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Intrinsically Motivated Hierarchical Skill Learning in
Structured Environments
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Abstract—We present a framework for intrinsically motivated
developmental learning of abstract skill hierarchies by reinforce-
ment learning agents in structured environments. Long-term
learning of skill hierarchies can drastically improve an agent’s ef-
ficiency in solving ensembles of related tasks in a complex domain.
In structured domains composed of many features, understanding
the causal relationships between actions and their effects on
different features of the environment can greatly facilitate skill
learning. Using Bayesian network structure (learning techniques
and structured dynamic programming algorithms), we show
that reinforcement learning agents can learn incrementally and
autonomously both the causal structure of their environment
and a hierarchy of skills that exploit this structure. Furthermore,
we present a novel active learning scheme that employs intrinsic
motivation to maximize the efficiency with which this structure is
learned. As new structure is acquired using an agent’s current set
of skills, more complex skills are learned, which in turn allow the
agent to discover more structure, and so on. This bootstrapping
property makes our approach a developmental learning process
that results in steadily increasing domain knowledge and behav-
ioral complexity as an agent continues to explore its environment.

Index Terms—Active learning, intrinsic motivation, options,
planning, reinforcement learning, structure learning.

I. INTRODUCTION

D ESIGNING artificial agents that behave robustly on
ensembles of related tasks is a challenging open problem

in machine learning. One way to approach this problem is to
specify a developmental learning framework that motivates
agents to incrementally learn a hierarchical set of abstract be-
haviors, or skills, through interaction and experimentation with
their environment. These skills can then be used as modular so-
lutions to commonly encountered subproblems, increasing the
efficiency with which agents can solve novel tasks. The work
presented here details our specification of such a framework
for reinforcement learning (RL) agents. While there has been
much research in RL focusing on efficient learning of optimal
behavior policies for single sequential decision tasks in a given
domain [1], the body of literature applying RL to ensembles of
related tasks is considerably smaller.
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One important component of learning systems designed for
solving ensembles of tasks efficiently is a mechanism for repre-
sentational abstraction. If policies and models of the long-term
effects of each of an agent’s skills can be represented solely in
terms of relevant subsets of environmental variables, each skill
may be applied in multiple contexts, including novel ones, that
differ along irrelevant dimensions with little or no relearning
necessary [2]. When the number of relevant variables in such
abstract representations is much smaller than the total number
of environmental variables, the amount of experience and com-
putation needed to find good policies is often greatly reduced.

Hierarchy is also crucial in such systems, allowing more ab-
stract skills to make use of lower level skills as atomic actions
without concern for the details of their execution. This facilitates
both learning of complex skills and planning at multiple levels
of abstraction. If an agent can construct a useful hierarchy of ab-
stract skills in a given domain, then the search space of policies
for similar tasks within that environment effectively shrinks.
This is because selecting between alternate abstract actions al-
lows the agent to take larger, more meaningful steps through the
search space of policies than does selecting between more prim-
itive actions [3].

Acquiring models of the effects of actions in structured en-
vironments can facilitate learning of skill hierarchies in com-
plex domains as well [4]. In the framework presented below,
an agent incrementally accumulates knowledge of the dynam-
ical structure of its environment as it explores. Using this struc-
tural knowledge, the agent generates both abstract skills that re-
liably change specific aspects of its environment, and compact
models representing the long-term effects of those skills. Be-
cause of their structured representations, these skills and models
can be computed much more efficiently than can their unstruc-
tured counterparts.

As new skills are added to an agent’s behavioral repertoire
in our framework, they become available as atomic behavioral
modules that may be used when computing policies and models
of more complex skills. The agent’s growing skill set allows it
to reach increasingly many areas of its state space that were pre-
viously not easily accessible. This, in turn, allows for learning
about more complex environmental dynamics and consequently
enables further skill discovery. In this sense, our framework
provides a mechanism for continual, developmental learning in
which the acquisition of new skills is bootstrapped on existing
structural and procedural knowledge. This is a key feature of our
approach and a novel contribution to the RL community.

While there are many possible exploration strategies for such
a framework, we focus here on a novel active learning scheme
aimed at maximizing the rate at which an agent learns its
environment’s dynamics and, consequently, learns appropriate
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skills for controlling it. Active learning refers to methods of
exploration that seek out the most informative data available
when choosing the next training example for a given model [5].
In particular, we extend recent work on intrinsically motivated
RL [6], [7], which can provide a mechanism for active learning
in sequential decision problems. Agents in our framework are
intrinsically motivated to generate plans, or “experiments” that
take them to areas of their environment for which their models
are inaccurate and from which they stand to gain the most
information.

Since we are focused on strategies for learning hierarchies of
skills that can be applied over ensembles of tasks, agents in our
experiments are not posed with specific tasks during their devel-
opmental period, which means that there is no extrinsic reward
the agents seek to maximize, as in standard RL problems, but
instead they seek to maximize only intrinsic reward. We show
that our novel, intrinsically motivated, bootstrapped methods of
model- and skill-learning result in dramatic increases in the rate
of knowledge and skill acquisition over previous active-learning
methods that do not use existing skills to explore.

The following section describes our formalism for this
framework and presents relevant background material and
previous work in this area. In particular, we make the assump-
tion that an agent’s environment can be modeled as a Markov
decision process (MDP), more specifically a factored MDP.
We use incremental Bayesian network learning techniques [8]
to accumulate structural knowledge of the environment. Given
this knowledge, we employ structured dynamic programming
methods [9], [10] to compute abstract, closed-loop control
policies in the form of options (the formalization of skills that
we adopt) and their corresponding models. Section III presents
our bootstrapped active learning approach, in which these
skills are added incrementally to an agent’s skill set as they are
discovered, and subsequently used in plans that guide the agent
to underexplored areas of its environment. We present results
in a large, factored domain that illustrates the advantages of our
approach in Section IV, and discuss related work in Section V.
Finally, we conclude with a discussion of important issues and
future work in Section VI.

II. BACKGROUND AND PREVIOUS WORK

A. Markov Decision Processes

A finite MDP is a tuple in which is a finite set
of states, is a finite set of actions, is a one-step transition
model that specifies a probability distribution over successor
states given a current state and action, and is a one-step ex-
pected reward model that determines the real-valued reward an
agent receives for taking a given action in a given state. An MDP
is assumed to satisfy the Markov property, which guarantees that
the one-step models and are sufficient for predicting the
distribution of rewards and successor states any number of time
steps in the future given a current state and sequence of actions.

When the task of an RL agent is formulated as an MDP, the
goal of the agent is to learn a policy that map-
ping states to actions that maximize its expected sum of future
rewards, also called expected return. It is often assumed that
the transition and reward models are unavailable to the agent.

When this is the case, a policy can be learned through estima-
tion of an action-value function , which maps
state-action pairs to real values representing the
expected return for executing action in state and from then
on following policy . If , where denotes the op-
timal action-value function for the MDP, then the agent can act
optimally by selecting actions in each state that maximize .

When the transition dynamics of the environment are known
or estimated from experience, model-based RL can be employed
to expedite value function learning in the sense of requiring less
experience for to converge to [11]. If the reward func-
tion is also known, dynamic programming techniques such as
value iteration can be used to compute an optimal value func-
tion and corresponding policy directly [1]. However, even when
model-based methods are used in this way to improve data ef-
ficiency, tabular representations of value functions and policies
(i.e., those with one entry per state or state-action pair) become
infeasible to learn or compute efficiently in large MDPs.

For this reason much work has focused on approximation
techniques that allow for both generalization of value between
similar states and compact representations of value functions
[1]. One class of these methods is appropriate when the MDP
can be represented in factored form, affording the potential for
certain dimensions of the MDP to be irrelevant when predicting
the effects of actions on other dimensions. In these cases, this
structure can be exploited to learn or compute compact repre-
sentations of value functions and policies efficiently [9].

B. Factored MDPs

A factored MDP (FMDP) is an MDP in which the state set is
defined as the Cartesian product of the domains of a finite set of
random variables . While the variables in an
FMDP can be either discrete or continuous, we restrict our at-
tention to the discrete case such that each takes on one of
finitely many values in , the domain of . States in fac-
tored MDPs are thus represented as vectors of assignments of
specific values to the variables in . As the number of variables
in an FMDP increases linearly, the number of states increases
exponentially (a problem known as the curse of dimensionality
[12]). However, if the transition dynamics of the FMDP contains
relatively sparse intervariable dependencies, it is possible to ex-
ploit this structure to reduce the effect this exponential growth
has on computing optimal policies.

FMDPs can be represented as a set of dynamic Bayesian net-
works (DBN) [13], one for each action. A DBN in this case
is a two-layer directed acyclic graph with nodes in layers one
and two representing the variables of the FMDP at times and

, respectively (Fig. 1). Edges represent dependencies be-
tween variables given an action. We make the common assump-
tion that there are no synchronic arcs in the DBN, meaning that
variables within the same layer do not influence each other. The
transition model for a given DBN can often be represented com-
pactly as a set of conditional probability trees (CPTs), one for
each variable , each of which contains internal nodes corre-
sponding to the parents of and leaves containing probability
distributions over at time . Fig. 1 shows a simple ar-
bitrary DBN (for some action ) consisting of three binary vari-
ables and their corresponding CPTs, with the probability that
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Fig. 1. Simple DBN for a given action with corresponding conditional proba-
bility trees.

displayed at the leaves. We call the path from the root
of a CPT to a given leaf the context for that leaf.

When the transition and reward models of an FMDP are
known, one can use structured value iteration (SVI) [9] to com-
pute value functions and policies that exploit domain structure
to represent these functions compactly. It has been shown that
SVI can be much more computationally efficient, both in time
and space, than the flat version of value iteration when solving
FMDPs with sparse intervariable dependencies. We assume
that this type of sparse-dependency structure is present in our
agents’ environments, as many interesting real-world domains
are so structured. For very large FMDPs, however, even this
approach does not scale well in general. This is because the
decision-theoretic regression approach taken by SVI regresses
value functions through primitive actions, which have very
short-term effects. If one could regress through longer se-
quences of actions in one step using temporally abstract models
of long-term behaviors, then computational efficiency could
be greatly improved. This requires a formalization of skills in
MDPs, which we discuss next.

C. Hierarchical Reinforcement Learning

The options framework is a formalism for temporal abstrac-
tion in RL that details how to learn and use closed-loop control
policies for temporally extended actions in MDPs [3]. An option
is defined as a tuple , where is a set of states over
which the option is defined (the initiation set), is the policy of
the option, defined over , and is a termination
condition function that gives the probability of the option termi-
nating in a given state.

Options can also be understood as sub-MDPs embedded
within a (possibly) larger MDP, and so all of the machinery
associated with learning MDPs also applies to learning options.
Thus, models for the transition and reward functions of an
option can be learned as well. Algorithms for learning the
policy, reward model, and transition model of an option from
experience are given in [3]. The advantage of having access to
the transition and reward models of an option is that the option
can be treated as an atomic action in planning or model-based
RL methods. Additionally, since options can call other op-
tions in their policies, agents can construct deeply-nested
policies with multiple levels of behavioral abstraction, leading

to increased efficiency in both learning and planning as the
hierarchy deepens.

While much attention has been devoted to learning options in
MDPs, most of these approaches use the same state represen-
tation for every option, leading to temporal abstraction but not
state abstraction. Less research has focused on learning options
in FMDPs, where it is possible for different options to have dif-
ferent representations. The following section discusses the rele-
vant work involved in constructing options in FMDPs, each with
its own state abstraction.

D. Hierarchical Decomposition of Factored MDPs

Jonsson and Barto [10] present a framework for option dis-
covery and learning in FMDPs. The VISA algorithm discovers
options by analyzing the causal graph of a domain, which is
constructed from the dependencies exhibited in the DBNs that
define the FMDP. There is an edge from to in the causal
graph if there exists an edge from to in the DBN model
for any action. The algorithm identifies (in the causal graph)
context-action pairs, called exits, that cause one or more vari-
ables to change value when the given action is executed in the
corresponding context. By searching through the CPTs that de-
fine the DBNs of an FMDP, exit options are then constructed
to reliably reach this context from any state and execute the ap-
propriate action. The agent’s overall task is then decomposed
into subtasks solved by these options. VISA takes advantage of
structure in the domain to learn compact policies for options ef-
ficiently by ignoring irrelevant variables.

Another feature of the framework is a method for computing
compact option models from a given DBN model. The models
are compact in that they take the same form as the models of
primitive actions (DBNs) and represent with CPTs the expected
probability distributions over the domains of the variables of the
FMDP that would result from executing the option in a given
state. Having option models in this form allows their use in plan-
ning as atomic actions, as mentioned above. This also means that
one can use SVI to efficiently compute new option policies in
terms of existing options. The VISA algorithm and option model
construction techniques described here require knowledge of the
transition structure of the environment. It is thus interesting to
ask whether one can learn this structure online from experience.
This is the subject of the following section.

Before moving on, however, it is worth pointing out that this
scheme for hierarchical decomposition produces solutions to
FMDPs that are recursively optimal, but not necessarily hier-
archically optimal. This distinction, made by Dietterich [14],
refers to the fact that a given hierarchically decomposed solution
to an MDP may be suboptimal even though each of the solutions
to the subtasks into which the full solution was decomposed is
optimal—this is referred to as recursive optimality. If the de-
composed solution is also in fact optimal, then the solution is
said to be hierarchically optimal.

E. Incremental DBN Structure-Learning

Recall that we model an agent’s environment as a set of
DBNs, each of which consists of a directed acyclic graph
representing the dependencies between state variables (con-
ditioned on an action) and its corresponding CPTs, one for
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each variable of the FMDP. The problem of Bayesian network
structure-learning is to find the network that best
fits a data set , where in our case represents the graphical
structure of a DBN and represents the corresponding CPTs.
To learn this structure incrementally, we take the approach
given in [8], described next. Alternative approaches and justifi-
cation for our choice are both discussed in Section V.

To simplify the description, we first introduce some notation
building upon that in Section II-B. Let and denote the
value of variable at times and , respectively,
and let , , be a projection such that if is an assign-
ment to , then is ’s assignment to . For example, if

, and
, then . We thus

denote the projection of an assignment to onto the parents of
a variable as , where the set of parents of

is determined by the structure of . Data points in our frame-
work will take the form of assignment tuples, , de-
noting the agent’s state at times and , and the action,

, selected at time which determines to which DBN the data
should be applied.

One way to find the best network for a given data set
is to compute the posterior probability distribution
over a set of networks and choose the one that maximizes
this distribution. It is not feasible to compute this distribution
directly, but there are approximation techniques that have been
shown to perform well. It follows from Bayes theorem that

. One approximation technique,
known as the Bayesian Information Criterion (BIC), makes the
approximation

where is the log-likelihood of the data given the net-
work. When all data values are observable, as we assume, this
likelihood can be decomposed as

where is the number of data points such
that and , and

. This quantity is
maximized for . Although finding the
network with the best BIC score is known to be NP-complete
[15], the score decomposes into a sum of terms for each variable

and each value of and that only changes locally when
edges between variables are added or deleted. Thus, we can
incrementally add or delete edges greedily to find high-scoring
(though possibly suboptimal) networks.

To do this, we maintain at each leaf of each CPT a set of data
points which are distributed, one at each time step, to the appro-
priate leaves of each tree according to the assignment given by

in each data point . Each time a new data point is
added to a leaf, we compute the BIC score of the data at the leaf
and the scores associated with each possible refinement of that
leaf. A refinement of a leaf is a split of on some variable ,

resulting in a new child leaf for each value of , to which the
data instances of are distributed accordingly.

To compute the BIC score for each possible refinement of a
leaf, we maintain a distribution vector, , for each potential
split variable , each entry, , of which contains the number
of data instances that would assign the value to . Note that
this is not a distribution over outcome values (i.e., ), but
rather input values (i.e., ), and that the frequencies in can
be normalized to sum to 1 and thus, be represented as a prob-
ability distribution. This will be important for applying active
learning techniques, as described in the following section.

Thus, when the algorithm evaluates a refinement over ,
determines how the data instances at the current leaf will be dis-
tributed to the new leaves. When evaluating a refinement at leaf
, if the sum of the BIC scores associated with the potential new

leaves are greater than the current BIC score of , then the re-
finement is kept. Refinements of a leaf on a variable are not
considered if is already on the path from the root of the tree
to the leaf. We only consider refinements at leaves that have col-
lected at least samples, where is an integer design parameter.

This approach greedily adds edges to the DBN models of
the environment according to the BIC metric in an incremental
fashion. Occasionally an incorrect refinement is made. In con-
trast to [8], at each time step, for each nonleaf node, we perform
a Chi-Squared test of significance between the distribution over
the domain values of the current refinement (split) variable and
the distribution that would result from eliminating the refine-
ment. If the significance of this difference drops below a certain
value (0.995 in all of our experiments) we remove the refine-
ment by pruning the tree at that node and place all of the data
from that subtree into the newly formed leaf node.

F. Active Structure Learning

Although a random policy could be used to collect the data
necessary for structure-learning, it is interesting to consider ex-
ploration policies that attempt to maximize the rate at which en-
vironmental structure is learned. A learning algorithm in which
the learning agent chooses training examples to maximize its in-
formation gain at each step is referred to as an active learning
algorithm. One such algorithm for learning the structure of the
transition model of an FMDP was presented in [8]. We build
upon this algorithm in our work, and so discuss its behavior here.
Some alternatives are discussed in Section V.

The basic idea of the algorithm is to have the agent collect
samples to refine its model in a way that maximizes the en-
tropy of each distribution vector in the model. Recall that each
distribution vector is a histogram of samples that can be repre-
sented as a probability distribution over input values of a given
potential refinement variable at a given leaf node. Maximizing
the entropy of one of these distributions is equivalent to making
the distribution as uniform as possible. This is advantageous be-
cause having a more uniform distribution over the input values
of a given refinement variable makes the evaluation of that re-
finement more accurate. Thus, correct refinements get discov-
ered more quickly than they do with random action selection,
which will tend not to produce these uniform distributions due
to asymmetries in the difficulty of obtaining samples of differing
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input values; asymmetries that result from the dynamics of the
environment.

An agent employing this algorithm thus chooses a primitive
action at every step in order to maximize the sum of the changes
in entropies of its model’s distribution vectors. It does this by
taking the current state of the environment and checking to see,
for each action, to which leaf the resulting sample will map for
each CPT associated with that action, should the action be ex-
ecuted. The associated change in entropy of each distribution
vector at each of those leaves is calculated for each action and
the action with the largest total change in entropy is selected
with probability , where is an exploration param-
eter. Otherwise, a random action is selected. Note that the agent
is maximizing the entropies of input distributions, not output
distributions. That is, the outcome of a given action, which is
obviously not known before the action is executed, is irrelevant
to where the data sample will be placed in a given CPT. This is
determined exclusively by the current state. It is for this reason
that the agent can accurately compute and optimize the potential
change in this quantity.

While this approach does produce faster learning in some do-
mains, the approach still fails to discover a significant portion of
the environmental structure in more complex domains [8]. This
is because the active learning scheme used is myopic, only con-
sidering the effects of primitive actions at each step, and thus can
cause the agent to become stuck in “corners” of the state space
that are difficult to get out of without proper planning. This can
be remedied if we allow the agent to learn options, which can
then be used by a planning algorithm to have the agent reach
configurations of domain variables that will yield more relevant
information about the environment. Additionally, we will need
a mechanism for motivating the agent to take purposeful, mul-
tistep trajectories through its environment. Recent work in in-
trinsically motivated RL affords us one possibility for such a
mechanism, and we discuss the relevant work in this area in the
following section.

G. Intrinsically Motivated Reinforcement Learning

Early work on incorporating the concept of intrinsic moti-
vation into artificial RL agents focused exclusively on efficient
learning of world models in sequential decision problems,
and were not specifically concerned with skill learning. These
approaches provide intrinsic reward to agents proportional to
errors in the predictions of their world model, leading the agent
to areas of the environment which are unpredictable, thereby
focusing learning on those areas so as to reduce that unpre-
dictability [6]. In stochastic environments, however, this causes
the agent to become “obsessed” with inherently unpredictable
regions, since they provide high reward indefinitely. Thus,
methods that reward agents for progress in improving model
quality were proposed, causing agents to become “bored” with
such inherently unpredictable areas (as well as predictable
ones), since they afford no learning progress [16], [17]. These
methods, however, were still largely focused on model learning,
and not skill acquisition.

Barto et al. [7] were the first to suggest intrinsic motivation
as a method for driving the accumulation of hierarchical sets of

skills, and proposed an intrinsic reward that encouraged agents
to develop skills that reliably cause certain (designer-specified)
salient events to occur. Simsek and Barto [18] generalized this
somewhat and presented an algorithm that rewards the agent for
improvements in the value function of a given task (or option),
which they show can speed up learning of that value function
by focusing exploration on areas where learning will have the
most influence. All of these methods, however, are employed in
the MDP framework, and as such cannot take advantage of any
potential state abstraction that might be afforded by a factored
representation. Our approach, presented in the following sec-
tion, will take the principles of existing work with intrinsically
motivated model-learning and extend them to the case of struc-
tured environments. Our focus, however, will be on the use of
these models for acquisition of abstract skills applicable across
many tasks, and not simply accurate model-learning for its own
sake.

III. INTRINSICALLY MOTIVATED LEARNING OF SKILL

HIERARCHIES IN FMDPS

Our approach to developmental acquisition of skill hierar-
chies in FMDPs will make use of and extend much of the work
discussed in the preceding section. Our contributions consist of
a framework for incremental construction of options, each with
its own state abstraction, based on currently available structural
knowledge, and an intrinsic reward mechanism for active struc-
ture-learning that uses these options by having the agent plan
to reach the most informative areas of its environment. One can
think of this mechanism as causing the agent to execute the best
“experiments” it can, given its behavioral expertise and its cur-
rent knowledge about the dynamics of its environment.

We also emphasize again here that the “task” of an agent in
our framework is to learn a hierarchy of abstract skills in the
absence of a specific, user-defined task. As a consequence, our
approach does not make direct use of the standard extrinsic re-
ward normally associated with RL problems. Of course the pur-
pose of constructing a hierarchy of skills in a given domain is to
improve learning performance on specific tasks that will involve
extrinsic reward, but these rewards are not used to develop skills
in this framework.

Agents behave exclusively to maximize intrinsic reward
using the same computational mechanisms that are generally
used to maximize extrinsic reward. The primary difference
between the two in this context is that the intrinsic reward is a
function of the agent’s current state of knowledge, and thus, the
reward function is continually changing as the agent continues
to learn. In this sense, the agent defines its own problems as it
continues to learn and explore, becoming “bored” with things
that it understands well and focusing its attention on the parts
of its environment about which it is uncertain.

While the notion of balancing the maximization of intrinsic
and extrinsic rewards is an interesting open problem closely re-
lated to the exploration/exploitation tradeoff, we do not address
this issue in this work. In Section V, however, we cite some re-
cent work in this area by other researchers. We next describe our
method for incremental option construction and then explain our
intrinsic reward mechanism and active learning scheme.
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A. Caching Options

The framework outlined in [10] proposes to learn the full
structure of an FMDP given a specified reward function and
only then use the VISA algorithm to decompose the task into
subproblems solved by exit options. To extend this approach to
the case in which we are interested, where there is no single
specified task, we would like an agent to accumulate structural
knowledge as it explores its environment and cache options for
reaching various subgoals as enough structure becomes avail-
able to do so. For many options, this will occur long before the
full structure of the environment is discovered. Indeed the point
of our approach is that incrementally constructing options be-
fore the full structure is discovered will increase the probability
of an agent being able to reach areas of the state space that would
otherwise be quite difficult to reach, thereby enabling the agent
to learn about the structural properties of those areas.

To do this we must monitor changes in the structure of an
agent’s model and, each time the structure is changed, evaluate
the resulting model to decide whether a new option may be con-
structed. We maintain a set , initially empty, of what we term
controllable variables. These are variables for which the agent
possesses options to set to each of its possible values. Every time
a new refinement of a leaf in the CPT for variable in the DBN
for action is made, if we check the causal graph of the
domain to see if each of its ancestors is controllable. This is to
make sure that we can reliably reach the context given by the
branch along which the new refinement has been made. If this
is true, and the value of is possibly changed by executing in
the branch’s context, we construct an option (and its associated
transition and reward models) to reach that context and execute
action . If the new option, coupled with all existing options, re-
sults in the agent’s ability to set to each of its possible values,
we add to .

As in [10], we define the reward function that specifies the
subtask an option is constructed to solve (known as a pseudore-
ward function) to be 1 for every state in which the option’s
exit context is not satisfied, and 0 when the context is satisfied.
Because we are defining the pseudo-reward function for the op-
tions we create, we can use SVI to compute their policies, as
distinguished from [10], in which unstructured RL algorithms
were used to learn the option policies from experience. Addi-
tionally, the SVI algorithm now has at its disposal the agent’s
current set of options (and their corresponding models) for set-
ting each variable in to each of its values, which will in gen-
eral lead to faster computation of new option policies for the
reasons described earlier. Of course this means we must com-
pute the transition and reward models for each option as they are
constructed, which we do using the algorithm given in [10]. In
contrast to [10], however, in which only primitive actions were
used in option policies, the options constructed by our agents
may contain recursive calls to other options in the agents’ skill
sets.

There is one more issue we have not addressed that must be
considered when deciding whether to construct an option. It may
be the case that a refinement is made in the CPT for , and all
ancestors of are controllable, but the CPT is either incomplete
or incorrect in some way. If we were to construct an option at

this point, it would likely be incorrect (both its policy and its
model). Thus, we need a way to decide whether the correct CPT
has been learned for under action . If the environment is
deterministic, then once the entropy of the distribution at every
leaf of the CPT has reached zero, no more refinements can be
made and we know the correct structure has been discovered.
This is a very strong assumption though, and applies only to
less interesting domains.

When the environment is stochastic, our choice of struc-
ture-learning algorithm prevents us from being able to distin-
guish incomplete structural knowledge from inherent stochas-
ticity, since greedy methods like it are not always guaranteed
to find the correct structure. We discuss this disadvantage in
Section V. Rather than attempting to make this distinction,
however, agents in our framework construct options in the
absence of knowledge about structural correctness, and instead
monitor the utility of their current set of options, abandoning
those whose empirical success rates do not match their expected
success rates.

More formally, each time the structure of a DBN is modified
by the structure-learning algorithm, if the latest refinement re-
sults in a context-action pair that alters the value of some vari-
able, an option to set that variable to the new value is created
and added to the agent’s set of options, . Each option in
is assigned a success rate initially equal to the expected suc-
cess rate of the option. The expected success rate is obtained
from the leaf of the CPT corresponding to the option’s exit con-
text in the DBN corresponding to the option’s exit action, and is
equal to the probability that the variable the option is intended
to change will take on its intended value when the exit action is
executed in the exit context. Every time an option is executed, it
is allowed to run to completion for a maximum of time steps.
If within that number of steps the option’s context is reached, its
exit action is executed, and its objective is achieved (i.e., its as-
sociated variable is set to its desired value), then the execution
is considered successful. Otherwise, the execution is considered
unsuccessful.

After the th execution of option , ’s success rate, , is
updated according to

(1)

where is 1 if the option was successful, and 0 otherwise, so
that always reflects the average empirical success rate of .
If at any time after at least executions of , drops below ’s
expected success rate, , by more than a factor , the option is
removed from , along with any options that reference in their
policies. The agent then continues to explore with its remaining
skill set, the process of discovering new structure, constructing
options, and testing their utility continuing until all variables are
controllable. Should the agent reach that point, it then has a set
of options it can use to efficiently compute a recursively optimal
solution to a wide array of potential tasks in its domain via the
SVI algorithm. With this machinery in place for incrementally
adding options as enough structure becomes available to do so,
we next describe our method for employing intrinsic motivation
to maximize the rate at which DBN structure is learned.
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Fig. 2. Pseudocode for our algorithm. See Fig. 3 and Fig. 4 for pseudocode of
referenced functions.

Fig. 3. Pseudocode for the �����������	 function.

B. Intrinsically Motivated Structure-Learning

In our approach, an agent uses its current skill set to per-
form “experiments” in its environment so as to expedite struc-
ture-learning. An experiment in our scheme, like an exit, is com-
posed of a context and an associated primitive action. Similar to
[8], and as described in Section II-F, we seek to find the best
experiments to perform by calculating potential changes in dis-
tribution vector entropies at CPT leaves and picking the experi-
ment that results in the largest change. Rather than only looking
at leaves whose contexts are satisfied by the current state, how-
ever, we can also consider leaves whose contexts consist exclu-
sively of controllable variables, since the agent possesses op-
tions to reliably set those variables to any of their values. Addi-
tionally, we can check to see which settings of the controllable
variables that are not part of the leaf’s context will yield the
highest gain at that leaf.

For each leaf of each CPT in the agent’s DBN model whose
context consists only of controllable variables, we compute the
total change in entropies of the distribution vectors at that
leaf that would result from taking the leaf’s associated action,
in the same way as described in [8]. The best experiment is
then chosen to be the context–action pair associated with the
largest . An intrinsic reward function is then created that is 1
if the experiment’s context is satisfied, and 1 otherwise. Using

Fig. 4. Pseudocode for the 
��
�� function.

this reward function, a policy is computed using SVI to reach
that context and execute the action associated with the leaf’s
CPT. The policy is executed to completion before the next best
experiment is computed. This can always be done because we
only consider leaves whose contexts are controllable.

Since the agent starts out with no controllable variables,
initial exploration is carried out according to the local active
learning scheme in [8]. However, as enough structure is discov-
ered and certain variables become controllable via construction
of low-level options as outlined in the previous section, the
agent can use those new skills to reliably set contexts for which
it has limited or uneven samples at the leaves of its CPTs. When
options happen to be created prematurely and are malformed,
their lack of utility is discovered fairly quickly by the agent
when it attempts to use those options in its experimental plans
and they fail repeatedly. These options will be removed from
the agent’s skill set until the agent performs more experiments
relevant to discovering their structure, at which point they will
be recreated and tested in further experiments. Once a correct
option is learned, its empirical success rate will on average
match its expected success rate, and the option will remain in
the agent’s skill set to be used in all further experiments.

In this way, structure-learning in our framework is boot-
strapped on existing structural and procedural knowledge. For
domains with hierarchical structure in which it is not necessary
to know the full structure of the domain to compute lower
level skills, this approach should offer a distinct advantage
over active exploration schemes that use only local information
to choose actions. Before reporting the empirical evaluations
of our approach that lend support to this hypothesis in the
following section, we present here the pseudocode for our
algorithm, shown in Figs. 2–4. The pseudocode references
previous work for implementation details when appropriate.
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Fig. 5. Visual rendering of the Light Box domain.

Fig. 6. Causal graph of the Light Box domain.

IV. EXPERIMENTS

A. The Light Box Domain

We conducted experiments in a simple, but large artificial do-
main called the Light Box (Fig. 5). The domain consists of a set
of twenty “lights,” each of which is a binary variable with a cor-
responding action that toggles the light on or off. Thus, there
are twenty actions, million states, and approximately
20 million state–action pairs. The nine circular lights are simple
toggle lights that can be turned on or off by executing their corre-
sponding action. The triangular lights are toggled similarly, but
only if certain configurations of circular lights are active, with
each triangular light having a different set of dependencies. Sim-
ilarly, the rectangular lights depend on certain configurations of
triangular lights being active, and the diamond-shaped light de-
pends on configurations of the rectangular lights.

In this sense, there is a strict hierarchy of dependencies in the
structure of this domain. Fig. 6 shows the causal graph of the
instance of the Light Box domain we used in our experiments,
illustrating the dependencies between each of the variables. To
remove clutter, the reflexive dependencies are not drawn, but

Fig. 7. Examples of compact option policies in the Light Box domain. In-
ternal nodes represent state variables, leaves represent action (option) choices.
Branches are labeled with state variable values. Notice the nested policies.

each light obviously depends on its own value at the previous
time step. With the exception of reflexive dependencies, each
link in the causal graph indicates that the parent light must “on”
in order to satisfy the dependency. Each action has a 0.9 proba-
bility of toggling its associated light as long as the light’s de-
pendencies are satisfied, and a 0.1 probability of leaving the
light unchanged. However, if an action is taken to toggle a light
whose dependencies are not currently satisfied, the entire do-
main is reset to all lights being off.

The domain was designed to emulate scenarios in which ac-
curate lower level procedural knowledge is essential for suc-
cessful learning of more complex behaviors and their environ-
mental effects. Because of the “reset” dynamics, random ac-
tion selection is extremely unlikely to successfully turn on any
of the lights at the top of the hierarchy. Additionally, struc-
ture-learning is quite difficult using only local active learning
schemes. An agent must learn and make use of low-level skills
in order to be able to remain in the more difficult-to-reach areas
of the state space in which it can learn higher level skills. We also
emphasize that the agent does not perceive any structure directly
as may be evident in the visual rendering of the domain. Rather
the agent perceives only a string of twenty bits as its state. The
structure must be discovered from the state transitions the agent
experiences while interacting with its environment, and thus, the
discovery of hierarchy is highly nontrivial.

The options that are discovered in the Light Box domain may
have nested policies, the relationship between two of which is
shown in Fig. 7. The policies are represented as trees, with in-
ternal nodes representing state variables and leaves representing
action choices, which may be either primitive actions or options.
Branches are labeled with the possible values of their parent
variables. In the example shown, the policy for the option to
turn on light number 16 contains at one of its leaves an-
other option to turn on light number 10, which is one of
the dependencies for light number 16. This nesting of policies
is a direct result of the hierarchical nature of the domain.

B. Structure-Learning

To evaluate our proposed scheme for active structure-learning
we compared the performance of agents using three different
types of exploration policies to guide behavior while learning
the structure of the Light Box domain. All agents executed the
same structure-learning algorithm discussed above and incre-
mentally created options according to the scheme described in
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Fig. 8. Structure-learning performance for three different exploration policies.

the previous section, also deleting options based on their em-
pirical success rate when appropriate. The number of samples

required to make a refinement at a leaf of a CPT was 20. The
maximum number of steps that options were allowed to exe-
cute was 50. The minimum number of executions needed to
evaluate the utility of an option was 20, and the maximum dis-
crepancy allowed between the empirical success rate and
the expected success rate of an option was 0.1.

The Random agent selected a random action from the agent’s
set of actions (including options) and executed each one to
completion before choosing another. The Local agent em-
ployed the active learning scheme presented in [8], except that
when a random action was taken, the action was chosen ran-
domly from the agent’s entire set of available actions (including
options) and executed to completion. The exploration param-
eter for the Local agent was set to 0.1. The Global agent
employed our intrinsically motivated active learning scheme,
which uses more global information when selecting actions
and computes plans to reach more informative areas of the
state space. The choices for parameter values in each agent
were made via a rough search of parameter space and based on
reported values in previous work when applicable. We did not
notice much sensitivity in performance as a result of changing
these values slightly, though of course the parameter will
in general be largely dependent on the domain, which is a lim-
itation of this specific algorithm.

Since we had access to the true transition structure of the in-
stance of the Light Box we used in our experiment, we could
compare the refinements made by each agent at a given time
step to the set of refinements that define the correct model and
plot the accuracy of the model for each agent over time. Fig. 8
shows the number of correct refinements discovered by each
agent as a function of the number of time steps. The learning
curves presented are averages of 30 runs for each agent. Error
bars show standard deviation. Clearly the hierarchical nature of
the domain makes structure-learning very difficult for agents
that cannot plan ahead in order to reach more informative areas
of the state space. Both the Random and Local agents are able
to learn what is essentially the bottom layer of the hierarchy,
but once this structure is discovered they continually sample the
same areas of the state space and their learning rate levels out.

Fig. 9. Policy computation times for tasks at varying levels of the Light Box
hierarchy for an agent with primitive actions only and for one with options +
primitives. Note the log scale.

The Global agent on the other hand, uses the options con-
structed from this initial structure to perform useful experiments
in its environment, allowing it to reach areas of the state space
that the other agents cannot reach reliably, and thus uncover
more of the domain structure. This structure is then used to gen-
erate new skills that enable further exploration not possible with
only the previous set of skills. This bootstrapping process con-
tinues until all of the domain structure has been discovered, at
which point the agent possesses options to set each light to either
on or off. There are 423 refinements in the true DBN model of
this instance of the Light Box, all of which the Global agent was
able to find in each run. Note that the structured representation
of the environment allows the agent to uncover the transition
dynamics without even visiting a vast majority of the states in
the domain, with the Global agent finding the correct structure
in under 40 000 time steps reliably.

C. An Ensemble of Tasks

We also conducted experiments to illustrate the utility of com-
puting hierarchies of skills for ensembles of tasks in large fac-
tored domains such as the Light Box. We compared the time it
took to compute policies using the SVI algorithm for various
tasks (i.e., different reward functions) for an agent with only
primitive actions to the time taken by one with a full hierarchy
of options (including primitives). For each of the 20 lights we
computed a policy for a task whose reward function was 1 when
that light was on and 1 otherwise. We averaged together the
computation times of the tasks at each level of the Light Box hi-
erarchy (i.e., all times for circular lights were averaged together,
and similarly for triangular and rectangular lights, with only one
task for the diamond light). Experiments were run using un-
optimized Java code on an Intel 2.4 GHz quad core processor
with 4 GB of RAM. The time spent computing option policies
and corresponding models for the agent with options was 21.76
seconds.

Results are shown in Fig. 9. For the lowest level of the hier-
archy, where the tasks can be solved by one primitive action, the
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two agents take very little time to compute policies, with the op-
tions agent being slightly slower due to having a larger action set
through which to search. However, once the tasks require longer
sequences of actions to solve we see a significant increase in the
computation time for the primitives-only agent, and little or no
increase for the options agent. The overhead of computing the
options in the first place is thus compensated for once the agent
has been confronted with just a few different higher level tasks.
The savings become very substantial above level 2 (note the log
scale). Of course the complexity of this domain can be increased
by increasing the number of dependencies in its structure, but
our results show that for even as few as two or three dependen-
cies per variable the benefits of computing options are drastic.

V. RELATED WORK

We outline here the related work on structure-learning in
FMDPs and intrinsically motivated RL that has the most
in common with our approach. Although the literature on
Bayesian network structure-learning is substantial, many of
these methods are not incremental and generally require that
the data are drawn in an independent and identically distributed
(i.i.d.) fashion [19]. For the case in which we are interested,
namely learning the structure of a DBN online from experience
with an FMDP, these methods are thus, not applicable. There
are, however, a few incremental methods developed recently
that search for DBN structures that best fit an agent’s experi-
ence with an FMDP, where the data are not drawn i.i.d. because
of the temporal dependencies involved. We review these ap-
proaches here and explain their advantages and disadvantages,
justifying our choice to use the approach given in [8].

Strehl et al. [20] present a unique incremental struc-
ture-learning algorithm that is actually composed of multiple
instances of a “knows what it knows” (KWIK) algorithm [21].
The KWIK framework for self-aware learning is a formalism
similar to the PAC formalism [22] for analyzing the class of
hypotheses learnable by a given supervised learning algorithm.
The structure-learning algorithm in [20] makes use of a set of
KWIK algorithms to predict the value of each variable in the
DBN representation of an FMDP’s transition model given the
previous state and action as input.

Although Strehl et al. prove that their algorithm has polyno-
mial sample and computational complexity, their approach re-
quires that the maximum number of parents that a variable
in the DBN may have be given a priori. In fact, the sample and
computational complexity is exponential in . This is because
the algorithms keep statistics about each possible combination
of values for each possible set of parents of size or less. The
structure-learning algorithm in this work was embedded in the
Factored framework [23], a factored version of the
algorithm [24], which is a PAC-MDP approach for efficient ex-
ploration in MDPs. The authors’ focus was therefore on effi-
ciently achieving near-optimal behavior on a single task by bal-
ancing exploration with exploitation, not on learning modular
solutions to ensembles of related tasks, as ours is.

Diuk et al. [25] describe a novel KWIK structure-learning
algorithm, called the adaptive k-meteorologists algorithm, that
is more efficient than the algorithm presented in [20], but whose
computational and sample complexity is still exponential in

, the maximum in-degree of the DBN. This exponential
dependence on is unavoidable in provably optimal (or PAC)
Bayesian network structure-learning [19]. When is large
or no a priori information about the domain is known that
allows one to specify a small , these methods are therefore
not feasible.

In contrast to these provably optimal approaches, there
are greedy methods with only polynomial computational
complexity that attempt to add dependencies to a DBN in an
incremental fashion, and that have been shown to perform well
empirically. They are, however, not guaranteed to find the best
network. One approach to structure-learning in FMDPs that
uses such a method is given in [8], which was described in
Section II-B, and is the approach we chose to extend in our
work. Another is given by Degris et al. [26], who present a
structured form of the Dyna architecture for planning in MDPs
[11] that makes use of an incremental version of the SVI
algorithm to handle planning and employs Utgoff et al.’s [27]
incremental tree induction (ITI) algorithm to learn the CPTs
of an FMDP’s transition and reward models online. A test
of significance between candidate conditional distributions is
applied at the leaves of each of the trees to determine whether
to split that leaf on a given variable at each time step. The ap-
proach is used to speed up learning on a single task by making
use of offline computation to simulate actual experience. They
do not address skill learning or performance on ensembles of
tasks, however.

Hart et al. [28] present an intrinsic reward mechanism that
drives a bimanual robot to learn closed-loop, hierarchical
control policies for various abstract behaviors (e.g., tracking,
reaching, grasping). Their framework does not make use of the
options formalism, but rather a similar scheme for closed-loop
control in continuous dynamical systems, called the control
basis. The control basis uses the convergence states of hand-en-
gineered continuous controllers to produce a small, discrete
state space in which standard RL algorithms may be applied.
Intrinsic reward is given to the robot if the state of convergence
of some controller that references an external set of stimuli
switches from unconverged to converged, with the magnitude
of the reward proportional to the number of externally refer-
enced stimuli. This encourages the robot to learn behaviors
that allow it to exercise specific types of stable control over its
environment in various contexts. Although the learning of new
skills is bootstrapped on existing skills, the addition of new
skills in this work is controlled by the experimenter and not
fully autonomous.

Mugan and Kuipers [29] present a framework for au-
tonomous learning of abstract skill hierarchies in continuous
domains. However, the mechanisms for skill learning and ab-
straction they employ are for discrete environments. They first
discretize a continuous domain by extracting “landmarks,” and
then learn options to set the continuous variables that define
the environment to values corresponding to these landmarks.
The action (motor) variables are similarly discretized. They
employ a modified version of DBNs as their representation of
dynamics in terms of what they call “qualitative” variables and
actions (the latter being options), but they do not utilize any
of the structure-learning methods mentioned previously or any
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of the RL algorithms that exploit structural independence. The
latter means that the option policies and value functions they
learn using RL must be represented using a full lookup table,
which in some cases can be much larger than the structured
representations we employ. Additionally, while their focus is on
learning skills applicable over ensembles of related tasks (and
indeed there is no extrinsic reward in their framework), there
is also no intrinsic reward. Rather, the agent simply chooses
random actions (options) from its current skill set, which
increases in complexity each time a new option is learned.
Although they show that this can lead to increasingly complex
behavior, there is no sense of the agent optimizing the rate at
which this complexity increases.

VI. CONCLUSION AND FUTURE WORK

We have presented a framework for autonomous, incremental
learning of skill hierarchies in ensembles of finite FMDPs and
active learning of domain structure using intrinsically motivated
hierarchical RL. Our results show that the construction of poli-
cies and models of abstract skills in this framework can pro-
vide drastic reductions in the computational costs of computing
policies for novel but related tasks in a given domain when com-
pared with costs using flat policy representations. The addition
of options and associated planning methods into our scheme for
active learning of environmental dynamics was shown to out-
perform previous methods of active structure-learning that use
only local information when guiding the agent to informative
areas of its state space. Our novel method for incremental op-
tion construction also makes our approach developmental in na-
ture, allowing for steadily increasing behavioral complexity via
bootstrapping of existing structural knowledge and behavioral
expertise.

In both of the approaches presented in [10] and in our work,
an agent constructs options to set every environmental variable
to each of its possible values. For environments with large num-
bers of variables and/or values this may not be feasible or de-
sirable. Rather one would like to consider ways of selectively
constructing options based on some metric evaluating the utility
of being able to set a variable to a certain value. In the case
where the agent has a specific task, this metric would likely
take the task’s reward function into account. However, in the
initially taskless scenario we outline here, it is less clear what
this metric should depend on. One possibility is to incorporate a
designer-specified salience function that makes certain variable
settings inherently more interesting to the agent than others [7].

Our choice of intrinsic reward was based largely on a pre-
vious method for active structure-learning in FMDPs. This is
clearly not the only possible intrinsic reward one could employ
in this framework. Experimenting further with other ways to in-
crease the rate at which new structure is acquired could yield
new insights into more effective intrinsic rewards. Recent work
has addressed searching in the space of reward functions for in-
trinsic rewards that result in faster learning [30], [31]. Perhaps
methods such as these could be used to search for good intrinsic
reward functions in our framework as well. Whatever form those
rewards may take, however, they can be readily substituted into

our developmental framework and make use of the incremen-
tally increasing set of abstract skills generated by agents in the
framework.

We took the approach of constructing potentially “premature”
options because of the inability for our structure-learning al-
gorithm to distinguish between inherent domain stochasticity
and incomplete structural knowledge. As a result, we had to
add three design parameters to our framework that will in gen-
eral be domain-dependent. In the absence of domain knowledge
this is undesirable, and so it would be fruitful to consider other
methods for structure-learning that could make this distinction
reliably or to within some confidence factor without having to
wait until the full structure of the domain is known. Although the
alternative structure-learning methods presented in Section V
have this property, in the absence of domain knowledge their
complexity is prohibitively high.

Finally, the mechanics of our current approach limits its ap-
plicability to finite FMDPs. While it is not clear that certain
components we make use of in our work are extensible to the
case of continuous states and/or actions (e.g., the VISA algo-
rithm), we are engaged in work exploring structure learning
techniques in continuous FMDPs [32]. Applying the principles
of our approach, especially intrinsically motivated exploration
and skill-learning, to continuous domains is an important direc-
tion for future research.
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