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Learning Posture Invariant Spatial Representations
Through Temporal Correlations

Michael W. Spratling

Abstract—A hierarchical neural network model is used to learn,
without supervision, sensory-sensory coordinate transformations
like those believed to be encoded in the dorsal pathway of the cere-
bral cortex. The resulting representations of visual space are in-
variant to eye orientation, neck orientation, or posture in general.
These posture invariant spatial representations are learned using
the same mechanisms that have previously been proposed to op-
erate in the cortical ventral pathway to learn object representa-
tion that are invariant to translation, scale, orientation, or view-
point in general. This model thus suggests that the same mecha-
nisms of learning and development operate across multiple cortical
hierarchies.

Index Terms—Cognitive science, computational models of vision,
coordinate transformations, neural networks for development, vi-
sual system and development.

I. INTRODUCTION

ISUALLY guided behavior is most naturally defined
V relative to a number of distinct reference frames or
spatial coordinate systems. For example, a saccade takes place
within a retina-centered reference frame, reaching for an object
takes place in a body-centered frame, while manipulating one
object relative to a reference object is performed in a coordi-
nate system centered on the reference object. To support such
visually-guided behavior, spatial information is represented in
multiple coordinate systems along the dorsal pathway of the
cortical visual system [10]: neural representations are arranged
in a retinotopic map in primary visual cortex (V1), while
regions of the parietal cortex contain representations of space
in head-centered [2], [24], body-centered [12], object-centered
[14], and world-centered [79], coordinates. A head-centered
reference frame could be considered as a representation of
retinal position that is invariant to eye movements. Similarly,
a body-centered representation of visual space is one that is
invariant to both eye and neck movements, and an object or
world centered reference frame is invariant to eye, neck, and
body movements. This insight suggests a mechanism by which
a hierarchy of coordinate systems (see Fig. 1) could be learned
in the dorsal pathway in a manner analogous to that believed
to underlie the learning of object representations invariant to
viewpoint in the ventral pathway.

Manuscript received April 21, 2009; revised October 13, 2009. First version
published December 15, 2009; current version published February 05, 2010.
This work was funded by EPSRC Research Grant EP/D062225/1.

The author is with the Division of Engineering, King’s College London,
London WC2R 2LS U.K. (e-mail: michael.spratling @kcl.ac.uk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAMD.2009.2038494

ACTION

Reaching | [ Navigating |

World—Centric
Visual Location

[ Saccades | [Head Movement| |

Body-Centric
Visual Location

Head-Centric
Visual Location

Retinocentric
Visual Location

[ Visual Input | [Eye Orientation] [Neck Orientation] [Body Movement|

VISION PROPRIOCEPTION

Fig. 1. A hierarchy of coordinate systems. It is proposed that such a hierarchy
is learned by the cortical dorsal pathway and that each level in the hierarchy is
learned by increasing the invariance to posture, e.g., the head-centric reference
frame is learned by forming spatial representations invariant to eye orientation,
and the body-centric reference frame is learned by forming spatial representa-
tions invariant to neck orientation. Each coordinate system is most appropriate
for controlling different types of action, however, this article only considers the
learning of sensory-sensory coordinate transformations, and not how to map
those sensory representations to actions.

Along the cortical ventral pathway, neurons learn to respond
to recurring or behaviorally relevant patterns of presynaptic ac-
tivity generated by the neurons in more peripheral cortical re-
gions from which they receive their inputs [8], [42], [43], [48],
[61], [75], [76], [100], [102]. Higher level perceptual represen-
tations are thus learned from lower level ones, and this process
can be repeated hierarchically, such that at each stage neurons
learn increasing specialization together with increasing invari-
ance. The viewpoint invariance of these representations results
from learning associations across time [20], [70], [77], [89],
[92], [96], [98], [99]. By learning to associate images whose ap-
pearance is closely temporally correlated, cortical neurons ex-
ploit the fact that objects are generally observed for periods of
time, during which they may undergo a number of transforma-
tions or be observed from a number of viewpoints. By learning
to associate images of an object, seen from different viewpoints,
an invariant representation can be formed. This mechanism has
formed the basis for a large number of algorithms that learn
viewpoint invariance from sequences of images [9], [11], [27],
[30], [44], [60], [69], [80], [90], [91], [93], [97], [101], [107].
Hence, a standard method for learning perceptual representa-
tions that are invariant to viewpoint is to form temporal associ-
ations across image sequences showing object transformations.
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The same mechanism of learning temporal correlations be-
tween sequences of images can also be used to learn spatial rep-
resentations invariant to posture. For example, retinocentric vi-
sual information can be combined with information about eye
orientation to generate a representation of visual space in head-
centric coordinates. Such a recoding can be learned since as
the eye moves, stationary objects will move across the retina.
By recording temporal correlations across sequences of retinal
images, it is possible to learn all the combinations of eye ori-
entation and retinal location that correspond to the same point
in space (i.e., to learn a spatial representation that is invariant
to eye orientation). Using the same process during head move-
ments to learn associations between corresponding head-cen-
tered visual locations and neck orientations, results in a repre-
sentation of visual space in body-centric coordinates.

Rather than learning such sensory-sensory coordinate trans-
formations, they could be hard-coded using standard mathemat-
ical equations for describing kinematics or using neural net-
works with predefined weight values (see Discussion). The mo-
tivation for learning sensory-sensory transformations is two-
fold. First, to contribute to research in developmental robotics
which seeks mechanisms for creating more adaptive and more
autonomous robots, as well as mechanisms for creating complex
robot control systems that are too complex to design by hand
[82], [105]. Secondly, to provide a model that may be consis-
tent with the developmental process that occurs during infancy,
and hence, which could potentially offer insights into biological
development.

II. METHODS

Different mathematical processes are required to learn more
specialized representations and to learn more invariant repre-
sentations [67], [80]. A more specialized representation results
from a node responding to a combination of coactive lower level
features. A node must thus, learn to represent a conjunction of
presynaptic inputs. To respond to a conjunction of inputs, a stan-
dard weighted sum of presynaptic activation values can be used.
Such a function will cause the output of the node to be a max-
imum when all the lower level features to which it responds
are simultaneously active. In contrast, a more invariant repre-
sentation results from a node responding to multiple, noncoac-
tive, lower level features. A node must thus learn to represent
a disjunction of presynaptic inputs. To respond to a disjunction
of inputs, the maximum of the weighted presynaptic activation
values can be used. Such a function enables a node to respond
invariantly across a number of inputs while maintaining the fea-
ture specificity of its response. Hence, several existing archi-
tectures for invariant object recognition [32], [33], [45], [46],
[67], [73], [74], [80], consist of alternating layers of neurons
that perform these two operations in order to form more spe-
cialized representations in one layer, and more invariant repre-
sentations in the next layer. It has been proposed [33], [67], [74],
that these two forms of processing correspond to the function-
ality of simple and complex cells observed in the primary visual
cortex [41].

The architecture proposed here for learning a hierarchy of
spatial coordinate systems also consists of alternating layers of
neurons that learn conjunctions and disjunctions (see Fig. 2).
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Fig. 2. The neural network architecture used to learn a hierarchy of coordinate
systems. Two layers of neurons, one learning conjunctions and the other learning
disjunctions, are used to perform each sensory-sensory coordinate transform.

One pair of conjunctive and disjunctive layers learns to trans-
form retinocentric coordinates into head-centered coordinates.
A second pair of conjunctive and disjunctive layers then learns
to transform these head-centered coordinates into body-cen-
tered coordinates. The inputs to the hierarchy are presumed
to come from more peripheral thalamic regions that are not
explicitly modeled. Details of the algorithms employed in the
conjunctive and disjunctive layers are provided in the following
subsections. However, in brief, these learning methods are as
follows. Each conjunctive layer employs a form of competitive
learning that causes a distinct node to learn to represent each
distinct input pattern (e.g., for the first conjunctive layer, each
distinct combination of eye pan value, eye tilt value, and the
location of an active pixel in the retinotopic input). Each dis-
junctive layer employs a form of temporal associative learning
that causes a node to learn to represent sets of nodes in the
conjunctive layer that are frequently active in sequence, but
not simultaneously. If we consider a world containing a single,
stationary object, then as the eyes move distinct combinations
of eye pan/tilt and retinal input will be generated activating
different conjunctive nodes. This sequence of activity in the
first conjunctive layer will be learned by a single node in the
first disjunctive layer resulting in a single disjunctive node rep-
resenting all the conjunctive nodes that represent the location
occupied by the object. The performance of this algorithm has
been tested, as detailed in the Results section, on a simple task
in which objects are represented as single pixels in the retinal
input. Future work aims at determining if this entirely unsuper-
vised learning method will scale-up to learning sensory-sensory
coordinate transformations in more realistic tasks.

A. Conjunctive Learning

Each conjunctive layer employs the algorithm proposed in
[88]. This is an unsupervised, competitive learning algorithm in
which nodes compete to represent unique combinations of in-
puts. This learning algorithm has been shown to reliably and
accurately learn distinct input patterns or image components
[88]. In this algorithm, nodes compete to respond to the cur-
rent pattern of input activity in a manner that is closely related
to a number of other algorithms. This mechanism of competi-
tion can be interpreted as: a sequential version of non-negative
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matrix factorization [40], [47], as a divisive form of lateral inhi-
bition that targets the inputs to a population of competing nodes
[36], [37], [81], [85], [86], as a neural implementation of Bayes’
theorem [88], as a form of divisive normalization like that pro-
posed by Heeger [38], [39], and as a hierarchy of such networks
can be interpreted in terms of both biased competition and pre-
dictive coding [83].

For each conjunctive layer, the output (y) generated in re-
sponse to an input stimulus (x) was calculated by iteratively
updating the following equations

e =xJ (e—i—WTy) (€))
y— (e+y)® We. )
where y = [y1,...,¥yn]T is an n-element vector of output acti-
vations, X = [x1,...,2,]T is an m-element vector of input ac-
tivations, W = [wy, ..., w,]? is an n by m matrix of weight

values, each row of which contains the weights received by a
single node, W = [, ..., Ww,]7 is a matrix representing the
same synaptic weight values as W, but such that the rows of W
are normalized to have a maximum value of one, e is the inhib-
ited value of the input (or equivalently, the reconstruction error;
see below), and & and ® indicate element-wise division and
multiplication, respectively. The parameter ¢ is a small constant
(i.e., 1 x107?) that has a negligible effect on the calculation of e
and y except to prevent division-by-zero errors when the values
of y are zero. The steady-state values of the node outputs were
calculated using 100 iterations of the above equations while the
input was held constant.

The following learning rule was applied to the steady-state
node activations

W~ W {1+p8y (e’ —1)}. A3)

where (3 is a positive constant which controls the learning rate.
A value of 3 = 0.025 was used in the experiments described in
this article. Following learning, weights were clipped at zero to
ensure that they were non-negative. Weights were initialized to
random values chosen from a Gaussian distribution with mean
0.5 and standard deviation 0.125.

This learning algorithm for the conjunctive layers operates
by minimizing the error between the input stimulus (x) and
the input that is reconstructed from the node outputs (WTy).
The values of e indicate the degree of mismatch between the
top-down reconstruction of the input and the actual input. When
a value within e is greater than unity, indicating that a particular
element of the input is under-represented in the reconstruction,
the responses of all output nodes receiving nonzero weights
from this under-represented input are increased [via (2)] and
the values of weights connecting the under-represented input
with active output nodes are also increased [via (3)]. Both these
changes will lead to an increase in the strength with which that
element is represented in the reconstructed input, and hence,
reduce the value of that element of e towards one [via (1)].
Similarly, when a value within e is less than unity, indicating

that a particular element of the input is over-represented in
the reconstruction, the responses of all output nodes receiving
nonzero weights from this over-represented input are reduced
[via (2)] and the values of weights connecting the over-repre-
sented input with active output nodes are also reduced [via (3)].
Both these changes will lead to a decrease in the strength with
which that element is represented in the reconstructed input,
and hence, increase the value of that element of e towards one
[via (1)]. When the value of e is equal to unity the reconstruc-
tion of that element is perfect and the weights stop changing
due to the term (eT - 1) in (3). For elements that are not active
in the input vector, the corresponding elements of e will be
zero and the corresponding weights (for active nodes) will stop
changing once they have reached a value of zero. Hence, a
weight stops changing value when the top-down reconstruction
is perfect (i.e., when WTy = x) or when the weight is zero.

This algorithm thus finds non-negative, elementary compo-
nents of the training data, and uses these components to en-
code each stimulus with the minimal loss of information (i.e.,
with the minimal reconstruction error). Unlike many other com-
petitive learning algorithms see [86], [87], and the references
therein, the proposed algorithm does not prespecify the number
of nodes that are required to encode each stimulus. Instead, the
number of active nodes is determined by the number of ele-
mentary components that are required to accurately represent
the input. Hence, each conjunctive layer can represent multiple,
co-occurring objects.

B. Disjunctive Learning

Each disjunctive layer implements an improved version of the
algorithm proposed in [80]. This algorithm is similar to pre-
vious methods that exploit temporal correlations to learn in-
variant representations. However, it differs from these previous
methods in: (a) learning correlations between consecutive image
pairs, rather than across longer sequences of images; (b) bi-
asing learning so that coincident inputs will be represented by
distinct nodes. These modifications enable learning to succeed
when the training environment contains multiple, co-occurring
stimuli [80]. Multiple stimuli might occur when the visual input
contains multiple objects or background clutter.

For each disjunctive layer, an n-element vector of output
values (y) generated in response to an m-element vector of
inputs (x) was calculated using the following equation

y:max{W@W@X} )

where W = [W1,..., W,]7 is an n by 7n matrix representing
the synaptic weight values such that the rows of W are normal-
ized to have a maximum value of one, W = [%,...,W,]” is
an n by m matrix representing the same synaptic weight values
such that the columns of W are normalized to have a maximum
value of one, X = [xT,...,xT]T is a n by m matrix each row
of which is a copy of the input vector X, and max is a function
which returns the maximum value in each row.

The activation function, described above, is identical to that
used in [80]. The learning rule, described below, is different



256 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 1, NO. 4, DECEMBER 2009

from that used previously, although it operates using the same
principles. The following learning rule was applied

W — W {l+9y(x*—x)} 5)

where x* is the vector of input values for the previous input
pattern, and + is a positive constant which controls the learning
rate. A value of v = 0.25 was used in the experiments de-
scribed in this article. Importantly, for each node, the single
synapse that produced the maximum value in (4) did not have
its weights modified. Following learning, synaptic weights were
clipped at zero (i.e., negative weight values were made equal to
zero) and were normalized such that the sum of the weights in
each column of W was equal to one. Weights were initialized to
random values chosen from a Gaussian distribution with mean
0.5/n and standard deviation 0.125/n.

This learning algorithm for the disjunctive layers operates by:
(a) finding correlations between successive input patterns; (b)
ensuring that coactive inputs (which must be generated by the
coactivation of distinct retinal locations) are not represented by
the same node. Objective (a) is achieved by nodes which are
active in response to the current input pattern increasing their
synaptic weights to inputs which were active in the previous
stimulus (in proportion to yx*). A strongly active node has a
strong weight to an input that is active in the current stimulus.
Hence, by increasing this node’s synaptic weights to inputs that
were active in the previous stimulus the algorithm is learning
temporal correlations between successive stimuli, in a manner
consistent with Hebbian learning. Objective (b) is achieved by
nodes which are active in response to the current input pattern
decreasing their synaptic weights to inputs which are active in
the current stimulus in an anti-Hebbian manner (i.e., in propor-
tion to —yx). Note, only those synapses that did not generate the
maximum input to the node are modified, so a single active input
remains unchanged, but weights to all other active inputs are de-
ceased. Furthermore, the weights are normalized so that the sum
of the weights emanating from a single input are equal to one.
This normalization process provides an implicit form of compe-
tition between nodes, since if one node strengthens its connec-
tion to a particular input, then connections from that input to all
other nodes are weakened.

III. RESULTS

A two stage hierarchy (as illustrated in Fig. 2) was used to
learn to encode sensory input in both head-centric and body-
centric coordinates. The inputs to this hierarchy were a two-
dimensional image, and four one-dimensional arrays encoding
the four motor degrees of freedom: eye pan/tilt and neck pan/
tilt. The axis of the motor actions were coincident with the
x and y axis of the retinal array, hence, both the eye and
neck pan/tilt values served to slide the retina around within a
larger world coordinate system, as illustrated in Fig. 3. This
visual world consisted of a grid of pixels large enough to
accommodate the retina at the extremes of the pan/tilt ranges.
The world was populated by “objects,” represented by pixels
with contrast values randomly selected within the range 0O to

Retinotopic Image Eye Pan Eye Tilt Neck Pan  Neck Tilt

H EpN BEN B

Retinotopic space
Head-centred space
Body-centred space

Fig. 3. Training data, for presentation to the inputs of the neural network ar-
chitecture shown in Fig. 2, was generated by populating a body centric world
with objects represented by pixels with nonzero values (one object is illustrated
near the center of the retinocentric space). The retina was slid around within a
world by both eye and neck movements. The portion of the world visible on the
retina at the extremes of eye pan and tilt (for a fixed neck pan and tilt) defines
a head-centric world. The world visible on the retina at the extremes of both
eye and neck pan and tilt defines a body-centric world. Values of pan and tilt
were represented to the network as vectors. Each pan/tilt vector had one ele-
ment equal to a value of one, representing the pan/tilt value, and all other ele-
ments were zero. The retinotopic image presented to the network was simply the
array of world pixels visible to the retina given the current pan and tilt values.
The strength of the pixel contrasts in the retina were normalized so that they
summed to one.

1. Since real objects have an extent, representing objects as
pixels is a limitation of the current algorithm, but one that
it shares with other methods for performing sensory-sensory
transformation (see Discussion).

Experiments were carried out using a small 3-by-3 pixel
retina, and pan and tilt values that could each take one of three
values. The world was thus 7-by-7 pixels. For these experiments
the first conjunctive layer contained 180 nodes, the first dis-
junctive layer contained 50 nodes, the second conjunctive layer
contained 550 nodes, and the second disjunctive layer con-
tained 100 nodes. Hence, each layer contained approximately
twice as many nodes than the minimum number required for
the task. While this is a small scale problem, it is still more
complex than the task used to test many existing methods (see
Discussion) and the network is still quite complex containing
97 500 synaptic weights.

The initial world was randomly created with each pixel in-
dependently selected to contain an object with probability P;
(Ps sets the sparsity of the visual input). Values of Ps ranging
from 0.05 to 0.3 were used in the different experiments reported
below. Each selected pixel then had its contrast set to a value
chosen uniformly from the range [0, 1]. In order to generate a se-
quence of data in which objects tended to remain stationary for
an extended period of time, each subsequent visual world was
created by removing, with probability P, existing objects (by
setting the corresponding pixel value to zero). Similarly, new
objects could appear at empty pixel locations with probability
P,,,. New objects were assigned a random contrast in the range
[0, 1]. In order to keep the sparsity of the world constant (at Ps),
P,,, was related to Pog by P,,, = PogPs/(1 — Ps). Values of
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Fig. 4. Example training data. (a) shows Fig. 3 rearranged to illustrate the format in which the training data is presented in (b) for learning head-centered coordi-
nates, and (c) for learning body-centered coordinates. In both (b) and (c) the top rows show a sequence of 12 images of a visual world created using s = 0.1 and
P,¢r = 0.1. The bottom rows show the corresponding 12 sets of input data presented to the neural network. For learning head-centric coordinates it is assumed
that the neck pan and tilt values are constant. Hence, the visual world, shown on the top row of (b), is the head-centered space (fixed relative to the body-centered
space) as shown on the right of (a). Furthermore, since the neck pan/tilt values are not used as inputs to the stage of the neural network hierarchy learning the
head-centric coordinates (see Fig. 2), these values are ignored. Hence, the sequence of training data shown on the bottom row of (b) consists of the retinotopic
image and the eye pan and tilt vectors shown in the configuration illustrated within the dashed box on the top-left of (a). For learning body-centric coordinates,
the visual world, shown on the top row of (c), is the body-centered space shown on the right of (a). The sequence of training data shown on the bottom row of (c)
consists of the retinotopic image, and both the eye and neck pan and the eye and neck tilt vectors, shown in the configuration illustrated within the dash-dot box on
the top-left of (a). In both sets of training data, the retina is smaller than the visual world, and hence, the retinal inputs [top-left square in the bottom row of each
subfigure in (b) and (c)] contains only a subset of the pixels shown in the corresponding visual world (top row of the same column). The retina is positioned on the
visual world at the location determined by the pan and tilt values, and hence, the subset of pixels contained in the retinotopic image is determined by the pan and
tilt vectors. For example, for the left most column in (b) both the pan and tilt values are in the middle of their ranges (pan = 2, telt = 2) and so the top and left
edges of the retina are positioned one pixel from the top and left edges of the world (and the bottom and right edges of the retina are positioned one pixel from the
bottom and right edges of the world). Hence, the only object in this world appears at the bottom left of the retina [at coordinates (1,3)]. In the next image in the
sequence, the eye pan value has moved one position to the left (pan = 1, tilt = 2) so that the left edge of the retina is now positioned at the left edge of the world
and the object now appears in the retina at the bottom center pixel (at coordinates (2,3)). If for brevity we denote each input pattern using a vector of four values
( pan, tilt, x, y), then the first five sets of input data for learning head-centered coordinates shown on the bottom row of (b) can be written as (2,2,1,3), (1,2,2,3),
(1,3,2,2), (2,2,1,3), and (2,3,1,2). Note that the first and fourth patterns are the same, so we have four distinct training patterns. Each of these patterns represents
the same location in the visual world [the location of the pixel at coordinates (2,4) in the visual world shown on the top row of (b)]. These four patterns form a
“disjunctive set” representing that location.

P,g ranging from 0.05 to 0.3 were used in the different exper-
iments reported below. Worlds that contained no objects were
removed from the training sequence.

The retinal input corresponding to each world array was
generated by randomly selecting pan and tilt values with the
restriction that the highest contrast pixel in the world remained
visible on the retina. Each retinal input was then normalized
by the total sum of the pixel values in the retina. To gen-
erate the data for training the head-centric representation, the
neck pan/tilt values were kept constant while the eye pan/tilt
values were chosen randomly. To generate the data for training

the body-centric representation, both the eye pan/tilt and neck
pan/tilt values were chosen randomly. Examples of sequences
of training data generate by this method are shown in Fig. 4.
The four layers of neurons making up the model were trained
one after the other. Specifically, a sequence of 100 000 input
patterns were used to train the first conjunctive layer. These
weights were then held constant while another 100 000 input
patterns were presented and the weights into the first disjunc-
tive layer were learned. This procedure was then repeated
to train the second conjunctive and disjunctive layers using
10 0000 input patterns each.
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Fig. 5. Accuracy of head-centric representation (square markers) and body-centric representation (circular markers), for (a) changing the sparsity of objects in the
world (while P,¢ was fixed at 0.05), and (b) changing the average time an object stayed static in the world (while P; was fixed at 0.2). Each plot shows the mean
percentage error with error bars indicating the best and worst performance over five trials using different randomly generated sequences of input data and different

randomly initialized synaptic weights.

To test the accuracy of the sensory coordinate mappings
learned by the network, the following procedure was used. A
single object was placed in the visual world at each possible
location in turn. For each world location, a set of input patterns
were created containing every possible combination of the
retinal location and the pan/tilt values corresponding to this
world location. This set of input patterns corresponding to a
single world location constitutes a “disjunctive set” of patterns,
and the entire test set consisted of disjunctive sets for every pos-
sible world location. For each individual input pattern the node
in the disjunctive layer under test that generated the strongest
response was identified. This node can be said to represent
that input pattern. Ideally, all the patterns in a disjunctive set
(i.e., all the combinations of pan/tilt and retinal coordinates
corresponding to a single world location) should be represented
by a single node, and patterns in different disjunctive sets (i.e.,
patterns corresponding to different world locations) should
be represented by distinct nodes. Hence, a pattern was con-
sidered misrepresented if it was not represented by the node
representing the majority of patterns in that disjunctive set. Fur-
thermore, if a single node represented patterns corresponding
to more than one distinct world location, those patterns not
forming part of the largest disjunctive set represented by that
node were also considered misrepresented. A percentage error
was then calculated as the ratio of misrepresented patterns to
all patterns in the test set (i.e., all possible combinations of
retinal location and pan and tilt values for all possible world
locations). Note that error was not calculated in terms of the
distance between the actual location of the object and the
location represented on the map. Instead, the error values mea-
sured the percentage of patterns mismapped by the network.
In other words, for the percentage of patterns not mismapped
(100-error) the mapping produced was 100% accurate.

Experiments were carried out to assess the robustness of the
learning algorithm to changes in the sparsity of the world (Ps),
and the probability that successive images contained the same
object (Post). For each condition tested, the neural architecture

was trained five times using different randomly generated se-
quences of input data and different randomly initialized synaptic
weights. Fig. 5 shows the mean percentage error (and the max-
imum and minimum error) over these five trials for each com-
bination of P, and P,g tested. It can be seen from Fig. 5(a) that
performance was best for P values between 0.1 and 0.2. As the
world becomes sparser than 0.1, the retina will rarely contain
multiple objects. Since, the disjunctive learning rule exploits
the presence of multiple objects to divide its inputs into sepa-
rate disjunctive sets, it is not surprising that performance gets
worse as P; becomes very small. As the world becomes denser
than 0.2, the retina will typically contain several objects. It is
then difficult to learn which of several objects in one image cor-
responds to which of several objects in the next image. Hence,
it is to be expected that learning posture invariance from tem-
poral correlations becomes less accurate as the average number
of objects in each input pattern increases. However, it is easy
to imagine how the early stages of visual processing could con-
trol the sparseness of the retinocentric representation of space, to
enable successful learning of subsequent sensory-sensory trans-
formations. Fig. 5(b) shows that the performance of the learning
algorithm improves as P.g decreases. This is expected since the
smaller P,g, the longer the sequence of training data containing
the same object, and hence, the more opportunity the algorithm
has to learn all combinations of retinal position and pan/tilt value
that correspond to the same spatial location.

It can be seen from both Fig. 5(a) and (b) that the body-cen-
tric representation is often more accurate than the head-centric
representation. Since the former is built on the latter, this result
seem inconsistent. However, it is due to the rather strict criteria
used to quantify the accuracy of the representations learned.
The assessment method requires that each disjunctive set is
represented by a distinct node, and that a single node produces
the strongest response to all members of a disjunctive set.
The second criteria of success is responsible for many of the
recorded errors, but such “errors” in the head-centric repre-
sentation do not prevent the body-centric representation being
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learned successfully. For a small proportion of disjunctive sets
two or more nodes in the disjunctive layer learn strong weights
to all the members of this disjunctive set. Unless one of these
nodes produces the strongest response to all members of the
disjunctive set, we classify some of the patterns making up the
disjunctive set as being misrepresented. However, if multiple
nodes all respond to a disjunctive set, the conjunctive layer
in the next stage of the learning hierarchy can learn strong
connections to all these nodes and still form an accurate repre-
sentation of all possible conjunctions at the next level. Hence,
some of the errors being counted by the assessment method,
when applied to the head-centric representation, do not actually
have an effect on subsequent learning of the body-centric
representation. Such “errors” seem to be most common at the
corners of the space being encoded. Of all the combinations of
retinal location and pan/tilt values a smaller proportion are near
corners in the body-centric space than in the head-centric space,
hence, the accuracy of the body-centric representation is better.

IV. DISCUSSION

This article has shown that it is possible to learn sensory-sen-
sory coordinate transformations using a completely unsuper-
vised learning algorithm. Specifically, it has been shown that
a sequence of retinal images produced using random eye move-
ments and a slowly changing world can be used to learn a rep-
resentation of visual space that is invariant to eye movements,
i.e., a head-centric reference frame. Similarly, this representa-
tion of the visual world combined with random head movements
can be used to learn a representation of visual space that is in-
variant to eye and neck movements, i.e., a body-centric refer-
ence frame. Other recent work has shown that similar methods
which exploit temporal correlations can be used to learn spa-
tial representations invariant to posture similar to those encoded
by “place cells” in the rat hippocampus [13], [31]. The current
results complement this work by showing that similar mecha-
nisms can account for learning spatial reference frames in pari-
etal cortex.

The reported results demonstrate that the proposed algorithm
works on a simple test problem. Future work will be required to
determine if this algorithm can scale-up to more realistic tasks.
Existing methods for generating sensory-sensory mappings use
hard-coded solutions or supervised learning, and hence, are
likely to outperform the method proposed here. The advan-
tages of the current method are not in terms of a quantitative
improvement in performance, but rather in demonstrating that
a completely unsupervised method can learn sensory-sensory
coordinate transformations. Hence, in the following discussion
the comparison with other methods is concerned primarily in
discussing the shortcomings of these existing methods in terms
of their plausibility as models of development in infants and/or
as algorithms that can advance work in epigenetic robotics.

The proposed algorithm has been tested with a simple task
using a two-dimensional retinal image and four degrees of
freedom for motor action: eye pan/tilt and neck pan/tilt. While
this task is simple, it is more challenging and realistic than the
task that has typically been used to assess previous models of
cortical spatial transformations. This previous task is illustrated
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Fig. 6. (a) A simple task used to test previous models of sensory coordinate
transformations. Two scalar values r; and p;, encoded by the activation pattern
of two populations of neurons, are combined to calculate a third scalar value &,
encoded by the firing of a third population of neurons. This general task can be
interpreted in terms of simulating a mapping from retinocentric coordinates to
head-centered coordinates, if r; is interpreted as representing the position of a
target on a one-dimensional retina, and p; is interpreted as a representation of
eye position. In the simple case where the eye position generates a horizontal
shift of the retina along its axis, the correct value of & is simply the sum of the
values r and p. Hence, two pairs of retinocentric coordinates and eye position
values that should produce the same head-centric output are indicated by solid
and dashed lines respectively. (b) The architecture of the proposed model when
applied to this simple task. The head-centered representation is generated by a
population of disjunctive nodes. These nodes learn strong weights from a set of
conjunctive nodes (all representing the same spatial location). The conjunctive
nodes learn each possible combination of retinotopic and eye position inputs.
The conjunctive layer thus learns a set of basis functions, and the disjunctive
layer learns the mapping from these basis functions to a coordinate system in
which object position is invariant to posture.

in Fig. 6(a). In this task, the retinotopic map is one-dimensional
and there is one degree of freedom for motor action which
causes the retinal input to translate along its length [63], [103].
This is equivalent to calculating the sum of two scalar values
represented by peaks of activity in two one dimensional input
maps [95]. For ease of comparison with previous methods, the
architecture of the proposed algorithm when applied to this
simple one-dimensional problem is shown in Fig. 6(b).

Basis function networks [Fig. 7(a)] are an influential model of
cortical spatial transformations [22], [63]-[65]. In such models,
a layer of basis function nodes encode every possible combina-
tion of sensory input signals. This layer is functionally equiv-
alent to the conjunctive layer in the proposed model [compare
Fig. 7(a) with Fig. 6(b)]. The outputs of the basis functions can
be combined linearly, to produce a spatial map in a new refer-
ence frame (which is equivalent to the operation performed by
the disjunctive layer in the proposed model). The need to assign
one node to represent each combination of sensory signals re-
sults in the basis function network size increasing exponentially
with problem size [22], [63]. To resolve this issue it is possible to
decompose sensory-sensory transformations into several steps.
Such a solution results in a model containing a hierarchy of co-
ordinate systems [65] similar to the one proposed in this article.
However, basis function networks differ in two key respects from
the proposed model. First, because the response of a neuron in a
basis function network is inversely proportional to the Euclidean
distance between the input and the weights of that node, basis
function networks require that all the sensory information orig-
inates from a single object [65], and hence, unlike the proposed
model cannot represent the spatial locations of multiple objects
that are present simultaneously. Secondly, the synaptic weights
of each basis function need to be predefined, hence, unlike the
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Fig. 7. Architectures of alternative methods of performing sensory reference
frame transformations for the one-dimensional task described in Fig. 6(a). (a)
A basis function network as used in [22], [63]-[65], (b) A sigma-pi network as
used in [103] and [104].

proposed model spatial representations are not learned in an un-
supervised way, and such a model cannot be used to explore the
development of spatial representations in cortex.

Weber and Wermter [103], and Weber et al. [104] proposed
a method for learning sensory reference frame transformations.
The nodes in their network were sigma-pi units (Fig. 7(b)). The
response of each node was determined by calculating the prod-
ucts of pairs of signals, and then calculated the sum over these
products. The two parts of this activation function correspond
to the two layers in the proposed model and a basis function
network [compare Fig. 7(b) to Figs. 6(b) and 7(a)]. As with the
proposed model, the weights connecting products to outputs are
learned using temporal correlations between successive input
patterns. However, unlike the proposed model, the combinations
of inputs that form the products are predefined. This is equiva-
lent to predefining the weights in a basis function network, or
predefining the weights in the conjunctive layers of the proposed
model. Hence, only part of the mapping is learned in this algo-
rithm, while half the problem is solved by hard wiring the solu-
tion rather than learning it.

Hence, in contrast to the algorithm proposed here (and to
similar models of hippocampal spatial representations [13],
[31]), previous models have failed to learn the sensory coordi-
nate transformation, but have had the solution hard wired into
the weights of the network to some extent. Furthermore, none
have demonstrated that the resulting spatial representation can
be used as the input to a subsequent spatial reference frame
mapping (i.e., that the model can form part of a larger hierarchy
of spatial transformations).

The proposed model, and those discussed above, suggest
that when performing a task such as reaching for an object, the
retinocentric coordinates of the target object are transformed
into body-centered coordinates via a series of intermediate
reference frames. Hence, sensory information is recoded into
a coordinate system which is more likely to be consistent with
the coordinate system of the motor effectors. The implicit
assumption is that the new coordinate systems is more appro-
priate for learning and controlling arm movements. However,
an alternative strategy, embodied in many existing models,
is to directly learn the mapping between sensory inputs and
motor outputs without any recoding via intermediate reference
frames e.g., [1], [5], [6], [15], [16], [18], [19], [34], [53]-[55],
[68], [71], and [72]. Unlike many previous algorithms for

sensory-sensory mappings, these sensory-motor mappings are
usually learned rather than hard-wired. This is made possible
by associating the sensory consequences of random motor
movements (motor “babbling”) with the outputs that generated
those motor movements. In other words, the motor outputs
provide a supervisory signal for learning the sensory-motor
mapping that is not available for learning a sensory-sensory
mapping.

While the ability to exploit the correlation between motor
outputs and sensory inputs to learn the sensory-motor mapping
gives these methods an advantage over hard-coded methods of
learning sensory-sensory mappings, the existing algorithms for
learning direct sensory-motor mappings typically suffer from
other issues.

» These existing algorithms typically require that the sensory
input contain only one item which always corresponds ex-
actly to the position of the end-effector that the algorithm
is learning to control, which is a serious limitation.

* During training, the output of the motor region is deter-
mined by a random number generator, whereas it is con-
trolled by the sensory input once learning is complete. Such
a distinction between the training phase and operational
phase is biologically implausible as it requires neurons to
switch behaviors [84].

* There are a large number of possible combinations of sen-
sory inputs for which a mapping needs to be learned [94],
this is equivalent to the problem faced by basis function
networks where the size of the network needs to increase
exponentially with the size of the task.

* The required motor configuration may depend on nonlinear
relationships between the different sensory inputs. There
may be little similarity in the required output for similar
input patterns, hence, little opportunity for generalization.

At least some of these difficulties can be solved by recoding
the sensory data into a more abstract representation such as
a body-centric reference frame. Recoding via intermediate
coordinate systems can overcome the exponential increase in
problem size, the more direct correspondence between the
recoded sensor and motor coordinate systems provides gener-
alization between similar situations, and the abstract sensory
representation can be reused for learning other sensory-motor
mappings.

As well as providing a mechanism for learning sensory-sen-
sory coordinate transforms (and subsequently, sensory-motor
control), the proposed hierarchical neural network algorithm
may have application to modeling infant development or imple-
menting developmental processes in robots. Development is a
constructivist process through which progressive improvements
in ability are achieved by using simpler skills as a basis for
learning more complex ones, and so on hierarchically [4], [29],
[50], [66], [78]. A neural network model of such a process thus
requires nodes to be available to exploit the learning that has
been achieved by other nodes. One obvious method by which
this can be achieved is to allow the outputs of certain nodes to
provide (some of) the inputs to other nodes, in a hierarchical
arrangement. This second set of nodes is then in a position to
make use of, and build upon, the results of learning in first set of
nodes. In such a hierarchical neural architecture, more complex
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representations can be learned in higher level networks based
on simpler representations learned in lower level networks. In
addition, the simpler representations constrain the search space
for learning in subsequent layers, and hence, make tractable
the task of learning more complex representations [17], [29].
The organization of cortical regions into functional hierarchies,
such as those found in the dorsal and ventral streams, suggest
that hierarchical neural architectures, like that proposed here,
can provide the basis for a model of cortical development that
is more biologically plausible than many other neural network
algorithms, like those reviewed in [106], that have been pro-
posed as models of development. Neural hierarchies capable of
learning complex perceptual representations which are appro-
priate for controlling complex actions are likely to be essential
to the developmental process in humans, and algorithms capable
of learning a hierarchy of representations are therefore likely to
be essential if the field of developmental robotics [82], [105],
is to make further progress, which in turn, is imperative for the
creation of more intelligent and adaptive machines.

In the proposed model, initial learning of a head-centric
representation simplifies the subsequent task of learning
a body-centric representation. In turn, the learning of the
head-centric spatial representation requires visual inputs gen-
erated by eye movements in the absence of neck movements.
Hence, the model proposes that the lack of head control in
young infants is an advantage for learning spatial representa-
tions, in the same way that it has previously been proposed that
limitations in motor control or cognitive ability may provide
an advantage to learning complex tasks [3], [28], [29], [49],
[52]. Another prediction of the proposed model is that learning
invariant representations will be aided by the presence of mul-
tiple stimuli. This is in contrast to other algorithms for learning
invariance which require stimuli to be presented in isolation
e.g., [30], [59], [91], [97], and [101].

V. CONCLUSIONS

The structural uniformity of the neocortex [21], [25], [56] has
led many theorists to suggest that the cortex is also computation-
ally uniform [7], [23], [25], [26], [35], [51], [57], [58], [62]. This
article adds to these arguments by demonstrating that the same
mechanisms which are widely believed to underlie the learning
of object representations with invariance to viewpoint in the
ventral pathway can also give rise to spatial representations in-
variant to eye and neck movements that are believed to exist in
the dorsal pathway. A major advantage of the proposed algo-
rithm over previous models of cortical sensory-sensory trans-
formations is that these coordinate transformations are learned
using an entirely unsupervised learning algorithm.
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