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A Computational Model of Acoustic Packaging

Lars Schillingmann, Britta Wrede, and Katharina J. Rohlfing

Abstract—In order to learn and interact with humans, robots
need to understand actions and make use of language in social in-
teractions. The use of language for the learning of actions has been
emphasized by Hirsh-Pasek and Golinkoff (MIT Press, 1996), in-
troducing the idea of acoustic packaging . Accordingly, it has been
suggested that acoustic information, typically in the form of nar-
ration, overlaps with action sequences and provides infants with a
bottom-up guide to attend to relevant parts and to find structure
within them. In this article, we present a computational model of
the multimodal interplay of action and language in tutoring situa-
tions. For our purpose, we understand events as temporal intervals,
which have to be segmented in both, the visual and the acoustic
modality. Our acoustic packaging algorithm merges the segments
from both modalities based on temporal overlap. First evaluation
results show that acoustic packaging can provide a meaningful seg-
mentation of action demonstration within tutoring behavior. We
discuss our findings with regard to a meaningful action segmenta-
tion. Based on our future vision of acoustic packaging we point out
a roadmap describing the further development of acoustic pack-
aging and interactive scenarios it is employed in.

Index Terms—Acoustic packaging, action representation, action
segmentation, robot action learning, tutoring situation.

I. INTRODUCTION

COUSTIC packaging has been proposed in develop-

mental research by Hirsh-Pasek and Golinkoff [1] as
a possibility of bottom-up action segmentation. This form
of bootstrapping is suggested to guide children towards the
hierarchically organized action structure known in adults [2].
Moreover, the concept of acoustic packaging complements
the research on action segmentation in two important aspects.
First, it points out a developmental perspective on action un-
derstanding suggesting a way of how meaningful units that are
crucial for action perception and action memory in adults can
be learned. Second, it adds acoustic signals to the features that
have been proposed as mostly visual bottom-up processing for
meaningful action parsing in adults [3].
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A. Developmental Studies

The main idea of acoustic packaging is that while adults are
considered to parse actions in meaningful parts and subparts
[3], children have to discover these units. For the developmental
period between birth and 9 months of age, Hirsh-Pasek and
Golinkoff propose that speech provided by adults has the power
of yielding meaningful chunks out of the action stream [1]. This
power can be characterized by two achievements.

On the one hand, speech can be associated with some ele-
ments of actions [5], [6]. This association can be understood in
terms of the Intermodal Redundancy Hypothesis [7], stating that
information picked up by different senses is redundant and can
be better perceived. Currently, developmental research empha-
sizes the role of sensory overlap for cognitive, social, and emo-
tional development and Zukow-Goldring states that this way, in-
fants attention is educated [6]. For example, Gogate and Bahrick
[8] showed in experimental research that when 7-month-old in-
fants were presented a syllable with a synchronous movement of
the labeled objects, infants could remember this syllable more
easily and link it to the presented objects than their peers re-
ceiving and asynchronous presentation.

On the other hand, the power that speech has also manifests it-
self in helping children to extract some parts and subparts of ac-
tions. The timely coincidence of speech and action, thus, yields
meaningful chunks. This extraction has been shown by Brand
and Tapscott [9] in a study, in which 7.5 to 11.5-month-old in-
fants were familiarized with video sequences showing short ac-
tion clips. The acoustic input coincided with portions of the ac-
tion stream and thus, “packaged” paired clips together. During
the test, infants viewed packaged and nonpackaged pairs of ac-
tions framed in silence. The results of the study revealed that
9.5-month-olds looked longer at the nonpackaged action se-
quences, suggesting that acoustic input (i.e., narrations heard
during familiarization) influenced the way of how infants per-
ceived the action units.

Since action understanding remains a challenge for the
robotics [10], in this paper we suggest that bottom-up mech-
anisms such as acoustic packaging is relevant for younger
children and can pave the way for action learning in social
interactions.

B. Motion Segmentation

From a technical point of view, action segmentation can be
narrowed down to the problem of segmentation of video se-
quences. Previous work associated with this area considers dif-
ferent ranges of motion segmentation like detecting scene cuts
in movies or segmenting group actions in meeting recordings. In
the following, we will group the relevant approaches according
to their segmentation goal and look at properties such as online
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TABLE I
OVERVIEW OF MOTION SEGMENTATION APPROACHES

Reference Segmentation Multi- Online Predefined

Goal modal Classes

[12] Janvier et. al.  Scene cuts no no no

[13] Wolf et al. Key Frames no yes no

[14] Davis et al. Aerobic Actions  no yes yes

[15] Schuldt et al.  Human Actions no ? yes

[16] Rui et al. Actions: Key no ? no
poses

[17] Zhang et al. Group Action yes no no

processing or the capability of handling multimodal input (see
Table I).

1) Scene Cut Detection: The problem of finding key frames
in video sequences is often regarded with the goal to summa-
rize or index the video. The idea is to extract a sequence of sta-
tionary images from the video in which each image represents
the salient content of a certain video segment. These images are
called key frames. Some of the work is focusing on detecting
structure in the video, which results from the video editing such
as scene cuts [11], [12]. Other work is focusing on selecting key
frames within shots marked by scene boundaries [13]. The key
frames are selected at the local minima of a motion feature based
on optical flow. To put it in other words, in this approach, dis-
continuities are detected in the feature stream while some ap-
proaches are capable of online processing [13], others are de-
signed for offline processing [12]. The commonality is that all
approaches use the visual modality only.

2) Action Segmentation: In many approaches, developments
on action segmentation are motivated by recognizing predefined
classes as for example, in [14] and [15]. However if the goal is
to create a system inspired by developmental learning, the cate-
gories and the structure of the action cannot be a priori assumed.
Following the idea of analyzing video sequences without using
pretrained classes, a more complex approach than scene cut de-
tection, but with a similar basis is presented in [16]. This ap-
proach specifically aims at segmenting human actions into key
poses. A key pose is understood as the boundary of a video seg-
ment, which captures important human action changes. The key
poses are detected by searching temporal discontinuities in fea-
tures based on optical flow that are supposed to carry informa-
tion about the movements of the human in the image. The au-
thors discuss potential applications such as summarizing video
sequences, action recognition and segmentation, and selecting
key frames in video compression tasks.

3) Segmentation of Meeting Recordings: Multimodality has
been considered frequently in the analysis of meeting record-
ings. This string of research typically focuses on the segmenta-
tion of coarse grained categories, which occur in meetings and
performs offline processing. In [17], these categories consist of
group actions such as one participant speaking continuously or
most participants being engaged in conversations. The authors
use several high level visual features such as head and hand po-
sitions, as well as audio features such as speech activity and
pitch. They report evaluation of different hidden Markov model
(HMM) based approaches for automatic clustering of group ac-
tions is reported. However, although multimodal cues are taken
into account in this approach, no explicit use of the synchrony
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between the modalities is made. Rather, the relationship be-
tween the modalities is modeled statistically through the tem-
poral structure provided by the HMM:s.

4) Summary: As outlined above, both approaches, scene
cut detection and action segmentation, have the detection of
discontinuities in features derived from the video sequence in
common. But as can be seen in Table I, most of the work fo-
cuses on one modality exclusively and is rarely online capable.
This is especially the case with increasing complexity of the
method. Furthermore, most approaches use points in time as
the only representation of their segmentation results. Thus,
there is no explicit representation of the segments found, which
can further be interpreted.

From this summary, the main implications for the acoustic
packaging model are: a) to handle multimodal input; b) be
capable of online processing; and c) to not require pretrained
classes for detecting segments. Additionally, acoustic packages
need to be represented in a way, which allows to bootstrap a
semantic representation.

C. Programming by Demonstration

Standard approaches within the programming by demonstra-
tion paradigm (or imitation learning) tend to be based on one
single modality derived from hand and object tracking [18].
Such movements are generally tracked either visually or by a
sensor glove. Pardowitz et al. use visual cues related to the hand
and object movements in order to derive a gestalt-based action
segmentation [19]. In other approaches, different kinds of in-
herent movement structure and implicitly coded world knowl-
edge are used allowing for a meaningful action segmentation
[20], [21]. Making use of information derived from parent-in-
fant interactions is a relatively new approach and only few com-
putational systems exist that explicitly make use of character-
istics in tutoring behavior [4]. In [22], it has been argued that
visual saliency cues may help to detect structural information in
parent-infant interaction. However, although tutoring behavior
has been reported to affect many modalities, especially gesture
and speech [5], [23], to our knowledge no model has been imple-
mented that makes use of several modalities and their synchrony
for detecting action structure in demonstrated actions (but see
below for first steps in this direction [24]).

In contrast to the above presented approaches, in the domain
of object learning, there exist robotic systems that associate
modalities. In [25], a system is presented, where both the vi-
sual and the acoustic cue are used for learning object names
and sizes. In this system, the tutor positively or negatively re-
wards the learning agent depending on whether the extracted
visual features, the extracted acoustic features, and the learned
association between the visual and acoustic features result in a
right response from the learning agent. The reward is used by
the learning agent to tune both the association between modali-
ties and the feature extraction within each modality.

D. Social Robotics

Within the field of social robotics Breazeal et al. [26] pos-
tulates that, in addition to specific visual cues, verbal descrip-
tions and lexical cues are used that are helpful in deriving a
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task hierarchy from a demonstrated action. However, in this ap-
proach, again implicit knowledge about the action is used for
the process of action segmentation. In general, we can summa-
rize that the inherent synchronous characteristics of multimodal
tutoring behavior tend to remain unexploited. Yet, in computa-
tional models, it has been shown that the detection of synchrony
in different modalities can be a potentially powerful low level
approach to perform spatial and temporal segmentation [27].
More recently, it has been shown that differences between in-
fant- and adult-directed interactions can even be found at a very
low signal level [24] indicating that synchrony might be a useful
cue for analyzing demonstrated actions in a tutoring scenario.
However, a temporal model of how synchronous events that ex-
tend over time can be related is still lacking. This might be due
to the fact that the temporal alignment of segments entails sev-
eral very different problems. On the one hand, a segmentation in
each modality has to be performed. On the other hand, the seg-
ments need to be temporally aligned which remains a challenge.

II. MODELING ACOUSTIC PACKAGING

The development of robots, that are able to interact with
humans and learn action from them, requires methods to seg-
ment actions into meaningful parts. We transfer the concept of
acoustic packaging from developmental research and pursue
the goal to create a software module that fulfills two important
tasks in human-robot tutoring situations: The first task is to
deliver bottom-up segmentation hypotheses about the action
presented; the second task is to form early learning units
containing multimodal information. These units can further be
processed by other modules that infer models about the actions
currently presented. Hirsh-Pasek and Golinkoff describe a min-
imal and a maximal role that acoustic packaging can take [1]. In
the minimal role, acoustic packages are formed on repetition of
an acoustic chunk in conjunction with a particular event. In its
maximal role, Acoustic Packaging can fuse separate events into
meaningful macroevents. Our approach aims at the maximal
role of Acoustic Packaging.

A. Requirements

As a first step towards the development of a computational
model of acoustic packaging, the segmentation problem has to
be solved. Since the model has to make use of at least one visual
and one acoustic cue, a temporal segmentation for both cues
is required. We address the visual and acoustic segmentation
problem in Sections II-C and II-D.

A second problem is the temporal synchronization of these
sensory cues. The difficulty here is that hypotheses from audio
and vision processing are typically not generated at the same
time, nor in the same rate. Thus, temporal synchrony has to be
exploited, which itself can be considered as an amodal cue, that
provides information about what segments should be packaged.
A timestamp concept addresses the amodal property and is used
in the acoustic packaging process in order to associate the dif-
ferent cues.

Another requirement concerns the architecture which should
be extensible. The integration of additional cues or modules
that perform further processing towards learning on the acoustic

Fig. 1. A test subject demonstrating how to stack cups to an infant [4].
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Fig. 2. System overview with highlighted layers and their relation to the
acoustic packaging system.

packages should be facilitated by the architecture. Since a so-
cially interactive robot should give feedback during tutoring, the
system has to be online usable and able to cope with updating
hypotheses.

Finally, tools to debug and evaluate the acoustic packaging
system are important. This sets up the requirements of visual-
ization, which will provide support for the inspection in the de-
velopment of the system.

B. System Overview

Our system for acoustic packaging proposed here consists of
four modules (see Fig. 2). These modules communicate events
through a central memory, the so-called Active Memory [28].
The Active Memory notifies components about event types they
have subscribed to and is able to store these events persistently.
It establishes thus, an integration framework that supports a de-
coupled design of the participating modules facilitating integra-
tion of further processing modules. This directly addresses the
architectural requirement of extensibility.
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Fig. 3. The left image shows a motion history image from a person showing a cup. The right image illustrates our approach to visually segment actions via the

amount of motion per frame.

All signal processing modules are connected to the Active
Memory. The audio signal is processed using the ESMER-
ALDA speech recognizer [29], which is configured to use
an acoustic model for monophoneme recognition. Phonotac-
tics are modeled statistically via an n-gram model. The visual
signal is processed with the help of a graphical plugin environ-
ment [30].

C. Acoustic Segmentation

Based on the observation that infant-directed actions exhibit
more and more structured pauses, it seems appropriate to
segment the acoustic signal simply into speech and nonspeech
(pause) segments. Yet in a relatively noisy environment, such
as the described experimental setting (see Section III), the sep-
aration of speech from nonspeech is a difficult task. Therefore,
instead of simple voice activity detection, we used a more
sophisticated approach—we defined an acoustic segment as
speech framed by nonspeech. As a consequence, a continuous
chain of phoneme hypotheses generated by the speech recog-
nizer is considered as a speech segment. Our speech recognizer
inserts those phoneme hypotheses, as well as the corresponding
audio signal into the Active Memory. As the recognition
process is incremental during processing of an utterance the
hypotheses are continuously updated.

D. Visual Action Segmentation

Unimodal action segmentation approaches attempt to find
discontinuities in the visual signal. We follow this idea in its
basic way and segment the visual signal at minimums in local
motion. As a result, the visual signal is segmented into motion
peaks, where each peak ranges between two local minimums
in the amount of change in the visual signal. To understand
this approach, the occurrence of motion peaks is related to
action in the following example. If someone shows a cup,
there is typically a motion minimum at the point where the
cup is held still or slowed down for a short moment. When
the cup is accelerated again, on its way to be put on the table,
a local maximum in the amount of motion can be observed.
Another local minimum occurs when the cup is eventually put
on the table. This observation is the motivation for our heuristic
approach to segment actions into motion peaks.

Acoustic Package Speech

I W,

Acoustic Package Motion

Fig. 4. Motion and speech intervals are assigned to an acoustic package if they
overlap. The middle motion interval has been assigned to the second acoustic
package due to greater overlap.

The segmentation into motion peaks is technically realized by
an approach based on motion history images [14]. The amount
of motion is calculated per frame by summing up the motion his-
tory image (see Fig. 3). In the amount of motion, local minima
are detected with the help of a sliding window that is updated
at each time step. If the value at the center of the window is
smaller than the local neighborhood, a minimum is detected.
Very small changes are considered as no motion and filtered out
by applying a threshold. Small local peaks are suppressed by
using a sufficient window size that is small enough to not af-
fect human movements. Our current model considers the com-
plete image when detecting local motion minima. It is therefore
also sensitive to motion in the video that is not related to the
demonstrated action, which (in a more focused approach) could
be coped with by ignoring certain parts of the image. However,
in this approach we chose to not use any prior knowledge with
respect to space and content of visual information.

When a local minimum is detected, then an event describing
the motion peak between the previous and the current motion
minimum is inserted into the Active Memory. The description
contains the peaks’ time interval and the frames at the minima
from the beginning and end of the motion peak.

E. Temporal Association

As already pointed out as a requirement, both the motion
peaks and the speech segments, need to be temporally associ-
ated in order to form acoustic packages. Our temporal associa-
tion module subscribes to events communicated through the Ac-
tive Memory and maintains a timeline for different types of time
intervals. In our current version of the system, motion peaks and
speech segments are processed. When a new event arrives, the
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Fig. 5. Cue visualization tool.

segment is aligned to the timeline. In the next step, the tem-
poral relations to the segments on the other timeline are calcu-
lated for which a subset of the relations defined in [31] is used.
When overlapping speech and motion segments are found on the
timelines, acoustic packages are created. In the case that motion
segments overlap with two different speech segments, the one
with the larger overlap is chosen (see Fig. 4 for the association
process). When hypotheses from the signal processing mod-
ules are updated (e.g., a speech segment is extended), the corre-
sponding acoustic package is updated as well. The temporal as-
sociation module has to process a large number of events. These
events can either be new hypotheses or updates of existing hy-
potheses. Since our aim is to process these events online, this
approach requires inserting and updating of incoming time in-
tervals to be handled computationally efficient. Each incoming
time interval has to be aligned to the timelines of the other
modality. Furthermore, the module should allow asynchronicity
between the incoming events of the different modalities. This re-
quires handling potential processing delays on the one hand. On
the other hand, it eases debugging and offline processing. Since
the hypotheses for each modality are generated in independent
processes, the association module should not rely on the order
of events. The strategy, which addresses these requirements, is
explained in the following.

Maintaining a structure that preserves the order of time in-
tervals is a central concept of the temporal association module.

For example, the timeline for speech contains intervals with the
hypotheses of the speech recognizer. Since intervals of a single
timeline have the property of being sorted and do not overlap,
the insertion point can easily be found by performing a binary
search on the timeline. The same method is used when modali-
ties are associated in the process of forming acoustic packages.
In the case of an incoming speech interval, the insertion point
of the speech interval in the motion timeline is determined.
After that, the temporal relations of the speech interval to each
interval in the local neighborhood in the motion timeline are
calculated. Motion peaks overlapping with the speech intervals
are associated to the same acoustic package as the speech in-
terval or a new acoustic package is created. In the case, in which
a motion peak is already associated with an acoustic package,
the motion peak is reassigned. This depends on whether it has
a larger overlap with the current speech interval. In the case
of an incoming motion peak, the same procedure is applied.
The insertion point of the motion peak in the speech timeline
is determined and the motion peak is associated to the acoustic
package with the most overlapping speech interval. The con-
struction and update of packages is mirrored into the Active
Memory. This step accords with the idea to realize an online
usable system.

F. Visualization and Inspection

Since the temporal synchrony is an important cue for this
system, tools are needed that analyze the acoustic packaging
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process and the temporal relations of the involved sensory cues.
Fig. 5 shows our visualization tool, monitoring events, which
are communicated to the Active Memory by other processing
modules. The first plot displays the amount of motion over
time. The second row shows the signal energy that gives an
estimate about speech activity. The third row visualizes the
hypotheses as time intervals coming from the acoustic seg-
mentation, the visual action segmentation and the temporal as-
sociation module. More specifically, the first line displays the
speech recognition results: The lighter areas mark nonspeech
hypotheses like for example noise. The second line displays
the temporal extensions of the motion peaks. The third line
visualizes the results of the acoustic packaging module. Since
the case is possible that under certain conditions the temporal
extensions of two neighboring acoustic packages overlap, only
the range of motion peaks (which have been associated to one
acoustic package) is visualized currently.

In fulfilling the requirement of support for visualization and
inspection, Fig. 6 shows our inspection tool, which is able to
query speech and motion peak hypotheses from the Active
Memory. In conjunction with the tool for visualization of the
cues (Fig. 5), it is possible to inspect hypotheses persistently
stored in the Active Memory. The time intervals selected cur-
rently in both, the visual and the acoustic cues, are highlighted
enabling inspection of their temporal relations. The inspection
tool displays the frames at the beginning and the end of the
selected motion peak. The speech segment can be replayed or
resynthesized. This resynthesis uses the phoneme chain dis-
played in the bottom right corner. However, this functionality
is a topic of further development. Taken together, these features
of the inspection tool help to rate, optimize, and debug the
acoustic packaging system and its parameters.
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III. EVALUATION

It is important to emphasize that our approach delivers
bottom-up hypotheses for acoustic packages and provides no
high level classification on the semantic level of the processed
sequences. In a sophisticated cognitive system, these obtained
bottom-up hypotheses need to be further processed by learning
modules. A robot that interacts frequently can verify and
refine these hypotheses. Only then an evaluation of acoustic
packaging within an interaction can be undertaken.

However, at this stage of development, an appropriate way to
evaluate this system is to compare tutoring behavior in situations
with children and adults. We therefore exposed our acoustic
packaging system to a corpus containing video and audio data
on adult- and infant-directed interactions [4]. From this corpus,
we selected 11 subjects interacting with their 8 to 11-month-old
children. The subjects were asked to demonstrate functions of
10 different objects to their children, as well as to another adult
(partner or experimenter, Fig. 7 illustrates the experimental set-
ting). In the evaluation reported below, we focus on one task,
namely the stacking cups (see Fig. 1).

Using this corpus, we analyzed the following hypotheses.
Firstly, with reference to the research [4], [9] it can be hy-
pothesized that parents structure their actions more when in-
teracting with their children. Therefore, we expect the acoustic
packaging system to generate more packages in an adult—child
condition than in an adult-adult condition. For our purpose,
we processed and compared 11 videos with adults demon-
strating the stacking of cups towards children with 11 videos
of the same adults demonstrating the same task to an adult
(see Table II). A paired t-test revealed a significant difference
in the amount of acoustic packages between these groups:
t = 3.618, df = 10, and p = 0.005. This result strongly
suggests that more acoustic packages can be found in an in-
teraction towards a child.

Another expectation was that adult—adult interaction is less
structured when compared to adult—child interaction. Since
adults perform their actions and narrations more fluently when
interacting with each other, we expect a larger amount of
motion segments per package compared to the adult—child
condition. We tested this hypothesis applying a paired ¢-test
on the ratio of motion peaks to acoustic packages in both
conditions. We found a significant difference: ¢ = 4.654,
df = 10, and p = 0.001. This result strongly suggests that
more motion segments are packaged together in an interaction
towards an adult. Table II shows the motion peak counts per
subject.

What is also noticeable is that in adult—adult interaction is that
the variance of motion peaks per acoustic package is higher than
in adult—child interaction. This stems from the fact that our sub-
jects displayed highly individual communication styles. For ex-
ample, some subjects tended to be quite verbose in adult—adult
interaction while demonstrating the action, which resulted in a
large number of motion peaks per acoustic package. Other sub-
jects behave in the opposite way. Thus, although on average,
more motion peaks per utterance are packaged as compared to
adult—child interaction, the difference is smaller. It is important

cam 1 Adult/Infant Adult

b ® : Dimz

Fig. 7. Adult—Child/Adult—Adult interaction setting. The interaction partners
are seated at a table facing each other. In this evaluation, recordings from camera
1 are used.

TABLE II
COUNTS OF ACOUSTIC PACKAGES (AP) AND MOTION PEAKS (M) ON
SUBJECTS IN ADULT-ADULT INTERACTION COMPARED TO THE SAME ADULTS
INTERACTING WITH CHILDREN

Adult-Adult-Interaction Adult-Child-Interaction
Subject AP M M/AP AP M M/AP

1 3 7 2.33 17 33 1.94
2 3 8 2.67 7 14 2.00
3 3 13 4.33 17 30 1.76
4 3 9 3.00 3 5 1.67
5 10 24 2.40 34 60 1.76
6 1 4 4.00 3 7 2.33
7 2 7 3.50 8 10 1.25
8 2 7 3.50 13 29 2.23
9 2 6 3.00 6 13 2.17
10 3 16 5.33 7 14 2.00
11 5 10 2.00 8 14 1.75
M 3.36  10.09 3.28 11.18  20.82 1.90
SD 2.42 5.70 0.99 8.99 16.10 0.30

to note that in adult—child interaction, the variance is lower. This
suggests that adult—child interaction is not affected by the sub-
ject’s specific communication style to the same extent as it is in
an adult—adult interaction.

A further question we investigated is whether it is possible
to use acoustic packaging as an analysis tool for other types of
interaction such as human-robot interaction. In [32], we com-
pared adult—adult and adult—child interaction to adult-robot in-
teraction. The simulated robot reacted to the environment using
a saliency based attention model [33]. The results suggest a
similar level of structuring in this adult-robot interaction com-
pared to adult—child interaction although the verbosity towards
the robot was higher than in adult-child interaction.

Currently the evaluation is limited to the statistical properties
of acoustic packages calculated on adult—adult and adult—child
interaction data. A detailed evaluation of the content of acoustic
packages could reveal further relations between these groups.
As a further step in this direction, commonalities and peculiari-
ties between acoustic packages in the different conditions of the
interaction could be identified.

IV. DISCUSSION

Our results show that when comparing the same subjects in
two different conditions, significantly more acoustic packages
were found in parent-infant interactions than in adult—adult in-
teractions. In addition, the number of motion segments in the
acoustic packages was significantly higher in adult-adult in-
teractions than in parent-infant interactions. These results in-
dicate that infant-directed interaction is more structured than
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adult—adult interactions, which is in line with previous findings
(4], [6], [9]. [34].

Based on these results, we can assume that acoustic pack-
aging provides a meaningful bottom-up action segmentation in
tutoring situations. The segmentation consists of acoustic pack-
ages, which bind acoustic and visual events into a common unit.
A sequence of acoustic packages can therefore be seen as a
low level action representation of tutoring situations. This action
representation contains information about the visual changes in
the scene and the corresponding acoustic description. Further-
more, their temporal relationships are explicitly modeled. In the
following, two examples are presented, which illustrate the con-
tribution of acoustic packages to the segmentation of action.
Based on these examples, we will discuss issues concerning the
evaluation of segmentation correctness.

The first example stems from a tutoring situation. It consists
of a mother taking a red cup, raising it, and finally turning it to-
wards the child. While showing it to the child she says, “the
red one”. After a short pause, the mother continues to move
the red cup over the yellow cup while saying, “in the yellow
one,” and drops it afterwards. In the second example, another
mother takes the red cup and puts it directly into the yellow cup
while saying, “the red one in the yellow one”. When the first
example is processed, two acoustic packages are formed: The
first package consists of the acoustic segment “the red one” as-
sociated with taking and raising the cup. The second contains
the utterance “in the yellow one” associated with moving and
dropping the red cup. In contrast, the second example results in
a single acoustic package containing the utterance “the red one
into the yellow one”. It is associated with a visual event which
ranges from taking the cups to the cup in its final position. In
both examples, the task is the same, but the way of commu-
nicating the task to the learner differs in the way the action is
structured, which in is reflected in the segmentation provided by
acoustic packaging. Although the packages differ, both segmen-
tations are meaningful in the sense that the key frames and the
acoustic segments associated with the acoustic packages con-
tain the necessary information to describe the action.

As shown by the two examples, the fact that—given the same
task—acoustic packaging can deliver different results in segmen-
tation, can be an advantage for the learner on the one hand: It
simply enables the learner to collect different segmentations for
the same action. This way and over time, the learner will be able
to form a representation on a more conceptual level. On the other
hand, the variability in segmentation makes it more difficult to
determine an objective ground truth for action segmentation on
the level on which acoustic packaging operates.

Another reason why it is not desirable and applicable to per-
form a detailed evaluation of segmentation correctness is that
acoustic packaging is a bottom-up process, which delivers seg-
mentation hypotheses based on relatively simple cues. Thus, it
is possible that motion observed by the robot is packaged, al-
though it is not related to manipulation of the scene. A typical
example is head movement such as nodding, which parents ex-
hibit during communication with the infant. Here, the movement
leads to quite large motion peaks, which are related to the com-
munication with the child rather than to the action demonstra-
tion. It will be a future task to filter acoustic packages respec-
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tively. We see a possible solution in a qualitatively different pro-
cessing of, e.g., communication cues as packages that are unre-
lated to scene changes.

The method proposed here has been applied to interactions
containing tutoring situation, in which the tutor performed ma-
nipulative actions. This specific situation limits the extent to
which the benefit of acoustic packaging can be generalized. The
motion that constitutes a manipulative action can be expected to
provide a meaningful cue for segmenting the visual signal, and
in its current realization, our implementation of acoustic pack-
aging relies on this assumption: We segment motion by finding
discontinuities in the visual signal as visual processing step. The
discontinuities are detected by using motion history images to
measure the amount of motion over time. The use of motion
history images makes the approach “blind” to scenarios with
no motion or to scenarios, in which motion plays a secondary
role. Thus, certain actions such as holding an item still could
lead to problems in this motion based segmentation approach:
The visual segment containing the important conceptual aspect
would not be captured, since the item is not moving. Scenarios,
in which the motion cue is less important and other concepts
play the primary role could, for example, consist of a situation
with static objects where joint attention (thus, rather a social in-
formation) between the tutor and the learner provides a better
cue to segment the interaction. In this case, acoustic packages
would describe more than merely manipulative actions. This
course of development is supported by the Emergentist Coali-
tion Model [35], which makes a statement about the cues that
children take into account when learning words: Initially, pre-
dominantly perceptual cues are processed. During the further
development, social cues play an increasingly important role.

V. OUTLOOK

In our approach to acoustic packaging, events separate from
vision and speech are fused into macroevents. This is accom-
plished by looking at the temporal relationship of events in both
signals and combining synchronous events into acoustic pack-
ages. At the current stage, acoustic packaging can be used for
two purposes. On the one hand, it can be used as a vehicle
for feedback behavior in human—robot tutoring situations. The
expected effect is here that the tutor gets insights into robot’s
processing, and the tutor gets an impression about the robot’s
stage of development. On the other hand, it can be used as an
analysis tool for tutoring interactions. It provides an automatic
measurement for the level of structuring in these interactions
assuming that highly structured interactions are beneficial for
action learning.

We envision further developments of such bottom-up seg-
mentation methods for action learning. These developments can
be pushed forward along two dimensions (see Fig. 8). One di-
mension spans across the improvements of acoustic packaging
as a method and acoustic packages as a representation format
(see Sections V-A-V-E).

The other dimension extends when acoustic packaging is put
into human-robot interaction scenarios. Here, the general goal
is that the robot will learn actions by interaction for which the
necessary step is the development of feedback strategies [36],
[37] in the robot and the initiation of interaction loops [38].
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Fig. 8. Roadmap showing future improvements of acoustic packaging in one dimension and next steps towards action learning in the other dimension.

A. Handling More Cues

Concerning the further development of acoustic packaging,
we envision that more cues are helpful to bootstrap action rep-
resentations which are grounded both visually and acoustically.
Currently, it is not part of acoustic packaging to analyze how
the environment is manipulated and what is manipulated. How-
ever, in addition to research about what and when to imitate
[39]-[41], it might be important for the robot to distinguish be-
tween human motion and objects in the environment manipu-
lated by humans. Especially the recognition of biological mo-
tion could help to further structure visual events. In infants, the
sensitivity towards biological motion has been recognized as a
fundamental experience. For example, predictive tracking as a
basic cognitive capability emerges around 3 months of age, but
when tested with faces, this capability can be observed signifi-
cantly earlier [42].

The combination with another cue, which detects the level
of situational change, could also help to structure human action
according to the impact on the environment. For example, con-
sider somebody lifting a cup and highlighting it in contrast to
the action of lifting and stacking the cup into another one. In
the former situation, the situational change is a minimal one,
since probably only the position of the cup has changed. In the
latter situation, the situational change is more significant, since
the scene’s appearance has changed: One cup disappeared in the
other one.

As mentioned in the discussion, an inclusion of more so-
cial cues is possible as well. This will result in taking a dif-
ferent nature of cues into consideration as it is suggested in the
Emergentist Coalition Model [35]. In this model, cues of dif-
ferent sources (perceptual, social, and linguistic) interplay with
each other, but depending on the child’s development, they are
weighted differently. More specifically, in the first stage of de-
velopment, predominantly perceptual cues are taken into con-
sideration. Starting from the tenth month, children are increas-
ingly paying attention to social cues as well. Once modules

responsible for extracting these different cues are developed,
they could be integrated in the acoustic packaging system. A
weighting mechanism could further be adapted to model dif-
ferent developmental stages.

Considering acoustic cues (or in terms of the Emergentist
Coalition Model: linguistic cues), the robot needs to detect
which parts of an utterance are highlighted by the tutor when
an action is presented. This would help the system to link
segments of speech with actions. For this, a more fine grained
speech segmentation than at the current state is required (see
Section V-E). For the realization, syllables might be an appro-
priate level. Features, such as prominence [43]-noticeable by
stress—could help to relate parts of speech particularly relevant
to action structure.

B. Filtering and Optimizing the Action Representation Based
on Acoustic Packages

Acoustic packages contain segments from different cues
which are associated based on their temporal relationship.
Concerning the features described in the previous subsection,
the action representation based on acoustic packages needs to
be further developed. This development should be motivated
by memory processes, such as transforming a short-term action
representation into a format that is appropriate for long-term
storage. In this format, a higher conceptualization and stronger
linkage to other concepts, as well as consolidation needs to be
implemented.

Possibly consolidation and conceptualization can be achieved
in a similar way as outlined for perceptual symbol systems [44].
When new acoustic packages are acquired, they are compared
against other packages and the system relates them. Over time, a
memory process can determine the invariant parts of actions and
relate other parts as specializations to them. This way, filtering
could be realized: If newly perceived packages are close to an
abstract concept and cannot further contribute to it, they are not
preserved anymore during memory consolidation.
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C. Recognizing Repetitions in the Action Representation

The ability to bootstrap action concepts requires that similar
parts in the action stream the robot perceives are clustered. As
a method, the recognition of repeated chunks can be used, al-
lowing to cluster these. This method should take both the visual
and acoustic cues of the action representation into account. The
resulting clusters will form recognition and synthesis units, on
which speech recognition and synthesis can operate.

Methods for imitation learning could help in training units
for visual action recognition and synthesis. The modules im-
plementing the training methods do not necessarily need to run
online during the interaction with the human. Instead they could
run offline as part of a reorganization or consolidation process
restructuring the data acquired during the human—robot interac-
tion in the background.

D. Constructing Larger Structures Grounded in Language
and Vision

Based on the clusters formed, as described in the previous
subsection, larger sequences can be targeted. Clusters of
grasping and lifting cups, as well as stacking and releasing
them, are not sufficient to model a complete task. What is
lacking is a larger construction encompassing the complete task
and putting the several actions in a specific order.

Similar to larger constructions in action segmentation, ac-
cording to usage based theories [45], speech production can be
seen in constructions as well. Children build up their linguistic
inventory by experiencing the language use of other speakers.
At the beginning, children’s utterances are simple. According
to [45], their early utterances are concrete in their meaning as
they are instantiations of item-based schemas or constructions.
At a later stage, children integrate constructions of different ab-
straction levels from their linguistic inventory to form new utter-
ances, that are chosen as appropriate for a current usage event.

Along this idea, acoustic packaging needs to combine the
larger constructions into tasks that the robot can recall. Initially,
these constructions can be used for a more complex imitation
behavior of the robot. They have to be augmented in order to link
the goals that this task implies with situations to which they can
be applied. In the case that the task is communicated by using
speech, like in instructing the robot verbally to do something,
it is necessary to apply linguistic models. It is not sufficient for
such models to make use of already trained acoustic descrip-
tors. Instead, additional syntactic relationships between these
descriptors must be regarded.

E. Using Linguistic Relationships in Speech for Action
Segmentation

On the other hand, once linguistic constructions have been
learned and can be recognized in the speech stream, these con-
structions may help in new demonstrations to segment actions.
This means that by the use of a bottom-up strategy for speech
and action segmentation, as provided by the acoustic packaging
approach, top-down strategies can be built to segment action
based on previously learned speech segments. For example,
consider the case that the system has learned through repeated
observation that the propositional phrase, “in den griinen”
(“into the green one”) coincides with the end of an action. This
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information may then help the system to expect an action end
the next time it hears this construction, even if the sensorial
data is noisy and there is no clearly visible end of the action.
This effect may even be enhanced by prosodic information
such as intonation, for example, through correlation of falling
intonation patterns with action ends.

E Feedback Strategies

In a learning scenario, in which the robot interacts with the
user and learns action, acoustic packaging might serve as a cue,
on which basis a feedback behavior can be provided. The main
challenge here is to investigate what form of feedback is effec-
tive during action learning in human robot interaction. Effective
refers to the impression, that the tutor has and therefore, believes
that the robot is actually learning about the ongoing task. At the
current stage we think social cues might be considered in real-
ization of such feedback behavior. For example, during tutoring,
the robot could react by nodding, eye gaze, or some facial ex-
pressions. Even more elaborated verbal feedback such as repeti-
tion of words could help the tutor to interpret the systems’ level
of development. In an interaction with a tutor, this feedback be-
havior could signal that the robot knows the action or that the
demonstrated action consists of new unknown movements. In
accordance with this idea, Pitsch et al. [38] observed that when
a child knows an action, his or her gaze is on the target (for ex-
ample the target cup in the stacking cups task) instead of on each
single demonstration movement.

In the case that the robot is actually capable of performing
the demonstrated action, its manipulation can itself be seen as
a form of feedback. Any kind of imitation is viewed as visual
information about the internal representation of action [41] to
the tutor.

These ideas of different feedback signals need to be modeled
and tested in concrete human-robot interaction. Especially the
integration of verbal behavior as a feedback form requires the
integration of speech resynthesis.

G. Initial Interaction Loop

Analyses of human learners have shown that during tutoring,
feedback is consequential for the characteristics of the presen-
tation the tutor carries out [38]. For example, when children’s
attention is distracted, parents produce salient movements with
the purpose of attracting children’s attentions to the demon-
strated objects and actions. In contrast, when children’s atten-
tion follows the demonstration, less modified movements can be
observed [38]. Thus, it seems that the modifications in move-
ments, called motionese (as summarized in [4]), are a product
of the interaction loop. The development of feedback forms
can therefore only be the first step. We envision that the tutor’s
teaching behavior is guided by the learner’s needs, monitored by
feedback. This means that there is a constant loop between the
tutor’s and the learner’s activities, in the sense that the teaching
strategies that the tutor chooses are adjustments to the learner’s
exhibited capabilities.

VI. CONCLUSION

In this article, we presented a computational approach mod-
eling acoustic packaging for human—robot interaction in a tu-
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toring scenario. In process of acoustic packaging, speech binds
visual events to acoustic packages. This binding is facilitated
by the temporal overlap of events. We implemented this ap-
proach following a modular concept, being capable of online
processing multimodal input. The resulting system fulfills the
prerequisites necessary for being integrated in our robotic plat-
forms. In an evaluation performed on natural data, we showed
that acoustic packaging is able to reflect the structural differ-
ences between adult-adult and adult—child interaction. Based
on these first experiences, we envisioned future developments
of acoustic packaging as a method and acoustic packages as
a representation format. Furthermore, we elaborated on how
human-robot interaction scenarios can benefit from acoustic
packaging and what are the next steps towards a system, which
learns action in interaction with a tutor.
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