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Reproducing Interaction Contingency Toward
Open-Ended Development of Social Actions:

Case Study on Joint Attention
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Abstract—How can human infants gradually socialize through
interaction with their caregivers? This paper presents a learning
mechanism that incrementally acquires social actions by finding
and reproducing the contingency in interaction with a caregiver.
A contingency measure based on transfer entropy is used to select
the appropriate pairs of variables to be associated to acquire social
actions from the set of all possible pairs. Joint attention behavior
is tested to examine the development of social actions caused by
responding to changes in caregiver behavior due to reproducing
the found contingency. The results of computer simulations of
human–robot interaction indicate that a robot acquires a series of
actions related to joint attention such as gaze following and alter-
nation in an order that almost matches the infant development of
joint attention found in developmental psychology. The difference
in the order between them is discussed based on the analysis of
robot behavior, and then future issues are given.

Index Terms—Contingency chain, joint attention, sequential ac-
quisition of social behavior, transfer entropy.

I. INTRODUCTION

H UMAN infants acquire a variety of social actions and
gradually develop the ability to communicate with others.

In particular, the ability to achieve joint visual attention is the
basis for sharing attention with others since what one is looking
at often indicates what one is interested in. Therefore, under-
standing how infants acquire actions related to joint attention
such as gaze following, pointing, gaze alternation, and social
referencing is a central topic in developmental psychology [1].
Infants incrementally acquire various kinds of actions related
to joint attention; after learning gaze following, they begin to
show gaze alternation, i.e., successive looking between a care-
giver and an object, social referencing, and pointing [2]. How-
ever, it remains a mystery why most infants acquire several ac-
tions related to joint attention in such an order.

Recent imaging technology developments have been applied
to investigate the early sensitivities for actions related to joint
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attention in infant brains [3]–[5]. Mundy et al. reported elec-
troencephalography (EEG) data that show that the parietal and
frontal areas are related to the development of responding to
others’ attentions and attracting them to an interesting object,
respectively [4]. An ERP study by Striano et al. reported that
enhanced negativity is observed in the middle frontal area of
nine-month-old infants engaged in a joint attention interaction
with a caregiver [5]. However, it remains difficult to investigate
the links among these sensitivities and caregiver interactions
through developmental courses due to the limitations of current
imaging technology.

In robotics, joint attention studies have recently been re-
ceiving increased attention [6], not only from the viewpoint
of building communicative robots [7], but also from synthetic
approaches to modeling and understanding human develop-
mental processes [8]. Previous synthetic studies addressed how
infants acquire gaze following with/without external evaluation
[9]–[11]. The latter utilized contingency among a preceding
stimulus, one’s own action, and its consequence. An infant
can frequently find an object by looking where a caregiver is
looking, as long as the object at which the caregiver is looking
is salient for the infant. Previous studies have shown that a robot
can acquire gaze following by learning sensorimotor mapping
from a human face pattern to its own motor command to gaze at
an object due to the contingency [10], [11]. However, in these
studies, the robot was given a priori knowledge about what
kinds of sensory and motor variables should be associated.
Communicative robots [12] usually have many candidates for
sensory and motor variables to be associated to acquire such
social actions because they are supposed to have multimodal
sensorimotor experiences that reflect contingency in interaction
with humans. This indicates that it is not trivial for a robot to
select such a pair of sensory and motor variables by itself to
model contingencies involved in interaction.

We focus on finding contingencies in pairs of sensory and
motor variables, as well as learning sensorimotor mapping to
acquire behavior. Information theoretic measures to find causal
relationships between sensory and motor data appear promising
[13]. From this viewpoint, we previously showed that a measure
of contingency is useful for robots when searching for an appro-
priate combination of variables that enables gaze following [14].
However, the robots lacked a learning mechanism for behavior
acquisition.

Infants seem to easily find contingency in their environment
and act to experience the found contingency [15]. It has also
been reported that a few interactions with a contingently re-
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sponsive robot lead infants to follow the gaze of the robot [16].
We call the activity to experience such found contingency “re-
producing contingency,” and hypothesize that it leads to fur-
ther novel contingencies that emerge from interactions with a
caregiver by introducing contingent responses from the care-
giver to the robot. We expect that this loop of finding and repro-
ducing contingencies enables open-ended development of social
actions such as those related to joint attention. Therefore, we
model the developmental process of joint attention by finding
a contingency and its reproduction; the joint attention behavior
acquired by a robot may change the caregiver’s response and
induce a novel contingency in the interaction to acquire another
action related to joint attention.

This paper presents a learning mechanism based on the above
hypothesis. A contingency measure based on transfer entropy is
used to select appropriate pairs of variables to be associated to
acquire social actions from possible pairs. A mechanism con-
structs a sensorimotor mapping to reproduce behavior based on
the found contingency. In the iterative process, two new vari-
ables that express whether each sensorimotor mapping was used
or is being used are added to find not only a single new con-
tingency, but also chains of contingencies that depend on other
contingencies. Joint attention behavior is tested to examine the
development of social actions caused by changes in the care-
giver’s behavior due to reproducing the found contingency. As
a first step, we simplify caregiver–robot interaction by focusing
on their gazes and gestural modalities and suppose a quantized
sensorimotor space where sensory and motor variables have dis-
crete values. The results of computer simulations of the inter-
action indicate that a robot acquires a series of actions related
to joint attention such as gaze following and alternation in an
order that almost matches the infant development of joint at-
tention found in developmental psychology. The difference be-
tween them is discussed based on the analysis of robot behavior,
and finally future issues are given.

II. CONTINGENCY INHERENT IN INTERACTION

The contingency infants find in interaction with caregivers
depends on what capabilities they have, and how they and their
caregivers interact with each other. To clarify these elements
involved in contingency, we first identify the phase of infant
development to be simulated. The behavior of the infants and
the contingency are then modeled using discrete stochastic pro-
cesses. Finally, the expected changes of the contingency in the
interaction are described.

A. Initial Phase of Joint Attention Development

Before infants begin to follow the gaze of another person
around six months [17], their behavior changes drastically
around five months. Five-month-old infants can control their
heads [18] and begin to pay attention to their environments,
as well as their caregivers [19]. Their caregivers follow the
attention of five-month-old infants or attract it to an object
[19]. Since these are expected to help infants develop their joint
attention capabilities, we simulated the developmental process
for several months starting from a five-month-old infant.

Infants are already sensitive to contingency in their environ-
ment before five months [15], [20], [21], but their contingency
detection ability is limited because they can only detect con-
tingency for a few seconds [22]. Therefore, we assume that an
infant model can only detect the contingency for a short time.

B. Interaction Procedure

We assume a simplified face-to-face interaction between a
caregiver and an infant (hereafter a robot), both of whom take
turns observing their environments and the other agent at the th
time step as follows.

1) Robot observes part of its environment including
the caregiver and obtains sensory information

, where is a value in called a sen-
sory variable ( ; denotes the number
of types of sensory data).

2) Robot takes plural actions in
parallel, where is a value in called a motor variable
( ; denotes the number of different
kinds of actions).

3) Caregiver observes part of her environment including the
robot and then acts.

4) Robot observes sensory information
after its last action ,

where is a value in called a resultant sensory
variable ( ; denotes the number of
types of resultant sensory data).

We discriminate resultant sensory variables from sensory vari-
ables to distinguish between cause and effect, although they
should represent the same information. We call a time sequence
of variables a process, namely, sensory process ,
motor process , and resultant sensory process

. A triplet of processes ( , , ) is called an
event. Here, the contingency of event ( ) is evaluated
as the dependency of on and . We call an event that
involves strong dependency a contingent event. Some observa-
tions of human infants suggest that they change their behavior
after finding contingency [15]. Therefore, we separate the robot
task into two parts: finding a contingent event and acquiring
a sensorimotor map with which it can obtain the contingent
consequence.

C. Changes of Contingency in Social Interaction

In caregiver–infant interaction, the social response of a care-
giver (which is contingent) to infant behavior leads the infant
to acquire a social action [15], [21], [23]. Some findings show
that the caregiver gradually changes how she responds to infant
behavior as her infant’s communicative abilities emerge [24],
[25]. This change may produce not only a single contingency,
but also a chain of contingencies that enable the infant to acquire
social behavior that consists of a sequence of acquired actions.

Actually, several social actions consist of a sequence of con-
tingent subactions. For example, social referencing might be
performed by two social actions: following the other’s gaze to
find an object and then looking back at the other’s face to deter-
mine why the other is looking at it.
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Fig. 1. Proposed mechanism to successively develop social actions.

Therefore, we assume that a robot can observe the use of an
acquired action to promote finding the chain.

III. PROPOSED MECHANISM TO SUCCESSIVELY DEVELOP

SOCIAL BEHAVIOR

The mechanism shown in Fig. 1 consists of four modules:
1) a contingency detector; 2) contingency reproduction modules
(CMs); 3) reactive behavior modules (RMs); and 4) a module
selector. The number of RMs is constant, but at the beginning
of learning, there are no CMs because they are generated by the
contingency detector once it finds a contingent event through
interactions between the caregiver and robot.

RMs and CMs output motor commands to be executed and re-
liability values for the current state. The reliability, which indi-
cates the appropriateness of motor commands selected by each
RM and CM, is calculated based on information theory. The
module selector decides robot actions based on the reliabilities.
The history of the current state and the selected motor command
are stored with the resultant state in the contingency detector to
find contingent events and to generate subsequent CMs based
on them.

A. Contingency Detector

A contingency detector has two roles: finding a contingent
event and generating a new CM based on it. We proposed an
information theoretic measure of contingency based on transfer
entropy [26] to quantify the contingency of events experienced
through interactions with a caregiver [14]. Transfer entropy is a
kind of information measure that can quantify the dependency
of one stochastic process on another process based on condi-
tional transition probabilities1 [26]. The contingency detector
evaluates the contingency in interaction by calculating the mea-
sures for all events. This measure is slightly extended and ap-
plied to all events that are possible combinations of sensory,
motor, and resultant sensory variables.

Let and be two discrete random pro-
cesses that may be approximated by a stationary Markov process

1This measure is equivalent to the conditional mutual information [27], [28],
but unlike mutual information, it is designed to detect the dependency between
two processes based on the idea of finite-order Markov processes.

of order and . When takes value at time , the evolution
of process is denoted by transition probability ,
where . Transfer entropy indicating
the dependency of process on process is given by

(1)

Here, we set because of the limitation of causality
detection mentioned in Section II-A.

To construct a sensorimotor map from sensory signals to
motor commands that provide a robot with contingent con-
sequences, the robot needs to evaluate the dependency of a
resultant sensory process on the sensory and motor processes.
Therefore, we introduce saliency of contingency (C-saliency)

, which is extended from the original transfer entropy as
follows to quantify the joint effect of sensory process and
motor process on the resultant sensory process

(2)

where is called an element of C-saliency
under a pair of observed values ( ) and is given by

(3)

The element of C-saliency represents the strength of the depen-
dency of the state transition from to on pair ( ).
The first term represents the difference between
and and indicates how the transition from

to depends not only on but also on . The
second term represents the difference between and

and indicates how the transition from to
only depends on . The second term is subtracted from the
first to capture the combinatorial dependency of and on
the transition from to . If they share strong dependency,
the element of C-saliency increases.

Note that C-saliency becomes smaller when the state transi-
tion from to is not only independent of and , but
is also fully predicted by the sensorimotor map. Using the sen-
sorimotor map reduces the uncertainty of a motor signal given a
sensory signal. As a result, the difference between the denomi-
nator and the numerator in the first term of (3) becomes smaller.
Therefore, C-saliency is used to find the salient contingency that
a robot cannot reproduce by the acquired sensorimotor map be-
fore finding it.

After calculating C-saliencies for all events, the detector de-
termines whether to generate a new CM for a contingent event.
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We regard an event with the highest C-saliency value as a contin-
gent event because it is unclear how a high C-saliency generates
a useful CM. A new CM is generated if its C-saliency retains the
highest value during time steps and the absolute difference
of the values for the last consecutive time steps during this pe-
riod is smaller than constant value . To avoid generating too
many similar CMs, the contingency detector generates only one
CM per contingent event. Hereafter, a CM that is constituted for
event is denoted as .

To find a chain of contingencies depending on a found
contingency, a robot identifies whether it reproduced the
found contingency as CM activities. When the contingency
detector generates the th new CM, it begins to observe the
CM activities, which we express as two different kinds of
binary random processes, and , to investigate the
simplest chain of contingencies related to the CM.
takes value “1” at time step when an output from is
selected as a current motor command by the module se-
lector and “0” otherwise. takes value “1” at time step
when an output from is selected as a last motor command
and ”0” otherwise. Therefore, if the number of generated
CMs is , the contingency detector calculates C-saliencies

, where and

. We expect
this extension to enable the contingency detector to find not
only a contingency for one time step but also one for several
steps related to the generated CM.

B. Contingency Reproduction Module

A CM for contingent event ( ) is
composed of a sensorimotor map from to that reproduces
a contingent change of based on elements of C-saliency [see
(3)]. Given observed values of and , a value of called
a contingent motor command is selected to reproduce the con-
tingent change represented in the CM. A contingent motor com-
mand is defined as the value of whose C-saliency element
is the highest among all possible C-saliency elements.

Therefore, contingent motor command is given by

(4)

where and are the current observations and is the ex-
pected resultant sensory information that predicts the change by
the contingent motor command. Hereafter, we call a pair of
and a contingent estimation.

CM also calculates the reliability of the contingent estimation
for the current observation that is used by a module selector,
as described in Section III-D. We denote such a reliability of
the contingent estimation of the th CM as .
It is designed based on the z-score of the C-saliency elements
so that the module selector uses a contingent estimation whose
C-saliency element is not only high compared with any other

pairs in the event but also more salient than other possible pairs
under the current observation.2

After they are calculated, the sensorimotor map and the relia-
bilities in a CM are not updated, but the C-saliency for the event
used to generate the CM continues to be calculated.

C. Reactive Behavior Module

An RM outputs a motor command to perform a simple action
such as shifting gaze based on a fixed policy given by the de-
signer. RMs play more important roles in the early stage of de-
velopment since the robot behavior is only determined by them
before acquiring any CMs. To separate as much as possible the
proposed mechanism’s contribution from that of super-tuned
RMs for the development, we adopted the two simplest RMs
in the experiment: one is for gaze behavior by which the target
position of looking at is randomly selected and the other is for
hand gestures by which the hand’s target posture is randomly
selected. We might be also able to use more biased selection be-
cause infants have innate preferences for such things as human
faces [29] or objects with complex textures [30].

Fixed constant is used for the reliabilities of the RMs. A
constant influences the probability of selecting outputs from
the CMs as actual motor commands. A higher value of this
parameter prevents the module selector from selecting outputs
from CMs. As a result, a robot spends too much time before
finding the contingency related to an acquired CM or even some-
times fails. In the experiment, we set to almost half of the re-
liabilities of the contingent estimations; that is, .

D. Module Selector

Given the reliabilities of all CMs and RMs, a module selector
decides which of these outputs should be selected as the robot’s
motor command. In the current implementation, we assume that
the robot can simultaneously select multiple motor commands
if they belong to different categories. For example, it can simul-
taneously perform both gaze and hand movements.

For each motor command category, the module selector
chooses one of the outputs of all RMs and CMs belonging to

2In the current implementation, � ��� �� �� � � � was calculated by

� ��� �� �� � � � �
� ��� �� �� � � �� �

�
(5)

where � and � denote the average and standard deviation of all
C-saliency elements under values (� � � ). Equation (5) is applied for the
reliability of the contingent estimation that meets the following requirements:

���� �� �� � � �� ��� ���� �� �� � � �

	� ��� �� �� �� �� � � (6)

���� �� �� � � � 	 �
	 ��� ���� �� �� � � � 
 (7)

� ��� �� �� � � � � � if the contingent estimation does not satisfy them.
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the same category by softmax selection based on the reliabil-
ities. Note that to avoid deadlocks in specific states, the RMs
and CMs reliabilities are discounted by an exponential factor
of periods when the state transition of the sensory and resultant
sensory variables involved in the modules do not change.

E. Sequential Acquisition of Behavior Based on Reproducing
the Acquired Behavior

The proposed mechanism is expected to continue to acquire
different sensorimotor mappings as follows. At the beginning
of learning, the module selector selects the outputs of RMs (at
random selection) as motor commands since there are no CMs.
As interaction between caregiver and robot is iterated, the con-
tingency detector generates a new CM with a sensorimotor map
to reproduce the found contingency. Once a CM has started to
be used, the robot’s behavior might affect the dynamics of its
environment; for example, its caregiver might regard it as more
communicative and change her response to it. Such a change
causes the invention of subsequent CMs, which hopefully create
further inventions in a catenative way.

Whenever a new CM is generated, the contingency detector
starts to observe whether the new CM was used and is going to
be used, respectively. It also starts to evaluate new events in-
cluding these activities of the CM expressed as new sensory
process and motor process . Such events may be se-
lected as the next contingent event if the found contingency
leads to novel contingency. Therefore, the robot is expected to
find a chain of contingent events.

IV. COMPUTER SIMULATION OF BEHAVIORAL DEVELOPMENT

RELATED TO JOINT ATTENTION

The proposed model’s performance was tested in computer
simulations of a robot and a caregiver model, both of which ma-
nipulated a sensorimotor space in face-to-face situations where
they used gazes and hand movements.

A. Experimental Setting

1) Environment and Infant Model: Fig. 2 shows an overview
of the setting in the computer simulation. The robot sits across
from the caregiver at a fixed distance. There are three spots on
a table, and two objects are randomly placed every ten time
steps (no more than one object at one spot). Here, the objects
are not identified for simulation simplicity since the differences
between them do not affect the robot and caregiver behavior.

The initial set of variables is listed in Table I.3 The sensory
variable for the caregiver’s face is denoted by , which takes
a state at which the robot is looking at her frontal face ( ),
or her face looking at spot on the table, ( , 2, 3), or
does not look at the caregiver ( ). The sensory variable for
an object is denoted by , which takes a state at which the
robot is looking at an object ( ) or at something else ( ). The
robot cannot simultaneously look at both the caregiver’s face
and spots on the table. For example, when it is looking at the
caregiver’s frontal face, .

3Instead of allowing the complicated diversities of the results by assigning
all sensory variables both for ��� and��� , we selected different sets of variables
for each ��� and ��� . Note that such a reduced problem still involves finding
appropriate variables as causes and results, as well as that we can observe a
similar tendency in the order of the acquired modules as those obtained in the
current reduced setting.

Fig. 2. Experimental setting for acquisition of actions related to joint attention.

TABLE I
INITIAL VARIABLES IN ROBOT

We select resultant sensory variables that
reflect the infant’s innate preferences. Human infants appear to
like both the caregiver’s face [29] and salient objects [30]. In
particular, they prefer frontal faces to profiles [29]. Thus, we
prepared three types of variables: caregiver’s frontal face ,
caregiver’s profile , and object . These binary variables
indicate whether the robot is looking at its preferred face or an
object (“1”) or neither (“0”). Since the robot can look at either
the caregiver’s face or spots on the table, only one or none of
the components of can be “1” at the same time.

The robot can simultaneously shift its gaze and gestures. Its
gaze shift is denoted by , which indicates the target of its
gaze, i.e., a particular location on table ( , 2, 3), or the
caregiver’s face ( ). The gesture is denoted by , which takes
one of four different hand gestures: hitting the table with its right
hand, its left one, both of its hands, or not hitting it.

The robot first uses two RMs to determine gaze movements
and hand gestures by randomly selecting a member of and

. After CMs are found, the motor commands for these ac-
tions are determined by the module selector that integrates the
outputs of these RMs and the generated CMs. The parame-
ters in the proposed mechanism are set as

. The joint and conditional probabili-
ties in (3) were calculated based on the histograms of the values
of events.

2) Behavior Rules for Caregivers: The caregiver strategies
are designed to resemble actual caregiver behavior because, to
the best of our knowledge, there are no quantitative investiga-
tions on how a caregiver’s gaze-shift behavior is affected by the
development of her infant.4

The caregiver only shifts her gaze at each time step while the
robot moves its hands and shifts its gaze. The caregiver, who al-
ways looks at either the robot’s face or an object on the table,
has four optional strategies to shift her gaze [see Fig. 3(a)]:
1) following the robot’s gaze, in other words, responding to joint

4There is a theoretical study on the influence of caregiver behavior on the
learning process in a simple reinforcement learning model of gaze following
[31].
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Fig. 3. Flow chart of caregiver’s gaze shift. (a) Entire information flow.
(b) Details of each process.

attention process (RJA); 2) shifting her gaze to draw the robot’s
attention, in other words, initiating joint attention process (IJA);
3) looking at the robot after achieving joint attention to acknowl-
edge joint attention, in other words, acknowledging joint atten-
tion process (AJA); and 4) randomly looking at a target selected
(NT). After one of these strategies is selected, a target is chosen
based on the strategy. Note that in the NT strategy, targets that
could be selected in other strategies are excluded from the can-
didates. For example, the caregiver is controlled so that she does
not follow the robot’s gaze in the NT strategy. The robot, who
does not know which strategy the caregiver is engaged in, just
acts based on outputs from RMs or from CMs at each time
step regardless of the caregiver’s current strategy. Therefore, the
caregiver does not necessarily succeed in attracting the robot’s
attention when she selects the IJA process.

At each time step, the caregiver selects one of the strategies
depending on what she is looking at. She usually selects NT.
The other strategies, RJA, IJA, or AJA, can be selected in the
following cases [see Fig. 3(a)]: if the caregiver is looking at the
robot’s face, she selects either RJA with probability or NT
with probability . Otherwise, (looking at an object on the
table), the caregiver selects either IJA with probability or
NT with probability , except when the caregiver and the
robot are looking at the same object. In such cases, the caregiver

TABLE II
SENSORIMOTOR MAP AND RELIABILITIES IN TYPICALLY GENERATED CMS

selects either AJA with probability , IJA with probability
, or NT with probability .

In RJA, the caregiver shifts her gaze to follow the direction of
the robot’s face. If the robot is not looking at an object, the care-
giver selects an object at random and shifts her gaze to it [left in
Fig. 3(b)]. In IJA, the caregiver shifts her gaze from an object to
the robot and then shifts her gaze to the object at the next time
step again [center in Fig. 3(b)]. In AJA, the caregiver shifts her
gaze to the robot’s face as if to confirm that joint attention was
achieved with the robot [right in Fig. 3(b)].

B. Sequential Acquisition of Joint Attention Behavior

We ran time step simulations ten times where
. At the beginning of learning,

robot motion was controlled by RMs, but it sometimes acciden-
tally achieved gaze following or gaze alternation. It gradually,
however, acquired CMs related to joint attention through inter-
action with the caregiver. The average number of CMs found
by the contingency detector was 4.1. In all the simulations,
a particular set of CMs was generated in the following fixed
order , , and .
Hereafter, we express these CMs using the symbols in Table I
to avoid confusion

(8)

(9)

(10)

where indicates a symbol expressing whether the
robot used the last output of .

These CMs were often generated earlier than other CMs
for different events. Table II shows examples of the found
contingent estimations (i.e., outputs) for specific inputs in these
CMs with their reliabilities. Each of these CMs allowed the
robot to achieve social behavior: following the caregiver’s gaze
[ , hereafter the following-gaze module], shifting its
gaze to the caregiver after using the output of the following-gaze
module [ , hereafter the returning (fol-
lowing-gaze) module], and shifting its gaze to the caregiver
regardless whether the robot used outputs of the following-gaze
module at last time step [ , hereafter the
returning (no-condition) module].

Fig. 4 shows examples of the time courses of C-saliencies for
several events whose C-saliency was the highest or the second
highest during at least one time step in the simulation. The ver-
tical axis indicates the logarithmic value of the C-saliencies. We
also show the timing of generating new CMs as arrows at the
top of the graph. Since at the beginning of the simulation the
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Fig. 4. Time courses of saliency of contingency of events in simulation face-to-
face interactions between caregiver and robot.

statistics are based on few samples, C-saliencies tended to be
overestimated. After sufficient interaction data were collected,

became the highest among all C-saliencies (red curve in
Fig. 4). As a result, a new CM [ ] corresponding
to the following-gaze module was generated at the 4504th time
step, and and were added as sensory and motor pro-
cesses, respectively.

The robot then began to follow the caregiver’s gaze using
output from the following-gaze module when it looked at the
caregiver who was looking at an object. This increase of gaze
following increased the opportunities for the caregiver to look
at the robot in responses to the achievement of joint attention.
By iterating the interaction, gradually decreased because
using particular output based on the acquired sensorimotor
map reduces the difference between and

[the first term of (3)]. This decrease made
the next highest value. The found contingency implied that the
robot observed the caregiver’s frontal face when it looked at
the caregiver after using output from following-gaze. Based on
the contingency, the next CM [ ] corresponding
to the returning (following-gaze) module was generated at the
37838th time step. This enabled the robot to direct its gaze to
the caregiver after following the caregiver’s gaze.

Using output from the returning (following-gaze) changed
the contingency in the interaction again and promoted not
only a decrease of but also an increase of (blue
curve in Fig. 4). This caused the generation of the third CM
[ ] corresponding to the returning (no-con-
dition) module at the 43078th time step. This enabled the
robot to shift its gaze to the caregiver without depending on
the gaze-following output. As a result, the robot alternately
shifted its gaze between the caregiver and an object: it acquired
gaze alternation. The robot acquired not only gaze following
but also gaze alternation through the repetition of finding and
reproducing a chain of contingencies in an interaction that
changed using output from existing CMs.

C. Influence of Caregiver Behavior

In natural interaction between caregiver and infant, the care-
giver might behave in different ways from those simulated in

the previous section. We examined to what extent the sequence
of acquired actions depends on caregiver behavior.

In the simulations, probabilities , , and that the
caregiver selects RJA, IJA, and AJA processes, respectively,
were set to 0.0, 0.5, or 1.0. If we set , the robot is
expected to look at the caregiver’s frontal face when it shifts
its gaze to her after gaze following for the caregiver, but not if

. For each parameter setting, we ran a -step
simulation ten times.

Each block in Fig. 5 shows the average timing when new CMs
were generated. Note that in this analysis, we only picked CMs
that were generated in more than five simulations under each
parameter set. The horizontal axis in a block indicates the time
steps. The median in the colored rectangles denotes the average,
and its width represents the standard deviation. A colored rec-
tangle for a CM is stacked based on the average timing. To inves-
tigate whether the following-gaze, returning (following-gaze),
and returning (no-condition) modules are generated in the same
order shown in the previous section, we showed the rate at which
they were generated in the order until the third or fourth CM was
generated at the top left/right corner of each block in Fig. 5.

Following-gaze was generated first under most of the param-
eter sets at almost the same time step regardless of the value
of . A main difference between the values of was the
types of CMs generated after following-gaze. For ,
the robot acquired returning (following-gaze) and returning (no-
condition) in the same order shown in the previous section under
most of the parameter sets. However the robot could not acquire
returning (no-condition) if was high and was low [see
Fig. 5(a)]. Instead, was generated after returning
(following-gaze), which enabled its gaze to be shifted to the
caregiver despite achieving looking at an object. As a result, the
robot acquired gaze alternation.

The robot could acquire returning (following-gaze) and re-
turning (no-condition) when was high for be-
cause the IJA process sometimes makes the caregiver perform
the same behavior as one performed under the AJA process; the
caregiver can look at the robot not under the AJA process but
the IJA one after achieving joint attention with the robot. There-
fore, the robot could find the contingency to acquire those two
modules even when is low. The robot did not acquire those
modules as gets lower.

For , the other CMs were generated after fol-
lowing-gaze was generated under some parameter sets [see
Fig. 5(c)]. , found in the case of high , seems
to be another version of shifting the gaze to the caregiver by
returning (following-gaze), which enabled the robot to shift
its gaze to the caregiver when it was looking at a spot on
the table or the caregiver’s frontal face. We call
the returning (non-object) module. , which was
called keeping and generated before the returning (non-object)
module, constituted a sensorimotor map with which the robot
kept looking at the caregiver after it established eye contact.
These CMs had contingent connections with following-gaze,
but not with each other because using the output from the
keeping module did not positively influence the generation of
the returning (non-object), such as promoting an increase of

, although using output from the returning(following-gaze)
module promoted the increase of returning (no-condition)
for , as shown in the previous section.
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Fig. 5. Timing of CM generation under different parameter sets
�� � � � � � in face-to-face interactions between caregiver and robot.

These results indicate that a caregiver should often shift her
gaze to a robot after achieving joint attention with it to acquire
gaze alternation. We also confirmed that a high value of

Fig. 6. Change of robot’s behavior in face-to-face interactions with caregiver.

promotes the generation of returning (following-gaze) and re-
turning (no-condition) in the experiments for different param-
eter settings of .

V. DISCUSSION

A. Correspondence to Developmental Psychology

1) Developmental Process of Joint Attention: Previous
studies in developmental psychology have suggested that a
human infant begins to follow the gaze of a caregiver and
then acquires gaze shifting to her [2]. However, in previous
synthetic studies regarding gaze following acquisition, gaze
alternation was preprogrammed [10] or acquired before gaze
following [11]. In the experiment, the robot acquired gaze
following ability and alternation in an order that resembles
infant development. The iteration of finding and reproducing
the contingency inherent in the interaction with a caregiver
might provide the order of infant development.

However, our simple model cannot explain about mastery of
each behavior. For example, infants begin to follow the gaze of
the others in their field of view and then acquire gaze following
to targets outside their visual field. Some synthetic studies have
addressed this development process [10], [32]. We will extend
our model to address this issue as future work.

2) Behavioral Analysis: We examined what kinds of behav-
ioral changes of the robot occurred through simulated develop-
ment with CM generations. Fig. 6 shows the transitions of the
frequency of typical infant actions in an example of simulated
development where . Here, we
focus on three types of actions: gaze follow, gaze keep, and gaze
return. Gaze follow and keep indicate the behavior of following
the caregiver’s gaze and continuing to look at her, respectively,
while gaze return indicates looking back at the caregiver. We
calculated the moving average of the occurrence rate of these
behaviors among the last 1000 time steps.

Interestingly, generating CMs of following-gaze and re-
turning (following-gaze) promoted little change in the robot’s
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behavior (P2 and P3 in Fig. 6), while generating the returning
(no-condition) drastically changed the robot’s behavior (P4
in Fig. 6). Generating the CM of the returning (no-condition)
promotes the behavior of gaze follow (red curve in P4 in Fig. 6)
as well as gaze keep and return (blue and green curves in P4
in Fig. 6) because performing gaze follow and keep with these
CMs required the robot to have already looked at the care-
giver, which could be promoted after the CM of the returning
(no-condition) had begun to be used.

This transition might explain a conflict in the previous studies
of observing infant development. While six-month-old infants
can successfully follow the gaze of their caregivers after estab-
lishing eye contact [17], [33], [34], they have difficulty returning
their gaze to their caregivers after looking at an object. This in-
dicates that they cannot fully exploit their gaze following ability
in interaction with caregivers. At 12 months, they frequently co-
ordinate their attention between caregivers and an object in daily
interaction [35]. Interestingly, infants begin to follow the gaze
of others more accurately around almost the same time [17].

The simulation reproduced such a delay of looking back at
the caregiver and showed that looking back at the caregiver
promotes following the caregiver’s gaze. This suggests that the
delay in the development of gaze following can be explained by
the delay in the development of another skill: looking back at
the caregiver, instead of the delay of gaze following skill itself.

B. Contingency as Intrinsic Motivation

Some researchers in developmental psychology have sug-
gested that the preference for social contingency leads human
infants to learn social skills [15], [21]. Such activity motivated
by internal satisfaction is called intrinsic motivation in psy-
chology [36].

Intrinsic motivation has recently been gaining increased
attention in developmental robotics since it might enable a
robot to develop in an open-ended manner [37]. Oudeyer et
al. showed that the maximization of learning progress, i.e.,
a decrease of prediction errors, enables a real 4-leg robot to
incrementally acquire more complex behavior [38]. Mugan
and Kuipers proposed a learning mechanism to find sets of
contingencies between a robot’s body and an object and to
acquire single behavior such as hitting an object by reproducing
the found contingencies [39]. Its basic strategy for open-ended
development seems to shared with ours, that is finding and
reproducing contingency. A stronger point of both of these
mechanisms is the treatment of continuous time data. However,
they lack the mechanism to add variables representing the use
of acquired skills, which seems to be necessary to find skills for
some types of social interaction depending on history of own
and other’s actions. For example gaze alternation requires to
perform gaze following in advance and is successfully acquired
by the proposed method.

C. Future Implementation

We evaluated the effectiveness of the proposed mechanism
using computer simulations because acquiring actions is too
time-consuming. As a next step, we must examine to what ex-
tent the proposed mechanism can reproduce the development

of joint attention in real-world interactions. Here, we mention
some issues to be addressed to apply the mechanism to a real
robot.

1) Adaptive Partitioning: In the experiment, we assumed that
the variables were partitioned in advance and fixed from the be-
ginning. However, it is not trivial for the designers to effectively
partition them to communicate with a social partner. If there are
more spots on the table, such rough partitions as and in
the current simulation would not be effective to predict where
the caregiver is looking. Moreover, partitioning helps contin-
gency detection for high-dimensional continuous sensory data.
Although the proposed method can find contingency in such
data, it is required to reduce the dimensionality of the sensory
and motor data with maintaining its informational content due to
high computational cost. To solve these problems, we extended
the proposed method by applying a clustering technique to con-
trast the contingency [40].

2) Temporal Contingency Detection: We assumed that
both the robot and the caregiver take turns at fixed time steps
since we focused on detecting which pair of sensory signal
and motor command leads to contingent consequence, namely,
sensorimotor contingency detection. However, this assumption
is not feasible in a real world because we cannot exactly specify
the fixed time steps. The robot has to detect when a contingent
stimulus is observed since the robot’s last action, namely, tem-
poral contingency detection. Movellan proposed an infomax
controller to detect temporal contingency in vocal interaction
[41]. However, the robot was given sensorimotor space to detect
temporal contingency. The contingency detector in our mech-
anism should be extended to detect temporal contingencies in
interaction with a human caregiver as future work.

3) Contingencies Originated From Other Modalities: In the
simulation, the contingency structures inherent in interaction
between caregiver and robot were limited since we assumed
simple interaction by mainly focusing on mutual gaze shifting.
An infant and a caregiver, however, build a variety of contin-
gency structures by observing multimodal information and per-
forming multimodal actions. A number of contingencies seem
to help the development of joint attention [42]–[44]. Therefore,
we plan to study what sort of contingency structure can pro-
mote the development of joint attention by extending the current
simulation settings to involve such multimodal sensorimotor
experiences.

4) Scheduling of Caregiver’s Behavior: The robot was able
to experience changes in interaction with the caregiver; once it
had begun to follow the caregiver’s gaze, the caregiver had more
chances to select an AJA strategy. As a result, it could find the
behavior of shifting its gaze to the caregiver after achieving gaze
following. In the experiment, however, such changes in care-
giver responses were very limited since the caregiver’s strate-
gies were fixed. In more natural interaction between caregiver
and infant, the caregiver shows a variety of changes in her re-
sponses to the infant as it grows up [25]. Analyzing the re-
sponses of human caregivers to a real robot will help us de-
sign more plausible caregiver models. Modifying the caregiver
model more faithfully remains a future issue for understanding
the effect of longitudinal changes in mother-infant interaction
on the development of specific social skills.
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VI. CONCLUSION

We proposed a mechanism to enable a robot to developmen-
tally acquire social actions based on finding and reproducing
contingency inherent in face-to-face interaction by a measure
proposed in a previous work [14]. We reproduced behavioral
aspects in the infant development of social skills such as their
order, that is, first gaze following and then gaze alternation, and
the delay of the occurrences of the behavior of gaze following
after acquiring gaze alternation. We will investigate the devel-
opment of other actions related to joint attention by modeling
more realistic interaction between robots and caregivers in the
future.
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