movement direction can only be detected if there is an in-
tended direction. The path-based exploration generates an -di-
mensional manifold within the joint space, where the informa-
tion about continuity along this manifold allows for evaluation
of the movement directions. It is this very information structure
that allows for a resolution of inconsistencies and distinguishes
our scheme from all previous ones. The rules are local in space
and time, since only the immediate temporal and spatial context
is considered. Therefore, both rules are imperfect, since only
one movement direction can be observed at a time. However,
we show experimentally that the rules are sufficient to resolve
inconsistencies.

C. Structured Variation for Efficient Exploration

The proposed resolution of inconsistencies is not yet suf-
ficient to find an accurate inverse estimate, since it does not
solve the inversion of causality. Again we use a developmentally
plausible principle: If a motor command is sent twice, neural
and muscular noise as well as external perturbations can cause
slightly different outcomes.

Such perturbations do not result in erratic movements in the
first place and rather cause smooth deviations when a goal-di-
rected movement is attempted. We simulate this at the kine-
matics level by adding a small disturbance term to the
inverse estimate

(7)
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Examples are then generated with this variation instead of the
actual inverse estimate , . We denote
the set of examples generated for a variation as

(8)

The assumptions and arguments for the inconsistency reso-
lution still hold, since is again a function and spans a

dimensional manifold in the joint-space along the respective
path. For a given set of examples , the weighting scheme can
be applied as proposed above. The index is added to identify
weights for examples of a specific variation

(9)

(10)

(11)

The Home Posture: Although exploration is fundamental
in infancy, infants do not try to reach for an object forever.
At a time, they stop exploration, relax their muscles, and
rest. Learning is possible from such a “neutral” motor com-
mand, since there is still a resulting effector pose. At the level
of kinematics, we denote a home posture as neutral
motor command. The result can be observed and
used for learning as any other example. We add the example

to each set generated
with goal-directed exploration

(12)

The “home” example receives the full weight .
A home posture is a stable point in exploration, and thus

in learning. The inverse estimate will generally tend to repro-
duce the connection between and if it is used for
learning: . The easiest way to achieve the
result of applying the home posture is: applying the home pos-
ture. This stable point largely prevents the inverse estimate to
drift away. Learning can start around the home posture and pro-
ceed to other targets.

Algorithm 1: Goal Babbling Pseudocode

Require: Forward kinematics:

Require: Set of target positions:

Initialize learner:

for Number of epochs do

Select target sequence from :

for do

Select disturbance term:

Get variation:

Generate examples:

Compute weights ((9), (10) and (11))

Add home posture:

end for

Reduce error on using gradient descent

end for

D. Learning

Example data (and corresponding weights) from multiple dif-
ferent variations is combined for learning,
where is the number of different variations. The com-
plete set of examples is then

(13)

The multiple variations allow to discover new poses by chance
which solves the problem of plain goal-directed exploration to
reliably invert causality. Furthermore, it ultimately solves the
instability problem of goal-directed exploration if the number of
variation exceeds the joint dimension , since all directions
in the joint-space are locally covered.

In the learning step, the parameters of the inverse estimate
are updated using the generated examples
(including the home posture) and weights in a regres-

sion step to reduce the weighted command error

(14)

Any regression algorithm can be used for this step (e.g., linear
regression schemes).

The overall procedure works in epochs. The inverse estimate
is initialized with some parameters . We use a random initial-
ization such that the inverse estimate generates joint configu-
rations closely around the home posture for all goal positions.
There is no a priori knowledge about the structure or the param-
eters of the kinematic function. Within one epoch, examples are
generated from multiple variations, weights are assigned, and
the learning is performed with the examples. The next epoch re-
peats the procedure with the updated inverse estimate. The entire
procedure is also detailed in Algorithm 1.

The introduction of multiple variations in the exploration lo-
cally adds multiple solutions. However, if the disturbance terms

have numerically small values, these solutions are lo-
cated in a small region in the joint space. Therefore, the error
induced by the nonconvexity problem is generally very small
and can safely be neglected. The weighting based on intended
movement directions prevents learning from significantly in-
consistent examples. The efficiency weighting allows to “se-
lect” examples generated by different variations. Good solu-
tions in terms of the movement efficiency criterion [see (5)]
will dominate the learning and cause the inverse estimate to be
aligned along such optimal joint configurations. The averaging
is therefore constructive (compared to the destructive averaging
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in motor babbling) which is only possible due to the combina-
tion of variation and weighting. Striving for such optimal move-
ment efficiency is not a luxury. It is necessary to resolve in-
consistent solutions and guide the exploration systematically to-
wards new targets.

E. Example

An example of inverse kinematics learning with goal bab-
bling for the minimal 2-DOF problem [see Fig. 1] is shown
in Fig. 5. The inverse estimate is initialized in a small region
around the home posture, which we set to .
The next images show the progress of the method after several
epochs. Each image shows the current inverse estimate together
with the currently generated example data. The aim is to con-
trol the effector’s height within the full range from m to
1.0 m. Initially, only heights around m are reach-
able. Target positions between the extremes m and 1.0 m
are tried to reach from the very beginning, although these at-
tempts are not successful at first.

Three qualitative stages can be observed in the progress
of bootstrapping the inverse kinematics. These stages are not
preprogrammed, but they arise naturally from the learning
dynamics. In the first stage (orientation), the manifold spanned
by the inverse estimate remains close to the home posture.
Only a small set of effector poses can be observed, such that
the command error is rather small (similar to the case of
a constant function ). Triggered by the exploration of
variations, the inverse estimate starts to align with the correct
movement directions and for optimal movement efficiency.
Thereby the weights of the examples slowly increase.

Once the inverse estimate is aligned with optimal directions,
the second stage (expansion) can be observed. The extrapola-
tion of the inverse estimate causes a rapid expansion of the in-
verse estimate in the joint space. This stage is characterized by
a rapid decrease of the performance error. Due to the efficiency
weighting, the expansion directly follows the steepest, most ef-
ficient direction. The inverse estimate is aligned nearly orthog-
onal to the redundancy manifolds.

The expansion saturates when the ridge of the forward kine-
matics is hit. More expansion would not discover new effector
positions, but only introduce more inconsistencies since the
same redundancy manifolds would be crossed again. Samples
generated beyond the ridge are, however, filtered out by the
weighting of correct movement directions (9). Then the third
stage (tuning) can be observed. The inverse estimate finds
the nonlinearities that are necessary to reach for the extreme
positions and to further optimize the movement efficiency. The
performance error decreases slowly until it converges.

F. Influence of the Home Posture

The home posture is an open parameter of the exploration
procedure, which can be used to shape the inverse estimate. Goal
babbling works robustly for a wide range of home postures. An
example of a different home posture is shown in Fig. 6(a). The
inverse estimate aligns with the optimal efficient movement di-
rection with respect to the home posture, which acts as origin.
Goal babbling can even be successful, if the home posture is
placed in a singularity, as shown in Fig. 6(b). In that case, mul-
tiple ways exist to leave the singularity with optimal movement

Fig. 5. Inverse kinematics learning with goal babbling. The images show suc-
cessive stages of the learning process. The inverse estimate is initialized around
zero in joint space. It unfolds successively and finally reaches an accurate solu-
tion. (a) The inverse estimate is initialized around the home posture. (b) Orienta-
tion: the inverse estimate has aligned with the steepest direction. (c) Expansion:
the performance error decreases rapidly. (d) Tuning: the inverse estimate finds
the necessary nonlinearities to reach for extreme positions.

efficiency (two in the example). This symmetry is broken by
the randomized exploration of variations. The learning can get
stuck if the inverse estimate hits the joint limits, such that a
further local improvement of the inverse estimate is not pos-
sible, see Fig. 6(b). Goal babbling shares this problem with feed-
back-error learning and learning with distal teacher. All three
approaches operate iteratively, based on local improvements.
Although motor-error-based methods do not make explicit use
of a home posture, they require an initial placement of the in-
verse estimate and cannot proceed if local improvements are not
possible. Home postures that cause such ill-posedness are, how-
ever, biologically not plausible for systems that need to boot-
strap their motor repertoire. Also, they are easy to avoid in en-
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Fig. 6. The inverse estimate can be shaped by the choice of the home posture, which is shown as green circle. Learning is still possible from a singularity as
start point. However, learning can no longer proceed if the joint limits are hit. (a) Outcome for � � ����� ������. (b) Two possible outcomes for � �
�����������, which is a singularity of the forward kinematics.

gineering by choosing a position in the center of the joint space
and nearby the target positions that are tried to reach.

III. EXPERIMENTS

In this section, we show results of goal babbling for different
robot morphologies. We start by extending the simple 2-DOF
arm (see Fig. 1) by more degrees of freedom and finish with
goal babbling on the Honda humanoid research robot.

A. General Setup

In all experiments, we use polynomial regression [28] to rep-
resent the inverse estimate . The input vector is
expanded by a feature mapping , which calculates
all polynomial terms of the entries of . Thereby, is the max-
imum degree of the polynomial terms and is the number of
polynomial terms that can be calculated from an dimensional
vector. For a two dimensional input vector,
and a polynomial degree calculates the terms

. A linear regres-
sion with parameters operates on these features

(15)

The entries of the regression matrix are adapted by gradient
descent in the weighted command error as defined in (14). We
use a learning rate of 0.2. Before exploration and learning pro-
ceed, we initialize to zero and perform random adaptions
such that produces joint angles in a range of 0.1 ra-
dian around the home posture.

For the exploration we use linear disturbance terms

(16)

The values of and are chosen randomly, such that the dis-
turbance of any joint-angle never exceeds a range within the
bounded set of target positions

B. Planar Arm: 1-D Control

We start our experiments with the simulated robot arm in
Fig. 1. The arm with initially two degrees of freedom
is used to control only the height of the end effector .
If only one dimension is controlled, one linear target motion is
enough to cover the whole space of targets. The target motion
is a linear sequence from to with
steps in all epochs. The home posture is such that
the arm is stretched and at height 0.0.

We first investigate the behavior of the exploration range .
Fig. 7(a) shows results for varying between 0.05 and 1.0
radian over 10 000 epochs and for 20 independent trials. The
number of variations was set to , and we used third order
polynomials . The left plot shows the performance
error [see (3)] over time for different values of . The error de-
creases continuously. The qualitative stages orientation, expan-
sion, and tuning can be identified in all curves, where the ex-
pansion shows a rapid decrease of the performance error. High
values like display the fastest convergence, but remain
at a higher absolute error. The right plot shows the final error
reached after 10 000 epochs. For , not all inverse es-
timates are converged after that time, depending on the initial-
ization. For or higher, all trials have converged and
show a very low performance error from –1 to 2 cm with an arm
length of 1 m. An increase of error is visible for high values of

. Here, examples are rather distant, and the residual averaging
error between the variations has a higher impact compared to
small values of . For , the examples are generated in
almost the entire joint space. However, the error is—in contrast
to motor babbling [see Fig. 2(a)]—still small since the inconsis-
tency resolution filters large portions of the generated examples.
Although the speed varies, the general success of goal babbling
is rather insensitive to the concrete exploration range.

Fig. 7(b) shows the same setup, but the exploration range is
fixed to , and the polynomial degree is varied. The
temporal characteristics of the performance error do not differ
significantly for different polynomial degrees. Higher polyno-
mial degrees allow a more accurate approximation of the ex-
amples. While first and second order polynomials do not yield a
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Fig. 7. Performance of goal babbling over 10 000 epochs for the planar arm, whereas only the height is controlled �� � ��. The left plots show the performance
error over time, averaged over 20 independent trials. The finally reached error is plotted against the varied parameter on the right side. The maximum, average,
and minimum error of 20 trials are shown. (a) Results for different exploration ranges�. Higher exploration ranges cause a faster convergence, but higher residual
error. (b) Different polynomial degrees � are used for regression. More expressive regression models (higher order polynomials) reach more accuracy, while the
speed of convergence does not significantly differ. (c) The number of joints � is increased. Successful bootstrapping of inverse kinematics is possible also for
50 DOF

very accurate inverse estimate, the error reaches few millimeters
for higher polynomial degrees (ca. 3 mm error for ). The
averaging error between variations must therefore be smaller
than 3 mm. The error has converged in all cases and shows—de-
pending on the expressiveness of the polynomials—a good per-
formance. Goal babbling was successful for all values of and
in all independent trials.

The next question is how goal babbling scales with the de-
grees of freedom . Results for up to 50 degrees of freedom
are shown in Fig. 7(c). For each value of the arm was divided
in segments of equal length, whereas we kept the arm length
constant at 1 m. For instance, an arm with comprises
10 segments with each 10 cm length. We used and

in order to compare the results to the previous exper-
iments. The results show a rapid and reliable decrease of the
performance error for all values of and in all trials. The sim-
ulated arm with 50 degrees of freedom can be controlled with

an accuracy of 2 cm after 10 000 epochs. Goal babbling is sys-
tematically successful for such hyperredundant setups.

C. Planar Arm: 2-D Control

We continue the experiments with the simulated planar arm,
but increase the dimension of the control task. Instead of con-
trolling only the height , we now consider 2-D posi-
tion control of the effector . The position is encoded
in cartesian coordinates with origin in the base of the arm. The
step from to is essential to show the validity
of the movement direction weighting for redundancy resolution
(9). In 1-D, the angle between intended and actual movement
direction can only be 0.0 or 180.0 . In , arbitrary angles
can occur. Since the weighting scheme (10) only uses the im-
mediate temporal and spatial context, each goal position must
be passed from different directions for a correct resolution of
inconsistencies.
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Fig. 8. Performance of goal babbling over 100 000 epochs for the planar arm, where the 2-D position of the effector is controlled �� � ��. The left plots show the
performance error over time, averaged over 20 independent trials. The finally reached error is plotted against the varied parameter on the right side. The maximum,
average, and minimum error of 20 trials are shown. (a) Results for different exploration ranges�. Higher exploration ranges cause a faster convergence, but higher
residual error. (b) Different polynomial degrees � are used for regression. More expressive regression models (higher order polynomials) reach more accuracy,
while the speed of convergence does not significantly differ. (c) The number of joints � is increased. Successful bootstrapping of inverse kinematics is possible
also for 50 DOF.

The aim in this set of experiments is to gain control over
a part of the possibly reachable positions as shown in Fig. 9.
The set of goal positions is shown as a grid. The home pos-
ture is set to a slightly curved shape, since a stretched position
corresponds to a singularity in the 2-D task. Learning would
still be possible from that position, as either an “elbow-up” or
“elbow-down” configuration could be chosen. However, it takes
more time for the exploration to leave the singularity. A new se-
quence of targets is generated in each epoch. posi-
tions are randomly selected from
the target grid shown in Fig. 9. One after the other is connected
by a linear target motion with intermediate target posi-
tions

(17)

As in the experiment, the target selection does not de-
pend on learning progress and does not change over time.
However, in one linear motion covers the entire target
space. In , multiple linear series are required.

With this setup, we repeated all experiments of the
case. The results are summarized in Fig. 8. Goal babbling re-
quires more epochs for convergence than in the setup. Ex-
cept for the speed, all results can be reproduced for . Again
we used and as default values for
the parameters and one redundant degree of freedom .
Higher exploration ranges [see Fig. 8(a)] result in a faster con-
vergence. The converged performance error only shows mar-
ginal differences across values of . In all cases, the error con-
verges below 2 cm. Only for very small exploration ranges the
error has not yet converged after 100 000 epochs. The variation
of polynomial degrees [see Fig. 8(b)] shows a good and re-
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Fig. 9. An inverse estimate for 2-D position control of a planar 10 DOF arm generated with goal babbling. A third order polynomial was used as approximation
model. The inverse estimate is very accurate as the reached positions are close to the target positions. The inverse estimate makes efficient use of all degrees of
freedom. (a) Target positions � are shown as gray grid. The arm shows the home posture � . (b) The actually reached positions ����� �� are shown as black
grid. Multiple postures ��� � are overlaid to show how the redundancy is resolved.

Fig. 10. Performance of goal babbling over 100 000 epochs on the humanoid robot, where the 3-D position of the right hand is controlled �� � ��. The left
plots show the performance error over time, averaged over five independent trials. The finally reached error is plotted against the varied parameter on the right
side. The maximum, average, and minimum error of five trials are shown. (a) Results for different exploration ranges �. Higher exploration ranges cause a faster
convergence, but higher residual error. (b) Different polynomial degrees � are used for regression. More expressive regression models (higher order polynomials)
reach more accuracy, while the speed of convergence does not significantly differ.

liable performance for all . In the case of 2-D position
control, linear models are not expressive enough to
represent an accurate inverse solution.

Also in the 2-D control case, goal babbling is successful for
hyperredundant setups. Fig. 8(c) shows the results for up to 50
degrees of freedom. An example solution for is
shown in Fig. 9. The target positions are reached accurately.

Goal babbling reliably yields accurate inverse estimates for
. The results confirm that the resolution of inconsistencies

as proposed in the weighting scheme [see (9) and (10)] is valid,
although it only uses local information.

D. Honda’s Humanoid Research Robot: 3-D Control

We further increase complexity with goal babbling on a kine-
matic simulation of the Honda humanoid robot [29], where we

use degrees of freedom. Five joint angles are con-
trolled in each arm: three rotational joints in the shoulder, one
in the elbow, and the rotation of the hand around the forearm
axes. Four virtual joints are controlled in the hip: its orientation
around all three spatial axes and the height over ground. The
hip degrees of freedom are implemented by means of leg mo-
tion, whereas the leg joints are automatically adjusted to realize
the desired hip pose [30]. As additional degree of freedom, the
head-pan direction is controlled. This joint is, like the joints in
the left arm, irrelevant for the task. The kinematic structure is
rather complex compared to the planar arm, as the joints have
offsets and rotate the hands around different axis. Since the
ranges of the possible angles differ significantly between dif-
ferent joints, we normalize the range to

.
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Fig. 11. An inverse estimate for the Honda humanoid robot generated with
goal babbling. Target positions are located in a cube with a 20-cm-edge length
in front of the body. Several postures show how the inverse estimate reaches
for the corners. All relevant degrees of freedom are effectively used. Irrelevant
degrees of freedom (e.g., in the left arm) stay approximately fixed.

In this experiment, we aim at a control of the 3-D spatial
position of the right hand . Nine degrees of freedom are
relevant for this task (five in the arm and four in the hip). The
set of target positions is defined in cube with 20 cm edge length
in front of the upper body (see Fig. 11). A sequence of targets

is generated newly in each epoch and in the same manner
as in the experiment [see (17)]. positions are
randomly selected from the target set and connected by
intermediate positions. We used , and
as default parameters.

The results are shown in Fig. 10. The performance error is
shown over time for different exploration ranges and polyno-
mial degrees . For , it takes more time for the inverse es-
timate to orient with the correct movement direction. The perfor-
mance error decreases slowly, but continuously. The temporal
curves, but also the converged errors have the same characteris-
tics as in the planar arm experiments. Higher exploration ranges
cause faster convergence but higher residual errors. The perfor-
mance error benefits from higher polynomial degrees, indicating
that the full expressiveness of the model can be used. Already
linear models yield accurate inverse estimates with
performance errors around 1.5 cm inside the cube of targets.
An example solution with a third-order polynomial is shown in
Fig. 11. The task-relevant degrees of freedom in the hip and in
the right arm are used effectively. The task-irrelevant joints are
stabilized in an approximately fixed position, which is the most
efficient way to deal with irrelevant joints. Goal babbling shows
a reliable performance also on humanoid robots with complex
kinematic structure in three dimensions.

E. Sensory Noise

So far, we evaluated the effector position with the analytic
forward kinematics function and assumed that the joint
angles can be applied with perfect accuracy. In contrast to a
physical robot system, this involves no noise. On a robot, the
effector position might as well be measured with a stereo vi-
sion system. Thereby, the analytic forward kinematic function
would be fully replaced. In order to assess the influence of sen-
sory noise, which is unavoidable in such systems, we added
Gaussian white noise with different standard deviations to the
effector positions . This noise acts on the learner (14), but

also affects the weight computation [(4) and (5)]. We evaluated
the influence of sensory noise exemplary for a planar arm with
three joints . Fig. 12(a) shows results for stan-
dard deviations from 0 cm up to 10 cm. The noise speeds up the
initial bootstrapping significantly. In the first epochs, the effect
of sensor noise on the effector positions is similar to a higher
exploration range : effector positions are observed, that are
more distant to the home position , which accelerates
the learning. Since such noisy examples do not reflect the true
relation , very high amplitudes of noise cause a degener-
ation of the learning. An increase of the performance error is
visible for standard deviations higher than 4 cm. However, this
amplitude is substantially higher than typical noise in a stereo
vision system [31].

Sensory noise on the joint angles has a different effect. We
applied Gaussian white noise to the joint angles that are used
for the weight computation and the learning. Fig. 12(b) shows
results for standard deviations from 0 radian up to 0.3 radian per
joint. Joint noise slows down the initial bootstrapping. The final
performance is very stable and the performance error increases
only slowly with increasing noise. We can conclude that goal
babbling works reliably also with sensory noise.

IV. DISCUSSION

We have presented an approach to bootstrap inverse kine-
matics for redundant systems without prior or expert knowl-
edge. We have shown theoretical insights about the structure
of inconsistencies in goal-directed exploration [25], [26].
An efficient detection and resolution of inconsistencies is
possible, considering paths on the low-dimensional manifold
spanned by the inverse estimate. To our knowledge, this is the
first successful approach of direct (example-based) learning
that can solve the nonconvexity problem. Moreover, it is the
only successful approach to learn a direct inverse kinematics
mapping exclusively from observable information. Methods
based on the motor-error can in principle deal with redundant
degrees of freedom, but the motor-error is not observable.
Feedback-error learning [16], [17] assumes the prior knowl-
edge about motor-errors. Learning with distal teacher [14], [18]
relies on a complex mathematical derivation of the motor-error,
which is neurally implausible [19]. In contrast, the information
needed for goal babbling is fully observable from movement
paths—actually reached positions, as well as movement direc-
tions and velocities. The method is therefore more plausible as
model for human motor development.

Goal-directedness is essential for the success of autonomous
motor learning. The comparison of intended movement direc-
tions with actually observed movement directions allows to de-
tect and resolve one type on inconsistencies. Striving for op-
timal movement efficiency allows to resolve the other type of
inconsistencies that can occur in goal-directed exploration. The
introduction of a “structured” noise in the exploration allows
to find previously unreachable positions and better solutions in
terms of movement efficiency, while maintaining the informa-
tion structure that is necessary to resolve inconsistencies. Goal
babbling is therefore also successful in inverting causality.

Goal babbling is sufficient as exploration strategy to learn in-
verse kinematics. Unstructured motor-exploration (like motor
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Fig. 12. Performance of goal babbling with sensory noise over 100 000 epochs for the planar arm for � � � and � � �. The left plots show the performance
error over time, averaged over 20 independent trials. The finally reached error is plotted against the varied parameter on the right side. The maximum, average, and
minimum error of 20 trials are shown. (a) Results for Gaussian white noise with different standard deviations on the effector positions. (b) Results for Gaussian
white noise with different standard deviations on the joint angles.

babbling) is not only insufficient for redundant systems, it is un-
necessary. Admittedly, target effector positions are rather low-
level goals. The important aspect, however, is the change of per-
spective: the exploration does not focus on the means of action
(e.g., joint-angles), but on the action itself. Contrary to sugges-
tions of distinct exploration mechanisms in infant motor devel-
opment [4], [32], exploration and control may be based on one
mechanism. Our computational model can explain the transition
from uncoordinated to coordinated behavior with a single mech-
anism. This goal-directedness allows to focus exploration on the
surrounding of a low dimensional subspace. In contrast, motor
babbling aims at an exploration of the entire joint space, which
is impractical up to impossible for many degrees of freedom.
The focus on behaviorally relevant data is the distinct difference
between both exploration methods and constitutes the excellent
scalability of goal babbling in high dimensions. In fact, learning
only one solution for each target is highly beneficial for the ex-
ploration. Not trying to learn all possible solutions also means,
that not all solutions must be known and that large portions of
the joint space can be ignored. It describes an efficient, devel-
opmentally plausible pathway on which, at first, one solution is
obtained for a given problem, before other solutions might dis-
covered on demand.

Our simulation experiments reveal a reproducible stage-like
behavior. This may provide a possible explanation for infant
learning trajectories with rapid transitions between observable
stages. The same kind of trajectories can also be found in
adult motor learning. When adults have to learn entirely new
visuomotor skills, the same qualitative behavior can be found.
Sailer and Flanagan [33] found stage like characteristics of

the learning progress: an initial plateau, a rapid transition to
successful control and fine tuning.

What do infants “babble” in body babbling? Possibly goals
instead of motor commands. Our results clearly support the
function and relevance of early goal-directed action in infants
investigated by von Hofsten and others [6]–[10]. At the same
time the approach is fully compatible with Piaget’s concept of
circular reactions [3]: New experiences can occur by chance,
are reproduced, and built into the repertoire of skills. Thereby,
the motor commands are not just repeated, but the result
becomes a goal which is tried to achieve. The exploration is
therefore shaped by prior experience and learning. This view of
an incremental, ongoing process goes in line with the dynamic
systems view on infant development [34], [35]. Goal-directed
action may not be the only form of exploration in infants.
Reflexes do certainly play an important role and other forms of
exploration may exist. However, “learning by doing,” or goal
babbling can be successful in learning control from the very
beginning. Infants learn to reach by trying to reach. Robots can
do so, too.
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