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Abstract—There is great interest in building intrinsic motivation
into artificial systems using the reinforcement learning framework.
Yet, what intrinsic motivation may mean computationally, and how
it may differ from extrinsic motivation, remains a murky and con-
troversial subject. In this paper, we adopt an evolutionary perspec-
tive and define a new optimal reward framework that captures the
pressure to design good primary reward functions that lead to evo-
lutionary success across environments. The results of two computa-
tional experiments show that optimal primary reward signals may
yield both emergent intrinsic and extrinsic motivation. The evolu-
tionary perspective and the associated optimal reward framework
thus lead to the conclusion that there are no hard and fast fea-
tures distinguishing intrinsic and extrinsic reward computation-
ally. Rather, the directness of the relationship between rewarding
behavior and evolutionary success varies along a continuum.

Index Terms—Intrinsic motivation, reinforcement learning.

I. INTRODUCTION

T HE term “intrinsically motivated” first appeared (ac-
cording to Deci and Ryan [9]) in a 1950 paper by Harlow

[12] on the manipulation behavior of rhesus monkeys. Harlow
argued that an intrinsic manipulation drive is needed to explain
why monkeys will energetically and persistently work for
hours to solve complicated mechanical puzzles without any
extrinsic rewards. Intrinsic motivation plays a wide role in
human development and learning, and researchers in many
areas of cognitive science have emphasized that intrinsically
motivated behavior is vital for intellectual growth.

This paper addresses the question of how processes analogous
to intrinsic motivation can be implemented in artificial systems,
with specific attention to the factors that may or may not distin-
guish intrinsic motivation from extrinsic motivation, where the
latter refers to motivation generated by specific rewarding con-
sequences of behavior, rather than by the behavior itself.

There is a substantial history of research directed toward cre-
ating artificial systems that employ processes analogous to in-
trinsic motivation. Lenat’s AM system [18], for example, fo-
cused on heuristic definitions of “interestingness,” and Schmid-
huber [32]–[37] introduced methods for implementing forms of
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curiosity using the framework of computational reinforcement
learning (RL)1 [47]. More recently, research in this tradition has
expanded, with contributions based on a variety of more-or-less
formal conceptions of how intrinsic motivation might be ren-
dered in computational terms. Reviews of much of this literature
are provided by Oudeyer and Kaplan [25], [26], and Merrick and
Maher [22].

Despite this recent attention, what intrinsic motivation may
mean computationally, and how it may differ from extrinsic mo-
tivation, remains a murky and controversial subject. Singh et al.
[41] introduced an evolutionary framework for addressing these
questions, along with the results of computational experiments
that help to clarify some of these issues. They formulated a
notion of an optimal reward function given a fitness function,
where the latter is analogous to what in nature represents the
degree of an animal’s reproductive success. The present paper
describes this framework and some of those experimental re-
sults, while discussing more fully the notions of extrinsic and in-
trinsic rewards and presenting other experimental results that in-
volve model-based learning and non-Markovian environments.
In addition to emphasizing the generality of the approach, these
results illuminate some additional issues surrounding the in-
trinsic/extrinsic reward dichotomy. In our opinion, the evolu-
tionary perspective we adopt resolves what have been some of
the most problematic issues surrounding the topic of intrinsic
motivation, including the relationship of intrinsic and extrinsic
motivation to primary and secondary reward signals, and the ul-
timate source of both forms of motivation.

Other researchers have reported interesting results of compu-
tational experiments involving evolutionary search for RL re-
ward functions [1], [8], [19], [31], [43], but they did not directly
address the motivational issues on which we focus. Uchibe and
Doya [51] do address intrinsic reward in an evolutionary con-
text, but their aim and approach differ significantly from ours.
Following their earlier work [50], these authors treat extrinsic
rewards as constraints on learning, while intrinsic rewards set
the learning objective. This concept of the relationship between
extrinsic and intrinsic rewards is technically interesting, but its
relationship to the meanings of these terms in psychology is not
clear. The study closest to ours is that of Elfwing et al. [11]
in which a genetic algorithm is used to search for shaping re-
wards [23] and other learning algorithm parameters that im-
prove an RL learning system’s performance. We discuss how
our approach is related to this study and others in Section VII.

1We use the phrase computational RL because this framework is not a theory
of biological RL despite what it borrows from, and suggests about, biological
RL. However, in the following text, we use just RL to refer to computational
RL.
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Fig. 1. Agent–environment interactions in reinforcement learning; adapted from [3]. Left panel: Primary reward is supplied to the agent from its environment.
Right panel: A refinement in which the environment is factored into an internal and external environment, with all reward coming from the former. See text for
further discussion.

II. COMPUTATIONAL REINFORCEMENT LEARNING (RL)

Rewards—more specifically, reward functions—in RL de-
termine the problem the learning agent is trying to solve. RL
algorithms address the problem of how a behaving agent can
learn to approximate an optimal behavioral strategy, called a
policy, while interacting directly with its environment. Roughly
speaking, an optimal policy is one that maximizes a measure of
the total amount of reward the agent expects to accumulate over
its lifetime, where reward is delivered to the agent over time via
a scalar-valued signal.

In RL, rewards are thought of as the output of a “critic” that
evaluates the RL agent’s behavior. In the usual view of an RL
agent interacting with its environment (left panel of Fig. 1),
rewards come from the agent’s environment, where the critic
resides. Some RL systems form value functions using, for ex-
ample, temporal difference (TD) algorithms [45], to assign a
value to each state that is an estimate of the amount of reward
expected over the future after that state is visited. For some RL
systems that use value functions, such as systems in the form
of an “actor-critic architecture” [4], the phrase “adaptive critic”
has been used to refer to the component that estimates values
for evaluating on-going behavior. It is important not to confuse
the adaptive critic with the critic in Fig. 1. The former resides
within the RL agent and is not shown in the figure.

The following correspondences to animal reward processes
underly the RL framework. Rewards in an RL system corre-
spond to primary rewards, i.e., rewards that for animals exert
their effects through processes hard-wired by evolution due to
their relevance to reproductive success. Value functions are the
basis of secondary (or conditoned or higher order) rewards,
whereby learned predictions of rewards act as rewards them-
selves. The value function implemented by an adaptive critic,
therefore, corresponds to a secondary, or learned, reward func-
tion. As we shall see, one should not equate this with an in-
trinsic reward function. The local landscape of a value function
gives direction to an RL agent’s preferred behavior: decisions
are made to cause transitions to higher valued states. A close
parallel can be drawn between the gradient of a value function
and incentive salience [20].

III. THE PLACE OF INTRINSIC MOTIVATION IN RL

How is intrinsic motivation currently thought to fit into the
standard RL framework?2 Barto et al. [3] used the term intrinsic
reward to refer to rewards that produce analogs of intrinsic mo-
tivation in RL agents, and extrinsic reward to refer to rewards
that define a specific task or rewarding outcome as in standard
RL applications. Most of the current approaches to creating in-
trinsically motivated agents are based on defining special types
of reward functions and then employing standard RL learning
procedures, an approach first suggested by Schmidhuber [32]
as a way to create an artificial analog of curiosity.

But let us step back and reconsider how intrinsic motivation
and RL might be related. As Sutton and Barto [47] point out
(also see [3] and [40]), the standard view of the RL agent, and
its associated terminology—as represented in the left panel
of Fig. 1—is seriously misleading if one wishes to relate this
framework to animal reward systems and to the psychologist’s
notions of reward and motivation. First, psychologists dis-
tinguish between rewards and reward signals. For example,
Schultz [38], [39] writes that “Rewards are objects or events
that make us come back for more,” whereas reward signals are
produced by reward neurons in the brain. What in RL are called
rewards would better be called reward signals. Rewards in RL
are abstract signals whose source and meaning are irrelevant
to RL theory and algorithms; they are not objects or events,
though they can sometimes be the result of perceiving objects
or events.

Second, the environment of an RL agent should not be iden-
tified with the external environment of an animal. A less mis-
leading view requires dividing the environment into an external
environment and an internal environment. In terms of animals,
the internal environment consists of the systems that are internal
to the animal while still being parts of the RL agent’s environ-
ment. The right panel of Fig. 1 refines the usual RL picture by
showing the environment’s two components and adjusting ter-
minology by using the labels “RL agent” and “reward signals.”

2While we acknowledge the limitation of the RL approach in dealing with
many aspects of motivation, this paper nevertheless focuses on the sources and
nature of reward functions for RL systems. We believe this focus allows us to
clarify issues facing not only the computational community, but other commu-
nities as well that are concerned with motivation in biological systems.
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Furthermore, we label the RL agent’s output “decisions” instead
of “actions,” reflecting the fact that actions that effect the ex-
ternal environment are generated by an animal’s internal envi-
ronment, for example, by its muscles, while the RL agent makes
decisions, such as the decision to move in a certain way. In this
paper, however, we retain the usual RL terms agent, reward, and
action, but it is important not to interpret them incorrectly. Sim-
ilarly, an “environment” in what follows should be understood
to consist of internal and external components. Note that these
refinements do not materially change the RL framework; they
merely make it less abstract and less likely to encourage misun-
derstanding.

This refined view better reflects the fact that the sources of
all of an animal’s reward signals are internal to the animal.
Therefore, the distinction between the internal and external
environments is not useful for distinguishing between rewards
that underlie intrinsically and extrinsically motivated behavior,
a point also emphasized by Oudeyer and Kaplan [25]. It is clear
that rewards underlying both intrinsically and extrinsically
motivated behavior depend in essential ways on information
originating in both the internal and external environments.
For example, the motivational valence of the manipulation
experiences of Harlow’s monkeys was clearly derived, at least
in part, from properties of the monkeys’ external environments,
and the motivational influence of extrinsic food reward depends
on an animal’s internal state of satiety.

If the distinction between internal and external environments
is not useful for distinguishing intrinsic and extrinsic motiva-
tion, we are still left with the question: What does it mean in the
computational RL framework to do something “for its own sake”
or because “it is inherently interesting or enjoyable?” [28] One
possibility, which has a long history in psychology, is that ex-
trinsic and intrinsic motivation map onto primary and secondary
reward signals, respectively. We consider this view next, before
introducing our alternative evolutionary perspective.

IV. DO EXTRINSIC AND INTRINSIC MOTIVATION MAP ONTO

PRIMARY AND SECONDARY REWARD?

Among the most influential theories of motivation in psy-
chology is the drive theory of Hull [13]–[15]. According to
Hull’s theory, all behavior is motivated either by an organism’s
survival and reproductive needs giving rise to primary drives
(such as hunger, thirst, sex, and the avoidance of pain), or by
derivative drives that have acquired their motivational signifi-
cance through learning. Primary drives are the result of physi-
ological deficits—“tissue needs”— and they energize behavior
whose result is to reduce the deficit. A key additional feature
of Hull’s theory is that a need reduction, and hence a drive re-
duction, acts as a primary reinforcer for learning: behavior that
reduces a primary drive is reinforced. Additionally, through the
process of secondary reinforcement in which a neutral stimulus
is paired with a primary reinforcer, the formerly neutral stimulus
becomes a secondary reinforcer, i.e., acquires the reinforcing
power of the primary reinforcer. In this way, stimuli that predict
primary reward, i.e., predict a reduction in a primary drive, be-
come rewarding themselves. According to this influential theory
(in its several variants), all behavior is energized and directed by

its relevance to primal drives, either directly or as the result of
learning through secondary reinforcement.

Hull’s theory followed the principles of physiological home-
ostasis that maintains bodily conditions in approximate equilib-
rium despite external perturbations. Homeostasis is achieved by
processes that trigger compensatory reactions when the value
of a critical physiological variable departs from the range re-
quired to keep the animal alive [6]. Many other theories of mo-
tivation also incorporate the idea that behavior is motivated to
counteract disturbances to an equilibrium condition. These the-
ories have been influential in the design of motivational systems
for artificial agents, as discussed in Savage’s review of artificial
motivational systems [30]. Hull’s idea that reward is generated
by drive reduction is commonly used to connect RL to a moti-
vational system. Often this mechanism consists of monitoring
a collection of important variables, such as power or fuel level,
temperature, etc., and triggering appropriate behavior when cer-
tain thresholds are reached. Drive reduction is directly translated
into a reward signal delivered to an RL algorithm.

Among other motivational theories are those based on the
everyday experience that we engage in activities because we
enjoy doing them: we seek pleasurable experiences and avoid
unpleasant ones. This is the ancient principle of hedonism.
These theories of motivation hold that it is necessary to refer to
affective mental states to explain behavior, such as a “feeling”
of pleasantness or unpleasantness. Hedonic theories are sup-
ported by many observations about food preferences which
suggest that “palatability” might offer a more parsimonious ac-
count of food preferences than tissue needs [55]. Animals will
enthusiastically eat food that has no apparent positive influence
on tissue needs; characteristics of food such as temperature
and texture influence how much is eaten; animals that are
not hungry still have preferences for different foods; animals
have taste preferences from early infancy [7]. In addition,
nondeprived animals will work enthusiastically for electrical
brain stimulation [24]. Although it is clear that biologically
primal needs have motivational significance, facts such as these
showed that factors other than primary biological needs exert
strong motivational effects, and that these factors do not derive
their motivational potency as a result of learning processes
involving secondary reinforcement.

In addition to observations about animal food preferences
and responses to electrical brain stimulation, other observations
showed that something important was missing from drive-re-
duction theories of motivation. Under certain conditions, for ex-
ample, hungry rats would rather explore unfamiliar spaces than
eat; they will endure the pain of crossing electrified grids to ex-
plore novel spaces; monkeys will bar-press for a chance to look
out of a window. Moreover, the opportunity to explore can be
used to reinforce other behavior. Deci and Ryan [9] chronicle
these and a collection of similar findings under the heading of
intrinsic motivation.

Why did most psychologists reject the view that exploration,
manipulation, and other curiosity-related behaviors derived
their motivational potency only through secondary reinforce-
ment, as would be required by a theory like Hull’s? There
are clear experimental results showing that such behavior is
motivationally energizing and rewarding on its own and not
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because it predicts the satisfaction of a primary biological
need. Children spontaneously explore very soon after birth, so
there is little opportunity for them to experience the extensive
pairing of this behavior with the reduction of a biologically
primary drive that would be required to account for their zeal
for exploratory behavior. In addition, experimental results
show that the opportunity to explore retains its energizing effect
without needing to be paired with a primary reinforcer, whereas
a secondary reinforcer will extinguish, that is, will lose its rein-
forcing quality, unless often paired with the primary reinforcer
it predicts. Berlyne summarized the situation as follows:

“As knowledge accumulated about the conditions that govern
exploratory behavior and about how quickly it appears after
birth, it seemed less and less likely that this behavior could be
a derivative of hunger, thirst, sexual appetite, pain, fear of pain,
and the like, or that stimuli sought through exploration are wel-
comed because they have previously accompanied satisfaction
of these drives” [5].

Note that the issue was not whether exploration, manipula-
tion, and other curiosity-related behaviors are important for an
animal’s survival and reproductive success. Clearly they are if
deployed in the right way. Appropriately cautious exploration,
for example, clearly has survival value because it can enable
efficient foraging and successful escape when those needs
arise. The issue was whether an animal is motivated to perform
these behaviors because previously in its own lifetime behaving
this way predicted decreases in biologically primary drives, or
whether this motivation is built-in by the evolutionary process.
The preponderance of evidence supports the view that the
motivational forces driving these behaviors are built-in by the
evolutionary process.

V. EVOLUTIONARY PERSPECTIVE

It is therefore natural to investigate what an evolutionary
perspective might tell us about the nature of intrinsic reward
signals and how they might differ from extrinsic reward signals.
We adopt the view discussed above that intrinsic reward is not
the same as secondary reward. It is likely that the evolutionary
process gave exploration, play, discovery, etc., positive hedonic
valence because these behaviors contributed to reproductive
success throughout evolution. Consequently, we regard intrinsic
rewards in the RL framework as primary rewards, hard-wired
from the start of the agent’s life. Like any other primary reward
in RL, they come to be predicted by the value-function learning
system. These predictions can support secondary reinforce-
ment so that predictors of intrinsically rewarding events can
acquire rewarding qualities through learning just as predictors
of extrinsically rewarding events can.

The evolutionary perspective thus leads to an approach in
which adaptive agents, and therefore their reward functions, are
evaluated according to their expected fitness given an explicit fit-
ness function and some distribution of environments of interest.
The fitness function maps trajectories of agent-environment in-
teractions to scalar fitness values, and may take any form (in-
cluding functions that are similar in form to discounted sums of
extrinsic rewards). In our approach, we search a space of pri-
mary reward functions for one that maximizes the expected fit-
ness of an RL agent that learns using that reward function. Fea-

tures of such an optimal reward function3 and how these features
relate to the environments in which agent lifetimes are evalu-
ated provide insight into the relationship between extrinsic and
intrinsic rewards (as discussed in Section VI and thereafter).

We turn next to a formal framework that captures the req-
uisite abstract properties of agents, environments, and fitness
functions and defines the evolutionary search for good reward
functions as an optimization problem.

A. Optimal Reward Functions

As shown in the right panel of Fig. 1, an agent in some
(external) environment receives an observation and takes an
action at each time step. The agent has an internal environment
that computes a state, a summary of history, at every time step
(e.g., in Markovian environments the last observation is a per-
fect summary of history and thus state can be just the last ob-
servation). The agent’s action is contingent on the state. The
reward function can in general depend on the entire history of
states or equivalently on the entire history of observations and
actions. Agent ’s goal or objective is to attempt to maximize
the cumulative reward it receives over its lifetime. In general,
defining agent includes making very specific commitments
to particular learning architectures, representations, and algo-
rithms as well as all parameters. Our evolutionary framework
abstracts away from these details to define a notion of optimal
reward function as follows.

For every agent , there is a space of reward functions
that maps features of the history of observation-action pairs to
scalar primary reward values (the specific choice of features is
determined in defining ). There is a distribution over se-
quential decision making environments in some set in which
we want our agent to perform well. A specific reward function

and a sampled environment produces ,
the history of agent adapting to environment over its life-
time using the reward function , i.e., , where

makes explicit that agent is using reward func-
tion to interact with environment and makes ex-
plicit that history is sampled from the distribution produced
by the interaction . A given fitness function produces a
scalar evaluation for each such history . An optimal re-
ward function is a reward function that maximizes the
expected fitness over the distribution of environments, i.e.

(1)

where denotes the expectation operator. A special reward
function in is the fitness-based reward function, denoted

, that most directly translates fitness into an RL reward
function, i.e., the fitness value of a lifetime-length history is the
cumulative fitness-based reward for that history. For example,
if the fitness value of a history were the number of children pro-
duced, then a corresponding fitness-based reward function could
assign unit reward to the state resulting from the birth of a child

3We use this term despite the fact that none of our arguments depend on our
search procedure finding true globally optimal reward functions. We are con-
cerned with reward functions that confer advantages over others and not with
absolute optimality. Similarly, the fact that optimization is at the core of the RL
framework does not imply that what an RL system learns is optimal. What mat-
ters is the process of improving, not the final result.
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and zero otherwise (additional concrete examples are in our ex-
perimental results reported below).

Our formulation of optimal rewards is very general because
the constraints on , , , and are minimal. Agent is
constrained only to be an agent that uses a reward function

to drive its search for good behavior policies. The
space is constrained to be representable by the internal ar-
chitecture of agent , as well as to contain the fitness-based
reward . Fitness is constrained only to be a function that
maps (lifetime-length) histories of agent-environment interac-
tions to scalar fitness values. The space is constrained only
to be a (finite or infinite) set of discrete-time decision making
environments (Markovian or non-Markovian,4 and indeed our
empirical results will use both). Finally, the evolutionary or fit-
ness pressure that defines optimal rewards is represented by an
optimization or search problem (1) unconstrained by a commit-
ment to any specific evolutionary process.5

Note an immediate consequence of (1): in terms of the
expected fitness achieved, the agent with an optimal reward
function will by definition outperform (in general, and never
do worse than) the same agent with the fitness-based reward
function. Crucially, it is this possibility of outperforming the
fitness-based reward in the amount of fitness achieved that pro-
duces the evolutionary pressure to reward not just actions that
directly enhance fitness—what might be termed extrinsically
motivated behaviors—but actions that intermediate evolu-
tionary success—what might be termed intrinsically motivated
behaviors.

B. Regularities Within and Across Environments

The above formulation of (1) defines a search problem—the
search for . This search is for a primary reward function and
is to be contrasted with the search problem faced by an agent
during its lifetime, that of learning a good value function (and
hence a good policy) specific to its environment leading to his-
tory . These two (nested) searches are at the
heart of our evolutionary perspective on reward in this paper.
Specifically, our concrete hypotheses are: 1) the optimal reward

derived from search will capture regularities across environ-
ments in as well as complex interactions between and spe-
cific structural properties of the agent (note that the agent is
part of its environment and is constant across all environments
in ); and 2) the value functions learned by an agent during its
lifetime will capture regularities present within its specific en-
vironment that are not necessarily shared across environments.
It is the first hypothesis, that of the primary reward capturing
regularities across environments and between environments and
agents, that should lead to the emergence of both extrinsic and
intrinsic rewards, the former from objects or other sources of
primal needs present across environments and the latter from

4Specifically, we allow both for Markov decision processes (MDPs), as well
as for partially observable MDPs, or POMDPs. See Sutton and Barto [47] and
Kaelbling et al. [16] for a discussion of the different mathematical formalisms
of RL problems.

5However, in many cases the space of reward functions will have structure
that can be exploited to gain computational efficiency, and many classes of opti-
mization algorithms might prove useful in a practical methodology for creating
reward functions for artificial agents.

Fig. 2. Boxes environments used in experiment 1. Each boxes environment is
a 6� 6 grid with two boxes that can contain food. The two boxes can be in
any two of the four corners of the grid; the locations are chosen randomly for
each environment. The agent has four (stochastic) movement actions in the four
cardinal directions, as well as actions to open closed boxes and eat food from
the boxes when available. See text for further details.

behaviors such as play and exploration that serve the agents well
across environments in terms of expected fitness.

Next we describe experiments designed to test our hy-
potheses as well as to illustrate the emergence of both extrinsic
and intrinsic rewards in agents through search for optimal
reward functions.

VI. COMPUTATIONAL EXPERIMENTS

We now describe two sets of computational experiments in
which we directly specify the agent with associated space
of reward functions , a fitness function , and a set of en-
vironments , and derive via (approximately) exhaustive
search. These experiments are designed to serve three purposes.
First, they will provide concrete and transparent illustrations of
the basic optimal reward framework above. Second, they will
demonstrate the emergence of interesting reward function prop-
erties that are not direct reflections of the fitness function—in-
cluding features that might be intuitively recognizable as can-
didates for plausible intrinsic and extrinsic rewards in natural
agents. Third, they will demonstrate the emergence of inter-
esting reward functions that capture regularities across environ-
ments, and similarly demonstrate that value function learning
by the agent captures regularities within single environments.

A. Experiment 1: Emergent Intrinsic Reward for Play and
Manipulation

This first experiment was designed to illustrate how our op-
timal reward framework can lead to the emergence of an in-
trinsic reward for actions such as playing with and manipulating
objects in the external environment, actions that do not directly
meet any primal needs (i.e., are not fitness inducing) and thus,
are not extrinsically motivating.

1) (Boxes) Environments: We use a simulated physical space
shown by the 6 6 grid in Fig. 2. It consists of four subspaces
(of size 3 3). There are four movement actions, north, south,
east, and west, that if successful move the agent probabilistically
in the direction implied, and if they fail leave the agent in place.
Actions fail if they would move the agent into an outer bound
of the grid or across one of the barriers, which are represented
by the thick black lines in the figure. Consequently, the agent



SINGH et al.: INTRINSICALLY MOTIVATED REINFORCEMENT LEARNING 75

has to navigate through gaps in the barriers to move to adjacent
subspaces. In each sampled environment, two boxes are placed
in randomly chosen special locations (from among the four cor-
ners and held fixed throughout the lifetime of the agent). This
makes a uniform distribution over a space of six environments
(the six possible locations of two indistinguishable boxes in the
four corners). In addition to the usual movement actions, the
agent has two special actions: open, which opens a box if it is
closed and the agent is at the location of the box and has no ef-
fect otherwise (when a closed box is opened it transitions first
to a half-open state for one time step and then automatically to
an open state at the next time step regardless of the action by the
agent), and eat, which has no effect unless the agent is at a box
location, the box at that location is half-open, and there happens
to be food (prey) in that box, in which case the agent consumes
that food.

An open box closes with probability 0.1 at every time step.6

A closed box always contains food. The prey always escapes
when the box is open. Thus to consume food, the agent has
to find a closed box, open it, and eat immediately in the next
time step when the box is half-open. When the agent consumes
food it feels satiated for one time step. The agent is hungry at
all other time steps. The agent-environment interaction is not
divided into trials or episodes. The agent’s observation is six
dimensional: the and coordinates of the agent’s location,
the agent’s hunger-status, the open/half-open/closed status of
both boxes, as well the presence/absence of food in the square
where the agent is located. These environments are Markovian
because the agent senses the status of both boxes regardless of
location and because closed boxes always contain food; hence
each immediate observation is a state.

2) Fitness: Each time the agent eats food its fitness is incre-
mented by one. This is a surrogate for what in biology would
be reproductive success (we could just as well have replaced
the consumption of food event with a procreation event in our
abstract problem description). The fitness objective, then, is to
maximize the amount of food eaten over the agent’s lifetime.
Recall that when the agent eats it becomes satiated for one time
step, and thus a direct translation of fitness into reward would
assign a reward of to all states in which the agent is sa-
tiated and a reward of to all other states. Thus, there is
a space of fitness-based reward functions. We will refer to fit-
ness-based reward functions in which is constrained to be ex-
actly 0 as simple fitness-based reward functions. Note that our
definition of fitness is incremental or cumulative and thus, we
can talk about the cumulative fitness of even a partial (less than
lifetime) history.

3) Agent: Our agent ( ) uses the lookup-table -greedy
-learning [52] algorithm with the following choices for its

parameters: 1) , the initial -function (we use small values
chosen uniformly randomly for each state-action pair from
the range ) that maps state-action pairs to their
expected discounted sum of future rewards; 2) , the step-size,
or learning-rate parameter; and 3) , the exploration parameter

6A memoryless distribution for box-closing was chosen to keep the environ-
ment Markovian for the agent; otherwise, there would be information about
the probability of a box closing from the history of observations based on the
amount of time the box had been open.

[at each time step the agent executes a random action with
probability and the greedy action with respect to the current

-function with probability ].
For each time step , the current state is denoted , the current
-function is denoted , the agent executes an action , and

the -learning update is as follows:

where is the reward specified by reward function for the
state , and is a discount factor that makes immediate reward
more valuable than later reward (we use throughout).

We emphasize that the discount factor is an agent parameter
that does not enter into the fitness calculation. That is, the fit-
ness measure of a history remains the total amount of food eaten
in that history for any value of the agent uses in its learning
algorithm. It is well known that the form of -learning used
above will converge asymptotically to the optimal -function7

and hence the optimal policy [53]. Thus, our agent uses its expe-
rience to continually adapt its action selection policy to improve
the discounted sum of rewards, as specified by , that it will
obtain over its future (remaining in its lifetime). Note that the
reward function is distinct from the fitness function .

4) Space of Possible Rewards Functions: To make the search
for an optimal reward function tractable, each reward function
in the search space maps abstract features of each immediate
observation to a scalar value. Specifically, we considered re-
ward functions that ignore agent location and map each pos-
sible combination of the status of the two boxes and the agent’s
hunger-status to values chosen in the range . This
range does not unduly restrict generality because one can al-
ways add a constant to any reward function without changing
optimal behavior. Including the box-status features allows the
reward function to potentially encourage “playing with” boxes
while the hunger-status feature is required to express the fitness-
based reward functions that differentiate only between states in
which the agent is satiated from all other states (disregarding
box-status and agent location).

5) Finding a Good Reward Function: The psuedocode below
describes how we use simulation to estimate the mean cumula-
tive fitness for a reward function given a particular setting of
agent ( -learning) parameters .

set
for to do
Sample an environment from
In , intialize -function
Generate a history over lifetime for and
Compute fitness
end for
return average of
In the experiments we report below, we estimate the mean cu-

mulative fitness of as the maximum estimate obtained (using
the pseudocode above) over a coarse discretization of the space
of feasible pairs. Finding good reward functions for a
given fitness function thus amounts to a large search problem.

7Strictly speaking, convergence with probability one requires the step-size
parameter � to decrease appropriately over time, but for our purposes it suffices
to keep it fixed at a small value.
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Fig. 3. Results from boxes environments. The leftmost panel shows for the constant condition the mean cumulative (over agent lifetime) fitness achieved by all
the reward functions sampled in our search for good reward functions. The middle panel shows the same results but for the step condition. The rightmost panel
shows for the step condition the mean cumulative growth in the number of time steps both boxes were open for all the reward functions explored. In each panel,
the curves for the best reward function, for the best fitness-based reward function, and for the best simple fitness-based reward functions are distingusihed. See text
for further details.

We discretized the range for each feasible setting of
the three reward features such that we evaluated 54 000 reward
functions in the reward function space. We chose the discretized
values based on experimental experience with the boxes envi-
ronments with various reward functions.

Note that our focus is on demonstrating the generality of our
framework and the nature of the reward functions found rather
than on developing efficient algorithms for finding good reward
functions. Thus, we attempt to find a good reward function
instead of attempting the usually intractable task of finding the
optimal reward function , and we are not concerned with the
efficiency of the search process.

6) Results: Recall the importance of regularities within and
across environments to our hypotheses. In this experiment, what
is unchanged across environments is the presence of two boxes
and the rules governing food. What changes across environ-
ments—but held fixed within a single environment—are the lo-
cations of the boxes.

We ran this experiment under two conditions. In the first,
called the constant condition, the food always appears in closed
boxes throughout each agent’s lifetime of 10 000 steps. In the
second, called the step condition, each agent’s lifetime is 20 000
steps, and food appears only in the second half of the agent’s
lifetime, i.e., there is never food in any of the boxes for the first
half of the agent’s lifetime, after which food always appears in
a closed box. Thus, in the step condition, it is impossible to in-
crease fitness above zero until after the 10 000th time step.

The step condition simulates (in extreme form) a develop-
mental process in which the agent is allowed to “play” in its en-
vironment for a period of time in the absence of any fitness-in-
ducing events (in this case, the fitness-inducing events are pos-
itive, but in general there could also be negative ones that risk
physical harm). Thus, a reward function that confers advantage
through exposure to this first phase must reward events that have
only a distal relationship to fitness. Through the agent’s learning
processes, these rewards give rise to the agent’s intrinsic motiva-
tion. Notice that this should happen in both the step and constant
conditions; we simply expect it to be more striking in the step
condition.

The left and middle panels of Fig. 3 show the mean (over
200 sampled environments) cumulative fitness as a function of
time within an agent’s lifetime under the two conditions. As ex-
pected, in the step condition, fitness remains zero under any re-
ward function for the first 10 000 steps. Also as expected, the
best reward function outperforms the best fitness-based reward
function over the agent’s lifetime. The best fitness-based reward
function is the best reward function in the reward function space
that satisfies the definition of a fitness-based reward function for
this class of environments. We note that the best fitness-based
reward function assigns a negative value to states in which the
agent is hungry and this makes the agent’s initial -values opti-
mistic leading to efficient exploration (see Sutton and Barto [47]
for an explanation of this effect). The best reward function out-
performs the best simple fitness-based reward by a large margin
(presumably because the latter cannot make the initial -values
optimistic).

Table I shows the best reward functions and best fitness-based
reward functions for the two conditions of the experiment (e.g.,
the best reward function for the Step condition is as follows:
being satiated has a positive reward of 0.5 when both boxes are
open and 0.3 when one box is open, being hungry with one box
half-open has a small negative reward of , and otherwise
being hungry has a reward of . Note that the agent will
spend most of its time in this last situation.) Of course, as ex-
pected and like the best fitness-based reward function, the best
reward function has a high-positive reward for states in which
the agent is satiated. More interestingly, the best reward func-
tion in our reward function space rewards opening boxes (by
making their half-open state rewarding relative to other states
when the agent is hungry). This makes the agent “play” with
the boxes and as a result learn the environment-specific policy
to optimally navigate to the location of the boxes and then open
them during the first half of the step condition so that when food
appears in the second half, the agent is immediately ready to ex-
ploit that situation.

The policy learned under the best reward function has an in-
teresting subtle aspect: it makes the agent run back and forth be-
tween the two boxes, eating from both boxes, because this leads
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TABLE I
RESULTS FOR THE STEP AND CONSTANT CONDITIONS OF EXPERIMENT 1. EACH ROW OF PARAMETER VALUES DEFINES A REWARD FUNCTION BY SPECIFYING

REWARD VALUES FOR EACH OF SEVEN FEASIBLE COMBINATIONS OF STATE FEATURES. THE COLUMN HEADINGS O, NOT-O, AND HALF-O, ARE SHORT FOR OPEN,
NOT-OPEN, AND HALF-OPEN, RESPECTIVELY. SEE TEXT FOR FURTHER DETAILS

to higher fitness (in most environments)8 than staying at, and
taking food from, only one box. This can be seen indirectly in
the rightmost panel of Fig. 3 where the mean cumulative number
of times both boxes are open is plotted as a function of time. It is
clear that an agent learning with the overall best reward function
keeps both boxes open far more often than one learning from
the best fitness-based reward function. Indeed the behavior in
the latter case is mainly to loiter near (an arbitrary) one of the
boxes and repeatedly wait for it to close and then eat.

Finally, it is also noteworthy that there are other reward func-
tions that keep both boxes open even more often than the best
reward function (this is seen in the rightmost panel of Fig. 3), but
this occurs at the expense of the agent not taking the time to ac-
tually eat the food after opening a box. This suggests that there is
a fine balance in the best reward function between intrinsically
motivating “playing” with and manipulating the boxes and ex-
trinsically motivating eating.

7) Summary: This experiment demonstrates that the evolu-
tionary pressure to optimize fitness captured in the optimal re-
ward framework can lead to the emergence of reward functions
that assign positive primary reward to activities that are not di-
rectly associated with fitness. This was especially evident in the
step condition of the boxes experiment: during the first half of
the agent’s lifetime, no fitness-producing activities are possible,
but intrinsically rewarding activities (running between boxes to
keep both boxes open) are pursued that have fitness payoff later.
The best (primary) reward captures the regularity of needing to
open boxes to eat across all environments, while leaving the
learning of the environment-specific navigation policy for the
agent to accomplish within its lifetime by learning the (sec-
ondary reward) -value function.

B. Experiment 2: Emergent Intrinsic Reward Based on
Internal Environment State

This second experiment was designed with two aims in mind.
The first is to emphasize the generality of our optimal reward
framework by using a model-based learning agent in non-Mar-
kovian environments instead of the model-free -learning agent
in the Markovian environments of experiment 1. The second is
to demonstrate the emergence of optimal reward functions that

8The agent could hang out at one box and repeatedly wait for it to close ran-
domly and then open it to eat, but the probability of an open box closing was
specifically (experimentally) chosen so that it is better for the agent in the distri-
bution over environments to repeatedly move between boxes to eat from both.
Specifically, an open box closes with probability 0.1 and thus on average in ten
time steps, while the average number of time steps to optimally travel between
boxes across the six environments is less than ten time steps.

Fig. 4. Foraging environments used in experiment 2. Each foraging environ-
ment is a 3� 3 grid arranged in (row) corridors. The food represented by a
worm appears at the rightmost end of a corridor. The agent represented by a
bird has the usual movement actions in the four cardinal directions as well as
an eat action when colocated with the worm. Crucially, once the agent eats a
worm, a new worm appears at a random corridor-end location and the agent
cannot see the worm unless colocated with it. These foraging environments are
non-Markovian unlike the boxes environments of experiment 1. See text for fur-
ther details.

are contingent on features of the internal environment (Fig. 1)
of the agent rather than features of the external environment (for
example, boxes and their status in experiment 1).

1) (Foraging) Environments: We use the foraging environ-
ment illustrated in Fig. 4. It consists of a 3 3 grid with three
dead-end corridors (as rows) separated by impassable walls. The
agent, represented by the bird, has four movement actions avail-
able in every location which deterministically move the agent
in each of the cardinal directions. If the intended direction is
blocked by a wall or the boundary, the action results in no move-
ment. There is a food source, represented by the worm, ran-
domly located in one of the three right-most locations at the
end of each corridor. The agent has an eat action, which con-
sumes the worm when the agent is at the worm’s location. The
agent is hungry except when it consumes a worm, which causes
the agent to become satiated for one time step. Immediately, the
consumed worm disappears and a new worm appears randomly
in one of the other two potential worm locations. This creates
a distribution over foraging environments based on random se-
quences of worm appearances.

The agent observations are four-dimensional: the agent’s
and coordinates and whether it is hungry (binary), and

whether or not it is colocated with the worm (binary). The
agent cannot see the worm unless it is colocated with it. In the
environments of experiment 1 the agent could also not see the
food unless it was colocated with it, but the food locations were
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fixed throughout an agent’s lifetime. Crucially, in the foraging
environments here, the location of every new worm within an
agent’s lifetime is chosen randomly. Thus, unlike the envi-
ronments of experiment 1, the foraging environments here are
non-Markovian because the agent’s past observations predict
where the worm cannot be (specifically, the worm cannot be at
any end-of-corridor location that the agent has visited since the
last time it ate the worm), and this information is not available
from just the current observation.

2) Fitness: Each time the agent eats a worm, its fitness is
incremented by one. The fitness objective is to maximize the
number of worms eaten over an agent lifetime of 10 000 time
steps. When the agent eats, it becomes satiated for one time step,
and thus a direct translation of fitness into reward would assign
a positive reward to all states in which the agent is satiated and a
strictly lower reward to all other states. In experiment 1, because
of the interaction of the choice of reward values with the initial

-value function, we needed to consider a space of possible fit-
ness-based rewards. In this experiment the agent does complete
estimated-model-based planning via dynamic programming at
each time step and it is easily seen that all fitness-based rewards
yield exactly the same policy, and thus we define to map all
satiated states to 1.0 and all other states to 0.0.

3) Agent: We used a standard model-based learning agent
for this experiment. Specifically, the agent updates an estimated
model of its environment after each time step and always acts
greedily according to a (certainty equivalent) policy optimal
with respect to its latest estimated model. The transition-dy-
namics of the environment are estimated assuming that the
agent’s observations ( and coordinates, hunger-status, colo-
cated-with-worm-status) are Markovian, i.e., assuming that
these observations comprise a state.

Specifically, let be the number of times that action was
taken in state . Let be the number of times a transition
to state occurred after action was taken in state . The agent
models the probability of a transition to after taking in state

as .9 The optimal policy with respect
to the current model is computed at every time step via repeated

-value iteration: for all

where , is the discount factor,10 and iter-
ation is performed until the maximal (across state–action pairs)
absolute change in -values is less than a very small threshold.
If, after convergence, the -values of multiple actions in a cur-
rent state are equal, the agent selects randomly among those
equal-valued actions.

4) Space of Reward Functions: We selected a reward func-
tion space consisting of linear combinations of the features of
the state of the internal environment, i.e., of the history of the

9Before an observation-action pair is experienced (i.e., when � � �) the
transition model is initialized to the identity function: �� �� ��� �� � � iff � � �.

10A discount factor is used to ensure convergence of �-value iteration used
for planning. As for experiment 1, we emphasize that the discount factor is an
agent parameter and does not effect the calculation of fitness for a history.

observations and actions. This is another departure from exper-
iment 1, where we used a tabular representation of reward func-
tions with features based solely on the immediate observations
from the external environment.

Our choice of reward-features for this domain is driven by
the following intuition. With a fitness-based reward function
that only distinguishes satiated states from hungry states, even
the policy found via infinite -value iteration on the estimated
model cannot, from most locations, take the agent to the worm
(and make it eat). This is because the agent cannot see the
worm’s location when it is not colocated with it. Indeed there
is little guidance from a fitness-based reward unless the agent
is colocated with the worm. Reward functions that encourage
systematic exploration of the grid locations could be far more
effective in expected fitness than the fitness-based reward
function. In fact, unlike most applications of RL wherein ex-
ploration serves a transient purpose to be eliminated as soon as
possible, here it is essential that the agent explore persistently
throughout its lifetime.

What kind of reward function could generate systematic and
persistent exploration? We consider the reward function space

, where and are pa-
rameters of a linear reward function, feature is 1 when
the agent is satiated in state and 0 otherwise, and feature

, where is the number
of time steps since the agent previously executed action in
state within current history 11 (see Sutton [46] for an ear-
lier use of a similar feature with the similar goal of encouraging
exploration). Feature captures inverse-recency: the
feature’s value is high when the agent has not experienced the
indicated state-action pair recently in history , and is low when
the agent has experienced it recently. Note that it is a feature of
the history of the agent’s interaction with the external environ-
ment and not a feature of the state of the external environment.
It can be thought of as a feature maintained by the internal en-
vironment of the agent. When the parameter is positive, the
agent is rewarded for taking actions that it has not taken recently
from the current state. Such a reward is not a stationary function
of the external environment’s state. Finally, feature is a
hunger-status feature, and thus when and , the
reward function is the fitness-based reward function.

5) Finding a Good Reward Function: Our optimization pro-
cedure adaptively samples reward vectors on the unit sphere, as
it can be shown that for the (linear) form of the reward functions
and for the agent presented here, searching this subset is equiva-
lent to searching the entire space. More specifically, multiplying
the linear reward function parameters by a positive scalar pre-
serves the relative magnitude and signs of the rewards and thus
we only need to search over the possible directions of the pa-
rameter vector ( and as a 2-D vector) and not its magni-
tude. Our optimization procedure samples reward vectors on the
unit sphere using an adaptive approach that samples more finely
where needed; we test the origin separately (for
the agents presented here, this reward function results in random
behavior).

6) Results: In this experiment, unchanged across foraging
environments are the motion dynamics and the action needed

11We encoded the feature in this way to normalize its value in the range �����.
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TABLE II
RESULTS FROM THE FORAGING ENVIRONMENTS. THE FIRST COLUMN PRESENTS

THE DIFFERENT REWARD FUNCTION TYPES OF INTEREST IN THIS EXPERIMENT.
THE SECOND COLUMN SPECIFIES THE SETTING OF THE TWO LINEAR REWARD

FUNCTION PARAMETERS FOR EACH TYPE OF REWARD FUNCTION. THE THIRD

COLUMN PRESENTS THE MEAN CUMULATIVE (OVER LIFETIME) FITNESS AND

THE STANDARD DEVIATION (OVER 200 RANDOMLY SAMPLED ENVIRONMENTS)
ACHIEVED BY THE AGENT WITH EACH REWARD FUNCTION TYPE. SEE TEXT

FOR FURTHER DETAILS

to consume food when the agent is colocated with it. Changing
across environments is the sequence of food-appearance
locations.

In Table II, we compare the agent using the fitness-based re-
ward function with the agent using the (approximately) best
reward function . The fitness in the rightmost column of the
table is cumulative over agent lifetimes of 10 000 time steps
and averaged over 200 randomly sampled environments. The
table also shows the specific values of reward parameters. Note-
worthy is the relatively large coefficient for the inverse-recency
feature relative to the coefficient for the hunger-status feature
in the best reward function. Clearly, an intrinsic reward for ex-
ecuting state-action pairs not experienced recently emerges in
the best reward function.

As can be seen in the table, the best reward function signif-
icantly outperforms the fitness-based reward function; indeed,
with the latter the agent gets stuck and fails to accumulate fit-
ness in most of the sampled environments. Agents using the best
reward function, on the other hand, manage to achieve several
orders of magnitude improvement in the amount of fitness ob-
tained despite being coupled with a model that is wholly inad-
equate at predicting the food location (the partial observability
causes the Markovian model to “hallucinate” about food at loca-
tions where the agent has experienced food before). Indeed, the
advantage conferred by the best reward function is the (depth-
first search like) systematic and persistent exploration that re-
sults from rewarding the experiencing of state–action pairs not
experienced recently. Of course, the best reward function also
has a positive reward value for the activity of eating (which leads
to satiation), for otherwise the agent would not eat the worm
even when colocated with it (except as an exploration effect).

To provide a reference point for the effect of exploration, we
also implemented an agent that acts purely randomly and thus
explores persistently though not systematically. As can been
seen from the results in the table, the random agent does much
better than the agent with the fitness-based reward (which gets
stuck because the model hallucinates about food and thus the
agent does not explore systematically or persistently). The agent
with the best reward function, however, again outperforms the
random agent (the former’s model also hallucinates about food
but the high-positive coefficient associated with the inverse-re-
cency feature overcomes this effect).

7) Summary: As in the results for experiment 1, the best re-
ward function positively rewards the activity of eating. What

is most interesting about this experiment is that the agent’s in-
ternal environment—which is of course invariant across the dis-
tribution over external environments—provides an inverse-re-
cency feature. The best reward function exploits this feature to
intrinsically reward activities that lead to the agent experiencing
state-action pairs it has not visited recently, leading to system-
atic and persistent exploration. This exploration, in turn, dis-
tally produces much greater fitness than achieved by an agent
using the fitness-based reward. Of course, the environment-spe-
cific movements to explore and find food are the result of the
agent’s planning processes executed throughout its lifetime.

VII. RELATION TO OTHER RESEARCH

The study most closely related to ours is that of Elfwing et al.
[11] in which a genetic algorithm is used to search for “shaping
rewards,” and other learning algorithm parameters that improve
an RL learning system’s performance. Like ours, this work uses
an evolutionary framework to demonstrate that performance can
be improved by a suitable choice of reward function. However,
its focus on shaping rewards reveals important differences. The
key fact about what Ng et al. [23] called shaping rewards is
that adding them to an RL agent’s primary reward function does
not change what policies are optimal.12 In other words, shaping
rewards do not alter the learning problem the agent is facing
in the sense that the optimal solution remains the same, but
they do offer the possibility—if suitably selected—of providing
more informative performance feedback which can accelerate
learning. Wiewiora [54] showed that adding shaping rewards
is equivalent to initializing the agent’s -function to nonzero
values. Since these initial values are eventually “learned away,”
the problem reverts asymptotically to the problem initially set
by the agent’s primary reward function.

Although some shaping rewards might be considered to be
intrinsic rewards, the fact that their influence disappears with
continued learning is at odds with what psychologists call in-
trinsic rewards, which are as primary and as long-lived as an an-
imal’s more biologically relevant primary rewards. From a the-
oretical perspective, since shaping rewards disappear with con-
tinued learning, they tend not to be useful in nonstationary en-
vironments. For example, the boxes environment of our experi-
ment 1 with the step condition is nonstationary. Here, a shaping
reward for manipulating boxes would only be useful if it lasted
long enough to prevent the box-manipulating behavior from ex-
tinguishing before it became useful for incrementing fitness in
the second half of the agent’s life.

A more fundamental limitation of shaping rewards is that
their property of leaving optimal policies unaltered is of lim-
ited use in situations where optimal policies cannot be attained
due to limitations of the agent’s learning algorithm or of the cir-
cumstances under which the agent must operate. For example, in
our experiment 1, agents’ lives are generally not long enough to
allow convergence to an optimal policy. If they could learn over
a long enough period of time in a stationary environment, and
with a learning algorithm and state representation that ensured
convergence to an optimal policy, then a simple fitness-based re-
ward function would allow convergence to a fitness-maximizing

12This use of the term shaping differs from its original meaning due to Skinner
[42].
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policy. Even if this were possible, though, the fitness of the en-
tire lifetime is the most important factor, and this usually de-
pends on learning efficiency more than the asymptotic result.
Sutton et al. [48] make related observations about the limita-
tions of asymptotic optimality.

The need for a departure from shaping rewards is even more
clear in our experiment 2 in which the agent cannot sense the lo-
cation of food and the planning algorithm uses a learned model
that makes the assumption that the environment is fully observ-
able. With these limitations, the optimal policy with respect
to the best fitness-based reward function gets stuck and is un-
able to systematically find food via planning. Thus, the best re-
ward function should significantly alter behavior as achieved
in our experiments by encouraging persistent and systematic
exploration; such an alteration—or indeed any persistent alter-
ation—can not be achieved via shaping rewards. In general, a
major function of intrinsic rewards is to compensate for agent
limitations, such as the short agent lifetimes in experiment 1 or
the non-Markovian nature of the environments in experiment 2
(see [44] for further exploration of such compensation).

Although they did not directly touch on the issue of intrinsic
versus extrinsic reward, Samuelson and Swinkels [29] put for-
ward a related view regarding the nature of people’s utility func-
tions. They argue that their analysis shows:

“…that if the agent fully understands the causal and statis-
tical structure of the world, the utility function “maximize the
expected number of your descendants” does strictly better than
one that puts weight on intermediate actions like eating and
having sex. In the absence of such a perfect prior understanding
of the world, however, there is evolutionary value in placing
utility on intermediate actions” [29].

Also related is research on transfer learning [49], which fo-
cuses on how learning to perform one task is useful in helping
an agent learn to perform a different task. Multitask learning,
also reviewed in [49], explores transfer across multiple tasks
dawn from a task distribution. Because our methodology
assesses agent fitness over a task distribution, it has impli-
cations for transfer learning, especially multitask learning,
which remain to be explored. Good reward functions found
by searching reward-function space tap into common aspects
of these tasks to facilitate learning across the distribution. We
are not aware of approaches to multitask learning that rely
on such searches. Although the variable-reward approach of
Mehta et al. [21] involves multiple reward functions, it is
quite different in that the tasks in the distribution differ in
their reward functions rather than in other features, and no
reward–function search is involved. However, the distinction
between agent–space and problem–space in Konidaris and
Barto’s [17] approach to transfer learning is closely related to
our observations because agent-space is determined by features
associated with the agent that remain constant across multiple
tasks. Thus, in experiment 2, for example, we could say that
the inverse-recency feature given significant weight in the best
reward function is a feature of agent-space, suggesting that
the agent-space/problem-space distinction may be a natural
outcome of an evolutionary process.

The present paper used simple learning and planning agents
and thus does not address hierarchical RL [2] and its implica-

tions for transfer learning, but our approach sets the stage for
further examination of the claim made by Barto et al. [3] and
Singh et al. [40] that intrinsic rewards facilitate the acquisition
of skills that can form reusable building blocks for behavioral
hierarchies. Evolutionary approaches to discovering useful hi-
erarchical structure for RL, such as the work of Elfwing et al.
[10], suggest that progress can be made in this direction.

VIII. DISCUSSION AND CONCLUSION

We believe that the new optimal reward framework presented
by Singh et al. [41] and elaborated here clarifies the computa-
tional role and origin of intrinsic and extrinsic motivation. More
specifically, the experimental results support two claims about
the implications of the framework for intrinsic and extrinsic mo-
tivation.

First, both intrinsic and extrinsic motivation can be under-
stood as emergent properties of reward functions selected be-
cause they increase the fitness of learning agents across some
distribution of environments. When coupled with learning, a
primary reward function that rewards behavior that is useful
across many environments can produce greater evolutionary fit-
ness than a function exclusively rewarding behavior directly re-
lated to fitness. For example, in both experiments above, eating
is necessary for evolutionary success in all environments, so we
see primary rewards generated by (satiated) states resulting im-
mediately from eating-related behavior. But optimal primary re-
ward functions can also motivate richer kinds of behavior less
directly related to basic needs, such as play and manipulation of
the boxes in experiment 1, that can confer significantly greater
evolutionary fitness to an agent. This is because what is learned
as a result of being intrinsically motivated to play with and ma-
nipulate objects contributes, within the lifetime of an agent, to
that agent’s ability to survive and reproduce.

Second, the difference between intrinsic and extrinsic moti-
vation is one of degree—there are no hard and fast features that
distinguish them. A stimulus or activity comes to elicit reward
to the extent that it helps the agent attain evolutionary success
based on whatever the agent does to translate primary reward to
learned secondary reward, and through that to behavior during
its lifetime. What we call intrinsically rewarding stimuli or ac-
tivities are those that bear only a distal relationship to evolu-
tionary success. Extrinsically rewarding stimuli or events, on
the other hand, are those that have a more immediate and direct
relationship to evolutionary success. In fact, in a strict sense, all
stimuli or activities that elicit primary reward can be considered
intrinsically motivated because they bear only a distal relation-
ship to evolutionary success. Having sex is more directly related
to evolutionary success (e.g., as measured by the longevity of
one’s genes in the population) than is childhood play, but both
are merely predictors of evolutionary success, not that success
itself. Crucially, however, all across this continuum the evolved
(optimal) reward function has to be ubiquitously useful across
many different environments in that the behavior learned from
the reward function in each environment has to be good for that
environment.

The experiments also clearly demonstrate that learning
(specifically RL) exploits regularities within a single agent’s
lifetime, while the (evolutionary) reward function optimiza-
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tion exploits regularities across environments and agents. For
example, in experiment 1 the location of the boxes did not
change within a single agent’s lifetime (though they varied
across environments) and so the value function learned via
RL captured those within-environment regularities. Even more
potentially significant and interesting is the role of the internal
environment (right panel in Fig. 1) that remains relatively
unchanged across individuals (whether within or across gener-
ations). This can lead the optimal primary reward function to
encourage behaviors that involve features from this part of the
agent’s environment. In general, this might include behaviors
that we think of as involving curiosity, novelty, surprise, and
other internally mediated features usually associated with in-
trinsic reward. Specifically, in experiment 2 this led the primary
reward to encourage the behavior of experiencing state-action
pairs that had not been experienced recently. This in turn led
to systematic and persistent exploration behavior by the agent
which was beneficial across foraging environments. Although
our observations do not support the view that dependence on in-
ternal environment states is a defining characteristic of intrinsic
motivation, they nonetheless provide an explanation for why the
archetypical examples of intrinsically rewarding behavior often
exhibit this dependency. Prominent among the environmental
features that are shared across populations of evolving agents
are features of the agents’ internal environments.

Our optimal reward framework and experimental results thus
explain why evolution would give exploration, manipulation,
play, etc. positive hedonic valence, i.e., make them rewarding,
along with stimuli and activities that are more directly related to
evolutionary success. The distinction between intrinsic and ex-
trinsic motivation is therefore a matter of degree, but their source
and role is computationally clear: both intrinsic and extrinsic
motivation are emergent properties of a process that adjusts re-
ward functions in pursuit of improved evolutionary success.

Finally, our optimal reward framework also has implications
for a basic tenet of RL:

“…the reward signal is not the place to impart to the
agent prior knowledge about how to achieve what we want
it to do...The reward signal is your way of communicating to
the robot what you want it to achieve, not how you want it
achieved” [47].

This remains good cautionary advice for the agent designer
attempting to impart prior knowledge through the reward func-
tion heuristically. The limitations of this approach is illustrated
by many examples in which the agent learns to achieve rewarded
subgoals without learning to achieve a problem’s ultimate goal
(e.g., [27]). However, our results demonstrate that reward func-
tions do exist that incorporate prior knowledge in a way that
produces significant gains in performance toward the ultimate
goal of maximizing fitness. That these reward functions are the
result of extensive search supports the essential role that evo-
lution has in making biological reinforcement learning a useful
component of adaptive natural intelligence.
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