
68 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 1, NO. 1, MAY 2009

Dually Optimal Neuronal Layers:
Lobe Component Analysis

Juyang Weng, Fellow, IEEE, and Matthew Luciw, Student Member, IEEE

Abstract—Development imposes great challenges. Internal
“cortical” representations must be autonomously generated from
interactive experiences. The eventual quality of these developed
representations is of course important. Additionally, learning
must be as fast as possible—to quickly derive better representa-
tion from limited experiences. Those who achieve both of these
will have competitive advantages. We present a cortex-inspired
theory called lobe component analysis (LCA) guided by the
aforementioned dual criteria. A lobe component represents a high
concentration of probability density of the neuronal input space.
We explain how lobe components can achieve a dual—spatiotem-
poral (“best” and “fastest”)—optimality, through mathematical
analysis, in which we describe how lobe components’ plasticity can
be temporally scheduled to take into account the history of obser-
vations in the best possible way. This contrasts with using only the
last observation in gradient-based adaptive learning algorithms.
Since they are based on two cell-centered mechanisms—Hebbian
learning and lateral inhibition—lobe components develop in-place,
meaning every networked neuron is individually responsible for
the learning of its signal-processing characteristics within its
connected network environment. There is no need for a separate
learning network. We argue that in-place learning algorithms will
be crucial for real-world large-size developmental applications due
to their simplicity, low computational complexity, and generality.
Our experimental results show that the learning speed of the LCA
algorithm is drastically faster than other Hebbian-based updating
methods and independent component analysis algorithms, thanks
to its dual optimality, and it does not need to use any second- or
higher order statistics. We also introduce the new principle of fast
learning from stable representation.

Index Terms—Blind source separation, cortical models, feature
extraction, Hebbian learning, optimality, plasticity.

I. INTRODUCTION

I N autonomous mental development (AMD), there is a
growing interest in simulating the developmental process

of feature detectors in sensorimotor pathways [1]–[4]. But it
is becoming apparent that real-world development imposes
restrictions that many existing learning algorithms cannot meet.
For example, in an early sensory pathway, there is a need for
developing feature detectors (neurons) for all sensed areas
(receptive fields) across different positions and sizes in the
sensor array. But the total number of neurons is so large that it
is impractical for each neuron to have much extra storage space
for its development, such as space necessary for the expectation
maximization [5] technique, which requires each neuron to

Manuscript received December 17, 2008; revised March 11, 2009. First pub-
lished April 28, 2009; current version published May 29, 2009.

The authors are with the Department of Computer Science and Engineering,
Michigan State University, East Lansing, MI 48824 USA (e-mail: weng@cse.
msu.edu; luciwmat@cse.msu.edu).

Digital Object Identifier 10.1109/TAMD.2009.2021698

store a covariance matrix if it has input lines (and is
large). What is needed are algorithms with low time and space
complexities, simplicity, efficiency, and biological plausibility.
This raises the critical need for in-place algorithms, as we
explain in Section II.

This paper presents the theory of lobe component analysis
(LCA) for developing cortical feature layers and as a funda-
mental theory of cortical development. It also presents the
main ideas of in-place development. This concept and the LCA
algorithm were introduced in [6] and used as each layer in
multilayer in-place learning networks (MILN) [7], [8]. The
MILN-based model of six-layer cerebral cortex [9], which
was informed by the work of Felleman and Van Essen [10],
Callaway et al. [11], [12], and others (e.g., [13]), used LCA
on both its supervised (L2/3) and unsupervised (L4) functional
layers. However, LCA has not been formally and theoretically
introduced, in-depth, until now. This is an archival paper pre-
senting the LCA theory, its properties, its algorithm, and the
associated experimental comparisons in their entirety. Most of
the analyses of the theory presented here are new, and so are
many experimental comparisons.

Each feature layer in developing cortex faces two conflicting
criteria.

1) Spatial: with its limited number of neurons, the layer tries
to learn the best internal representation from the environ-
ment.

2) Temporal: with, e.g., a child’s limited time for learning,
the layer must not only learn the best representation but
also learn quickly, and do so without forgetting important
mental skills acquired a long time ago.

Network learning models have faced a fundamental problem
arising from these two conflicting criteria: the need for long-
term memory (stable representation) and the need for fast adap-
tation (to learn quickly from just a few input samples) while
integrating both long-term and short-term memories. This issue
was previously characterized by Grossberg and Carpenter [14],
[15]. The LCA theory, described in this paper, is meant to op-
timally address this open problem. The LCA algorithm incre-
mentally computes an optimal solution at each time step of de-
velopment—required to realize fast local adaptation needed for
AMD.

The theory presented here starts from a well-accepted bio-
logical network and two well-known simple neuron learning
mechanisms: Hebbian learning (see, e.g., [16, p. 1262]) and
lateral inhibition (see, e.g., [16, p. 4623]). We show that each
neuron, operating by these simple biological mechanisms, es-
timates what is called a lobe component, which corresponds to

1943-0604/$25.00 © 2009 IEEE



WENG AND LUCIW: DUALLY OPTIMAL NEURONAL LAYERS: LOBE COMPONENT ANALYSIS 69

a high concentration of probability density of the input space.
A lobe component is represented by input neural fibers of a
neuron (vector projection) having near-optimal statistical ef-
ficiency. Since there are many lobe components in the input
space, two key mechanisms make the entire biologically in-
spired network successful without sticking into local extrema.
First is the temporal scheduling of plasticity that is neuron
specific. This is realized by Hebbian learning and a (novel
to LCA) neuron-specific plasticity schedule that biologically
would be controlled by genes and cell physiology.1 Second
is the sequential interaction with other neurons that share the
same input space and have the same scheduled near-optimal
plasticity. Biologically, this interaction is realized by lateral
inhibition.

Hebbian learning algorithms using a single learning rate may
use the correct direction of synapse change but will not always
take the best “step” towards the goal (optimal representation
vector) at each update. The LCA algorithm presented has op-
timal estimation efficiency. Instead of a single learning rate, it
uses both a learning rate and a retention rate, by which it opti-
mally takes into account the entire observation history to con-
verge to the most efficient estimation of the update history in
the fastest possible way. Using a single learning rate can only
consider each observation in turn and cannot tune this learning
rate for optimal statistical efficiency.

This paper is organized as follows. In Section II, we provide a
categorization and discussion of learning algorithms. Section III
theoretically introduces a series of concepts pertaining to the
lobe component theory and explains LCA’s dual optimality.
Section IV presents the near-optimal LCA algorithm derived
from the theory presented in the previous sections. Experi-
mental examples and comparisons are presented in Section V.
Section VI discusses broader implications.

II. TYPES OF LEARNING ALGORITHMS

Consider a simple computational model of a neuron (indexed
) having synaptic inputs. Its firing rate is modeled by

(1)

where is the vector of firing rates of each
of the input lines and the synaptic strength (weight) associated
with each input line is . The function
may handle undersaturation (noise suppression) or oversatura-
tion. Traditionally, has been a sigmoid function. For most of
the analysis and for the experiments provided in this paper, is
not necessary.2

There are many learning algorithms that aim to determine
these weights for a set of neurons using observations (data). In

1The LCA algorithm therefore predicts that each neuron has a scheduled
plasticity profile, whose plasticity at any time is determined by the cell’s
firing “age.” This does not mean a cell has to “keep track” of a point on a
temporal continuum. Firing age is merely an implicit property of each cell.

2We provide a discussion in the Appendix about how including � can change
the lobe component to a robust version.

order to better understand the nature of existing learning algo-
rithms ,we categorize them into five types.

1) Type-1 batch: A batch learning algorithm requires a batch
of vector inputs , where is the
batch size.
The well-known batch back-propagation algorithm for
feed-forward networks, the batch k-mean clustering al-
gorithm, the batch principal component algorithm (PCA)
(e.g., [17] and [18]), the batch LDA algorithms (e.g.,
[19]–[21]), and the batch EM algorithm [5] are examples
of Type-1 learning algorithms. The state-of-the-art batch
algorithms for independent component analysis (ICA)
include FastICA by Hyvarinen and Oja [22], [23], which
is among the fastest Type-1 ICA algorithms in terms of
speed of convergence and its high capability to handle
high-dimensional data.

2) Type-2 block-incremental: A type-2 learning algorithm,
breaks a series of input vectors into blocks of certain size

and computes updates incrementally between
blocks. Within each block, the processing by is in a
batch fashion.
The Extended Infomax algorithm by Sejnowski et al. [24],
[25] is a well-known Type-2 ICA algorithm.

3) Type-3 incremental: Type-3 is the extreme case of Type-2
in the sense that block size .
Most per-frame adaptation algorithms for neural networks
belong to Type-3, such as the adaptive back-propagation
algorithm for feed-forward network. The NPCA-RLS al-
gorithm by Karhunen [26] for ICA is a Type-3 algorithm.

4) Type-4 incremental and free of higher order statistics: A
Type-4 learning algorithm is a Type-3 algorithm, but it is
not allowed to compute the second- or higher order statis-
tics of the input .
Fuzzy ART [27] is a Type-4 algorithm. The candid covari-
ance-free (CCI) PCA algorithm [28] is a Type-4 algorithm
for PCA.

5) Type-5 in-place neuron learning: A Type-5 learning algo-
rithm is a Type-4 algorithm, but further, the learner
must be implemented by the signal-processing neuron. By
in-place development, we mean that an (artificial) neuron
has to learn on its own while interacting with nearby
neurons to develop into a feature detector. In other words,
in an in-place learning network, each signal-processing
neuron itself is embedded with its own adaptation mecha-
nism, and therefore, there is no need for an extra network
to handle its adaptation.
The CCI LCA algorithm presented in this paper is an
in-place learning algorithm provided that the cell-specific
and experience-specific plasticity can be scheduled by
each neuron itself 3.

3To better understand the biological motivation for “plasticity scheduling”:
cell regulated time-variant plasticity is roughly described by the term “critical
window,” which means an early developmental time window during which the
cortical areas are sufficiently plastic to quickly change according to inputs [29],
[30]. While a cell ages, its plasticity decreases, yet many mature cells still exhibit
some degree of plasticity [31].



70 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 1, NO. 1, MAY 2009

What is the biological motivation for this in-place learning
principle? It is known that every single cell in the human body
(as long as it has a nucleus) contains the complete genetic infor-
mation—the entire developmental program—sufficient to de-
velop from the single cell into an adult. This is called the prin-
ciple of genomic equivalence [32]. This impressive biological
property has been dramatically demonstrated by cloning. As no
genome is dedicated to more than one cell, the animal develop-
mental program (i.e., genes program) is cell centered. In partic-
ular, each neuron (a single cell) must learn on its own through
interactions with its environment. Any multicell mechanism is
an emergent property of cell-centered development regulated
by the genes. Each cell does not need a dedicated extracellular
learner. We called this property the in-place learning property
[6], [9]—every signal-processing cell in place is fully respon-
sible for development in general and learning in particular.

The five types of algorithms have progressively more restric-
tive conditions, with batch (Type-1) being the most general and
in-place (Type-5) being the most restrictive. As most data are
stored in precompiled datasets, many algorithms have had the
luxury to operate as Type-1. But to be useful for AMD, an algo-
rithm must be able to deal with real-world data in real time. No
sensory data can be explicitly stored for development. Thus, it is
desirable that a developmental system uses an in-place develop-
mental program due to its simplicity and biological plausibility.
Further, biological in-place learning mechanisms can facilitate
our understanding of biological systems.

Computationally, LCA leads to the lowest possible space
and time complexities of neuronal learning due to its dual
optimality. This is shown in this paper. In contrast, all Bayesian
approaches (e.g., EM) require explicit estimation of second-
and/or higher order statistics, which are stored extracellularly.
They require a complex extracellular learning algorithm (not
in-place) and extracellular storage (i.e., square the number
of synapses for a covariance matrix), and do not learn using
optimal update step lengths.

III. THEORY AND CONCEPTS

Conceptually, the fate and function of a neuron is not deter-
mined by a “hand-designed” meaning from the external envi-
ronment. This is another consequence of genomic equivalence.
The genome in each cell regulates the cell’s mitosis, differenti-
ation, migration, branching, and connections but does not reg-
ulate the meaning of what the cell does when it receives sig-
nals from other connected cells. For example, we can find a V1
cell (neuron) that responds to an edge of a particular orienta-
tion. This is just a facet of many emergent properties of the cell
that are consequences of the cell’s own biological properties and
the activities of its environment. As we will see next, our theory
does not assume that a neuron detects a prespecified feature type
(such as an edge or motion).

A neuronal layer is shown in Fig. 1. Suppose a sequentially
arriving series of vectors , where each input
vector , is drawn from a high-dimensional random space

. Assuming a layer update takes a unit time, its response from
is 1 . The state of a neuronal layer, which includes

Fig. 1. A neuronal layer has ���� as input at time � and generates response
����1�. White triangles represent excitatory synapses and black triangles rep-
resent inhibitory synapses.

the values of the synaptic weights and the neuron ages, is
denoted by . Denoted by

represents the lobe component analysis discussed in this
work.

A. Local Approximation of High-Dimensional Density

A central issue of cortical representation by is to estimate
the probability density of . Given a finite resource (e.g.,
number of neurons), must generate a representation that
characterizes the probability distribution of high-dimensional
input efficiently using a limited representational resource.

High-dimensional density estimation is an important and yet
very challenging problem that has been extensively studied in
mathematical statistics, computer science, and engineering (see,
e.g., Silverman [33] for a survey). These traditional methods are
problematic when they are applied to real-world high-dimen-
sional data. The problems include the following.

1) The lack of a method for high-dimensional density estima-
tion that satisfies these three stringent operative require-
ments: incremental, covariance-free and undersample. By
undersample, we mean that the incremental algorithm must
work even when the number of samples is smaller than the
dimension .

2) The lack of an effective method to determine the model
parameters (e.g., the means, covariances, and weights in
the well-known mixture-of-Gaussian models).

3) The lack of a method that gives a correct convergence (a
good approximation for high-dimensional data), not just
convergence to a local extremum (as with the EM method
for mixture-of-Gaussians).

4) The lack of a method that is optimal not only in terms
of the objective function defined but also in terms of the
convergence speed in the sense of statistical efficiency.

LCA utilizes a local approach to estimating the density of .
A local representation of only represents some properties
of a local region in . Why local? A major advantage of a local
method is to decompose a complex global problem of approxi-
mation and representation into multiple, simpler, local ones so
that lower order statistics (means) are sufficient. This is critical
for Type-4 and Type-5 algorithms, since even the second-order
statistics are not plausible for a biologically inspired network.
For example, ICA is a global method.



WENG AND LUCIW: DUALLY OPTIMAL NEURONAL LAYERS: LOBE COMPONENT ANALYSIS 71

Fig. 2. Lobe components and three examples of different normalizations of input lines: whitened, nonnegative line-wise normalized, and nonnegative using a
cross-neuron sigmoidal. (a) The sample space of a zero-mean whitened random vector � in two-dimensional (2-D) space can be illustrated by a circle. Each mark
� indicates a random sample of �. The distribution is partitioned into � � � lobe regions � � � � �� �� �, where � is represented by the lobe component (vector)
� . (b) The sample space of nonnegative line-wise normalized random vector � in 2-D space. Each mark � indicates a random sample of �. The distribution is
partitioned into � � � (nonsymmetric) lobe regions � � � � �� �� �, where � is represented by the lobe component (vector) � . (c) The region of � is normalized
by the deviation of projections along � using a cross-neuron sigmoidal ���� (see the Appendix).

B. Lobe Components

Given its limited resource of neurons, LCA will divide the
sample space into mutually nonoverlapping regions, which
we call lobe regions

(2)

where , if , as illustrated in Fig. 2(a). Each re-
gion is represented by a single unit feature vector , called the
lobe component. We model these lobe components as column
vectors . These lobe components are not nec-
essarily orthogonal and not necessarily linearly independent.
They span a lobe feature subspace

span (3)

Typically, the dimension of the subspace can be smaller or
larger than the input space , depending on the available re-
sources.

If the distribution of is Gaussian with a unit covariance
matrix, the samples will be equally dense in all directions. In
general, the distribution is not Gaussian and the probability
density may concentrate along certain directions (although the
global covariance of projections along any given direction is
unit). Each major cluster along a direction is called a lobe,
illustrated in Fig. 2(a) as a petal “lobe.” Each lobe may have
its own fine structure (e.g., sublobes). The shape of a lobe
can be of any type, depending on the distribution, not neces-
sarily like the petals in Fig. 2(a). In that figure, to facilitate
understanding, we illustrate the lobe component concept using
several different types of normalized input lines. However,
none of these normalizations is essential. The sample space of
a white4 zero-mean random vector in -dimensional space

4As in ICA, the vector � may also be whitened, so that the covariance matrix
is a identify matrix ���� 	 � � .

can be illustrated by a -dimensional hypersphere, as shown
in Fig. 2(a). Fig. 2(b) shows the lobe components for the case
of nonnegative line representation where each input vector is
line-wise normalized. Fig. 2(c) shows a case where the input
is nonnegative and normalized using a cross-neuron sigmoidal
(see the Appendix).

If we assume that and are equally likely, the distribution
is then symmetric about the origin. In this case, we can define
symmetric lobes so that and belong to the same lobe.
But, in general, this is not necessarily true. Given an arbitrary
high-dimensional space , the distribution of may not
necessarily have factorizable components. In other words, there
exist no directions , so that their projection from

, is statistically independent
so that their probability density function (pdf) is factorizable

In many high-dimensional applications (e.g., using natural im-
ages), the pdf is typically not factorizable.

Once the lobe components are estimated, the discrete proba-
bility in the input space can be estimated in the following way.
Each region keeps the number of hits , which records the
number of times the samples of fall into region . Then, the
continuous distribution of can be estimated by a discrete prob-
ability distribution of regions

where is the total number of samples. As we can see, the larger
the number , the more regions can be derived and, thus, the finer
approximation of the probability density function of .

C. Optimal Spatial Representation: Lobe Components

The next issue is how to mathematically compute the lobe
components from observations. This defines the partition of



72 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 1, NO. 1, MAY 2009

the input space by a set of regions . In other
words, the regions are never explicitly computed. To facilitate
understanding, we will first assume that the regions are given.
We then derive the best representation. Then, we allow the
regions to update (change).

Given any input vector that belongs to a given, fixed region
, we would like to approximate by a fixed vector in the

form of . It is well known that the value of that minimizes
is . In this sense, is best approximated

by .
Suppose that the set of unit principal component vectors

is given and fixed. We define the regions as the set that
minimizes the approximation error among all

It can be proved readily that the boundary between two neigh-
boring regions and represented by and , respec-
tively, is the hyperplane that forms equal angles from and

, as shown in Fig. 2(b). Equivalently, as the s are unit, we
have

arg

Therefore, from the above way to compute the region , we
can see that a vector can be considered to belong to the re-
gion (represented by its unit vector ) based on the inner
product . Therefore, given any input vector and all the
neuron responses, we can determine which lobe component it
should contribute to—or, equivalently, which region it lies
within—based on which neuron gives the maximum response

.
Conversely, when we know that belongs to the region ,

represented by , we ask: what represents in the best
way? We define the unit vector as the one that minimizes the
squared error of approximation for all possible . The
squared approximation error of can be rewritten as

Thus, the expected error of the above approximation over is

(4)

where is the correlation matrix of
conditioned on .

Since trace is constant, the unit that minimizes the
above expression in (4) is the one that maximizes .
From the standard theory of PCA (e.g., see [34]), we know that
the solution is the unit eigenvector of conditional associ-
ated with the largest eigenvalue

(5)

In other words, is the first principal component of , where
expectation of is over . PCA theory tells us that the eigen-
value is the averaged “power” of projection onto the unit ,
i.e., , conditioned on .

In the above analysis, the region is given. The vector
that minimizes the approximation error is the conditional prin-
cipal component, conditioned on . This proves that the
lobe components in Fig. 2 are spatially optimal in the following
sense. Given all regions, we consider that each input vector
is represented by the winner feature , which has the highest
response

where is the projection of input onto the normalized feature
vector : . The form of approximation of is
represented by . The error of this representation
for , is minimized by the lobe components,
which are the principal components of their respective regions.

In summary, the spatial optimality requires that the spatial
resource distribution in the cortical level is optimal in mini-
mizing the representational error. For this optimality, the cor-
tical-level developmental program modeled by CCI LCA com-
putes the best feature vectors so that the
expected square approximation error is statisti-
cally minimized

(6)

This spatial optimality leads to Hebbian learning of optimal
directions. We next address the issue of determining the best
step size along the learning trajectory.

D. Temporal Optimality: Automatic Step Sizes

Intuitively speaking, the spatial optimality we have discussed
until now means that with the same cortical size, all human chil-
dren will eventually perform at the best level allowed by the cor-
tical size. However, to reach the same skill level, one child may
require more teaching than another. Spatiotemporal optimality
is deeper. It requires the best performance for every time . That
is, the child learns the quickest allowed by the cortical size at
every stage of his age.

To deal with both criteria of long-term memory and fast adap-
tation, we require an incremental and optimal solution. Moti-
vated by biological synaptic learning, let be the neuronal
internal observation (NIO), which for LCA is defined as re-
sponse-weighted input

(7)

The synaptic weight vector is estimated from a series
of observations drawn from a
probability density . Let be the set of all possible esti-
mators for the parameter vector (synaptic weight vector) from
the set of observations . Suppose the learning rate is for
NIO at time . How can we automatically determine all the
learning rates so that the estimated neuronal



WENG AND LUCIW: DUALLY OPTIMAL NEURONAL LAYERS: LOBE COMPONENT ANALYSIS 73

weight vector at every time has the minimum error while
the search proceeds along its nonlinear trajectory toward its in-
tended target weight vector ? Mathematically, this means that
every update at time reaches

minimum-error (8)

for all .
This corresponds to a compounding of a series of challenging

problems.
a) Unknown nonlinear relationship between inputs and the

neuronal synaptic weight vector .
b) The global trajectory minimum error problem in (8).
c) The incremental estimation problem: the neuronal input

must be used by each neuron to update its synapse
1 and then must be discarded right after that.

d) No second- or higher order statistics of input vector can
be estimated by each neuron due to the in-place learning
principle. Otherwise, each neuron with input synapses
(e.g., is on the order of 10 on average in the brain [16,
p. 19] [35]) would require a very large dedicated extracel-
lular storage space (e.g., the covariance matrix requires on
the order of extracellular storage units).

Standard techniques for a nonlinear optimization include gra-
dient-based methods or higher order (e.g., quadratic) methods,
but none of them is appropriate for b) and d). The biologically
inspired theory of CCI LCA aims at such a closed-form solution
with a)–d) under consideration.

From (5), replacing the conditional correlation matrix by the
sample conditional correlation matrix, we have our estimation
expression

(9)

where is a unit vector.
From this point on, we would like to define a candid version

of the lobe component by assigning the length of the lobe com-
ponent to be . That is

Then, the expression in (9) becomes

(10)

where has a length . Equation (10) states that the candid
version of is equal to the average on the right side. By candid,
we mean that we keep the power (energy) of the projections onto

along with and, thus, the estimator for is computed
as the length of . The length of the vector gives the estimated
eigenvalue of the principal component. It is updated along with
its direction, thus keeping the original information. A scheme in
which a vector is set to unit length after each update is therefore
not candid. This scheme is needed for the optimal efficiency to
be discussed in Section III-H.

We can see that the best candid lobe component vector ,
whose length is the “power estimate” , can be estimated by
the average of the input vector weighted by the linearized
(without sigmoidal ) response whenever belongs
to . This average expression is very important in guiding the
adaptation of in the optimal statistical efficiency, as explained
in Section III-E.

The above result states that if the regions are given, the
optimal lobe components can be determined based on (10), but
the regions are not given. Therefore, our modeled cortex
must dynamically update based on the currently estimated
lobe components .

We define the belongingness of any vector to region
represented by lobe component as follows.

Definition 1: Belongingness of to is defined as the re-
sponse , where is the candid lobe compo-
nent vector representing region .

Given a series of regions , each being represented by lobe
component , an input belongs to if

arg

Thus, LCA must compute the directions of the lobe compo-
nents and their corresponding energies sequentially and incre-
mentally. For in-place development, each neuron does not have
extra space to store all the training samples . Instead,
it uses its physiological mechanisms to update synapses incre-
mentally.

Equation (10) leads to an important incremental estimation
procedure. If the th neuron 1 at time 1 has already
been computed using previous 1 inputs
1 , the new input enables a new NIO defined as response-
weighted input: that we defined in (7).

Then, the candid version of is equal to the average

(11)

This mechanism not only enables us to compute the best
candid but also enables many lobe component vectors to
compete when data are sequentially received. The vector

whose belongingness is the highest is the “winner,” which
best inhibits all other vectors. The winner uses the current input

to update its vector, as in (11), but all others do not. In
summary, unlike traditional views where working memory and
long-term memory are two different kinds of memory, the LCA
model indicates that working memory and long-term memory
are dynamic in a cortical layer. At any time, the winner neurons
are working memory and the other neurons are long-term
memory.

Now, how can we schedule the updating to be temporally op-
timal? Before we solve this problem, we need to review the con-
cept of statistical efficiency.

E. Statistical Efficiency

We will convert the nonlinear search problem of com-
puting the optimal updating trajectory into an optimal esti-
mation problem using the concept of statistical efficiency.
Statistical efficiency is defined as follows. Suppose that



74 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 1, NO. 1, MAY 2009

there are two estimators and for vector parameter
that are based on the same set of observations

. If the expected square error of
is smaller than that of , i.e., , the
estimator is more statistically efficient than .

Statistical estimation theory reveals that for many distribu-
tions (e.g., Gaussian and exponential distributions), the sample
mean is the most efficient estimator of the population mean. This
follows directly from [36, Th. 4.1, p. 429–430], which states
that under some regularity conditions satisfied by many distribu-
tions (such as Gaussian and exponential distributions), the max-
imum likelihood estimator (MLE) of the parameter vector is
asymptotically efficient, in the sense that its asymptotic covari-
ance matrix is the Cramér–Rao information bound (the lower
bound) for all unbiased estimators via convergence in proba-
bility to a normal distribution

(12)

in which the Fisher information matrix
is the covariance matrix of the score vector

, and
is the probability density of random vector if the true
parameter value is (see, e.g., [36, p. 428]). The matrix
is called information bound since under some regularity
constraints, any unbiased estimator of the parameter vector

satisfies cov (see, e.g., [36, p. 428] or
[37, pp. 203–204]).5

Since in many cases (e.g., Gaussian and exponential distri-
butions) the MLE of the population mean is the sample mean,
we estimate the mean of vector by the sample mean. Thus,
we estimate an independent vector by the sample mean in
(11), where is a random observation.

F. Automatic Scheduling of Optimal Step Sizes

Having expressed the above theory, now we pick up our dis-
cussion on how to schedule the step sizes for the fastest (tempo-
rally optimal) way to estimate the in (11).
The mean in (11) is a batch method. For incremental estimation,
we can use

(13)

In other words, to get the temporally optimal estimator ,
we need to select not only an automatically determined learning
rate but also an automatically scheduled retention
rate . In other words, and jointly deter-
mine the optimal scheduling of step sizes. The above (13) gives
the straight incremental mean, which is temporally optimal in
the sense of (8) due to statistical efficiency discussed above.

Therefore, Hebbian learning of direction in (11), defined
in (7), turns out to be the direction of incremental update of
the dually optimal lobe component developed here. However,
a direction is not sufficient for the dual optimality. The auto-
matically scheduled rate pair—the retention rate and the

5For two real symmetric matrices � and � of the same size, � � � means
that��� is nonnegative definite, which implies, in particular, that the diagonal
elements are all nonnegative, which gives the lower bound for the variance of
every element of the vector estimator of ���.

learning rate —gives the optimal “step size” at any age .
This theoretical prediction is open to biological verification.

G. Time-Variant Distribution

With the temporal optimality established in the sense of (8),
we now note the above optimality is for a stationary distribu-
tion. But we do not know the distribution of , and it is even
dependent on the currently estimated (i.e., the observations
are from a nonstationary process). And, intuitively, the ability
for a child to learn persists throughout the child’s lifetime. So,
we use the following CCI plasticity technique—an “amnesic”
mean [28], which gradually “forgets” old “observations” (bad

when is small). Modify (13) to use a pair of rates: an am-
nesic retention rate and an amnesic learning rate

(14)

where is the amnesic function depending on . Tuning of
is scheduled by

if
if
if

(15)

As can be seen above and in Fig. 3(a), has three intervals.
When is small, straight incremental average is computed,
accumulating information to estimate the mean. As the time
passed is small, straight mean is good enough for the early
section. Then, enters the rising section. It changes from
zero to linearly. In this section, neurons compete for the
different partitions by increasing their learning rates for faster
convergence. Lastly, enters the third section—the long
adaptation section—where increases at a rate about 1 ,
meaning the second weight 1 in (13) approaches a
constant 1 to trace a changing distribution. Fig. 3(b) shows
the development of the amnesic average coefficient, where

and .
A point of caution is in order here. The time is not real time.

As will be clear later, is the firing age of the neuron, as shown
in (23). A biological neuron does not need to store this explicit
firing age nor the real time. All it needs is to update the learning
rate (which is an implicit property of the cell) nonlinearly
according to its firing experience.

H. Efficiency of CCI Plasticity

First, we consider whether CCI plasticity-enabled mean is an
unbiased estimator. From the recursive definition in (14), we
can see that the amnesic mean is a weighted sum of the
involved data

where is the weight of data item , which entered at
time in . It can be proven using induction on that
the weight is given by the following expression:

(16)



WENG AND LUCIW: DUALLY OPTIMAL NEURONAL LAYERS: LOBE COMPONENT ANALYSIS 75

Fig. 3. (a) The three-sectioned ���� made up of the early section, the rising section, and the long adaptation section. Each neuron has its own age-dependent
plasticity schedule. (b) CCI plasticity coefficients: � is retention rate and � is learning rate. The �-axis is the number of updates ��� and the �-axis is � and
� . Note that the learning rate will converge to 1�� (not zero) and the retention rate will converge to 1�1��.

Since all the multiplicative factors above are nonnegative, we
have . Using the induction on ,
it can be proven that all the weights sum to one for any

(17)

(When , we require that .) Suppose that the
samples are independently and identically distributed (i.i.d.)
with the same distribution as a random variable . Then, CCI
plasticity-enabled mean is an unbiased estimator of

Let cov denote the covariance matrix of . The expected
mean square error of the amnesic mean is

cov cov

cov (18)

where we defined the error coefficient

When for all , the error coefficient becomes
and (18) returns to the expected square error of the regular

sample mean

cov cov (19)

Fig. 4. The error coefficients ��	� for amnesic means with different amnesic
functions ����. We also show when ���� varies with �, as in (15), using param-
eters � � ��
 � � ���
 � � �
 � � ����. Note the logarithmic axes. A lower
error coefficient is better, but when the distribution of the input changes with a
large number of observations, adaptation is necessary for development.

It is then expected that the amnesic mean for a stationary
process will not have the same efficiency as the straight sample
mean for a stationary process. Fig. 4 shows the error coefficient

for three different amnesic functions
and . The smaller the error coefficient, the smaller the
expected square error but also the less capability to adapt to a
changing distribution. The three cases shown in Fig. 4 indicate
that when , the amnesic mean with increased
about 50% (for the same ) from that for , and with

it increased about 100%.
From Fig. 4, we can see that a constant positive is

not best when is small. The multisectional function in
(15) performs straight average for small to reduce the error
coefficient for earlier estimates. When is very large, the
amnesic function changes with to track the slowly changing
distribution.



76 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 1, NO. 1, MAY 2009

The multisectional amnesic function is more suited for
practical signals with unknown nonstationary statistics (typical
for development). It is appropriate to note that the exact opti-
mality of the multisectional amnesic function is unlikely under
an unknown nonstationary process (not i.i.d.) unless an assump-
tion of certain types of nonstationary process is imposed, which
is not, however, necessarily true in the reality of real-world de-
velopment.

In summary, we should not expect an estimator suited for
an unknown nonstationary process to have the same expected
efficiency as for an i.i.d. stationary process. The distribution
of signals received in many applications is typically nonsta-
tionary and, therefore, an amnesic mean with a multisectional
(dynamic) amnesic function is better [see Fig. 7(b)].

The above can guide us in order to set the parameters of (15).
It is unwise to introduce forgetting early, so as to contain initial

. This will maximize stability when few samples are avail-
able (e.g., let ). Note that, for larger , the weight of
new samples is increased and old samples are forgotten gradu-
ally. Typically, can range from two to four. This parameter is
useful in the initial organization phase, where the lobe regions
are changing due to competition, which will tend to create a
nonstationary distribution for each neuron. We can set to, e.g.,
200, when we would expect the lobe components to be relatively
well organized. For the long-term plasticity stage, should not
be too low, or too much forgetting will occur. It could range
from 5000 to 15 000.

IV. LOBE COMPONENT ANALYSIS ALGORITHM

A. CCI LCA Algorithm

The CCI LCA algorithm incrementally updates neurons
represented by the column vectors from
samples . It is desirable but not required that a
neuron’s input is linewise normalized so that every component
in has a unit variance, but it does not need to be whitened. The
length of will be the variance of projections of the vectors

in the th region onto .

“Prenatal” initialization—Sequentially initialize
cells using first inputs and

set cell-update age for .
“Live.” For , do:
1. Neurons compute. Compute output (response) for
all neurons: For all with , compute the response6

(20)

2. Lateral inhibition for different features and sparse coding.
For computational efficiency, use the following top- rule.
Rank 1 top winners so that after ranking, ,
as ranked responses. For superior computational efficiency, this
noniterative ranking mechanism replaces repeated iterations

6Here we present linear response with motivation to simplify the system. A
nonlinear sigmoidal function is optional, but no matter if a sigmoidal function
is used or not, the entire single-layer system is a highly nonlinear system due
to the top-k mechanism used.

that take place among a large number of two-way connected
neurons in the same layer. Use a linear function to scale the
response

(21)

for . All other neurons do not fire
for . For experiments

presented in this paper, . Note: this mechanism
of top- ranking plus scaling is an approximation of
biological inhibition. It is not in-place but is very effective
computationally when the network update rate is low.
3. Optimal Hebbian learning. Update only the top winner
neurons , for all in the set of top winning neurons, using
its temporally scheduled plasticity

(22)

where the cell’s scheduled plasticity is determined
automatically by its two update-age dependent weights, called
retention rate and learning rate, respectively

(23)

with . Update the real-valued
neuron “age” only for the winners:

( for the top winner).
4. Lateral excitation. Excitatory connections on the
same layer are known to exist. To emulate these will
encourage cortical representation smoothness. But we
do not use these for most experiments in this paper.
The discussion on this matter continues in Section IV-E.
5. Long-term memory. All other neurons that do not update,
keep their age and weights unchanged: .

B. Time and Space Complexities

Given each -dimensional input , the time complexity for
updating lobe components and computing all the responses
from is . Since LCA is meant to run in real-time, this
low update complexity is important. If there are input vectors,
the total amount of computation is .

Its space complexity is , for neurons with -dimen-
sional input . It is not even a function of the number of inputs

due to the nature of incremental learning.
In fact, the above space and time complexities are the lowest

possible. Since vectors need to be computed and each vector
has components, the space complexity cannot be lower than

. Further, the time complexity cannot be lower than
because the responses for each of inputs need that

many computations.
Suppose that each lobe component (vector) is considered as

a neuron and the number of hits is its clock of “maturity”
or “age,” which determines the single weight

for its updating. The CCI LCA algorithm is an in-place
development algorithm, in the sense that the network does not
need extra storage or an extra developer. The winner-take-all
mechanism is a computer simulation of the lateral inhibition
mechanism in the biological neural networks. The inhibition-



WENG AND LUCIW: DUALLY OPTIMAL NEURONAL LAYERS: LOBE COMPONENT ANALYSIS 77

winner updating rule is a computer simulation of the Hebbian
mechanism in the biological neural networks.

C. Convergence Rate

Suppose that the distribution of -dimensional random input
is stationary. In CCI LCA, the lobe component vector con-

verges to the eigenvalue scaled eigenvector in the mean
square sense and the speed of convergence is estimated as

where is the estimated average component-wise variance of
observation . Unlike
the conventional sense of convergence, the convergence is not to
a local extremum. It is to the correct solution. The near-optimal
convergence speed is due to the use of statistical efficiency in
the algorithm design. If the distribution of changes slowly, the
above error estimate is still applicable.

D. Global Perspective: Maximum Mutual Information

A challenge with a local approach such as LCA is as follows:
how can the global problem be effectively decomposed into sim-
pler, local ones and how can the solutions to the local problems
be integrated into a solution for the global optimal one? We have
until this point discussed how LCA solves each local problem.
We now provide a theoretical perspective on the global opti-
mality.

Proposition 1: Mutual Information Proposition: In a sensory
mapping, the input events occur in input space (that, e.g., rep-
resents a family of receptive fields ). The output space
(e.g., response or firing space) is . We propose a major goal of
layers of sensory mapping is to maximize the mutual informa-
tion between the random stimuli events in and the
random output events in .
How can we maximize the mutual information? From informa-
tion theory, we have7

(24)

To maximize the above, we can maximize while mini-
mizing .

We divide the much larger number of discrete samples in
into discrete bins . In (24), the first
term is the entropy of representation by bins and the second
term is the expected uncertainty of , given input .
We want to maximize the entropy of the representation
and minimize . To maximize the first term, we use the
equal probability principle. The partition of should be such
that each has the same probability. To minimize the second
term, we use the multiple support principle. Given input image

is zero.
1) Equal Probability Principle: Suppose that the output

event is represented by event . To maximize the
first term in (24), we know that a uniform distribution across
the regions has the maximum entropy if every region
has the same probability.

7��� ��� denotes the conditional entropy ��� ��� � � ������� ����,
where ��� ��� is the probability density of � conditioned on �.

We have the following theorem.
Theorem 1: The Maximum Mutual Information Theorem:

Suppose that the output is represented by discrete event .
Then, the mutual information is maximized if the
following conditions are satisfied.

1) All the regions have the same probability.
2) The representation is completely determined by

event , for all with .
Proof: is maxi-

mized if we maximize while minimizing . Condi-
tion 1) is a necessary and sufficient condition to maximize
for a given limited , the number of cells (or regions) [38, pp.
513–514]. Condition 2) is equivalent to for dis-
crete distribution. Since the entropy of a discrete distribution is
never zero, it reaches the maximum when is completely
determined when , for all .

Condition 1) in Theorem 1 means that every neuron in the
layer fires equally likely. Towards this goal of equal-proba-
bility partition, neurons update in-place using optimal Hebbian
learning and winner-take-all competition (lateral inhibition)
we discussed earlier. Smoothness in self-organization is a way
to approach equal probability. However, due to the cost of
updating, equal probability is approached but is not reached
exactly. Condition 2) requires that the response from the layer
completely determine the input. This means that the coding
(response) is not random and catches the variation in the input
space as much as possible.

E. Topographic LCA

Cortical lateral excitation can encourage equal probability, as
discussed above, since it will “pull” more neurons to the higher
density areas. Although it is critical, we only briefly mention it
here, since it is mostly out of this paper’s scope. One method
of lateral excitation is as follows. Update the other neurons in
a 3 3 neighborhood around every top- winner, simulating
3 3 lateral excitation. Each neighboring neuron is updated as
a fraction of full update, where is the distance
between the updating neuron and the winner. The learning rate
is , with and the (real valued)
age is advance by .

V. EXPERIMENTAL RESULTS

We now present comparisons of the CCI LCA algorithm with
other incremental neuronal updating rules and compare with
ICA algorithms. Results show the degree of benefit of the sta-
tistical near-optimal efficiency of the CCI LCA algorithm.

A. Comparison With Other Neuron Updating Rules

1) Introduction to Other Methods: The basic Hebbian form
[39], [40] for updating the weight vector of a neuron

(25)

where is the amount of update for the weight vector by
executing the learning rate, and the vector
input (presynaptic activity).

Oja’s classic neuron updating algorithm [41] is an algorithm
that follows (25) for incrementally computing the first principle



78 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 1, NO. 1, MAY 2009

Fig. 5. Comparison of incremental neuronal updating methods (best viewed in color). The legend in the right figure applies to both figures. We compare in (a) 25
and (b) 100 dimensions. Methods used were i) “dot-product” SOM; ii) Oja’s rule with fixed learning rate 10 ; iii) standard Hebbian updating with three functions
for tuning the time-varying learning rates: linear, power, and inverse; and iv) CCI LCA. LCA, with its temporal optimality, outperforms all other methods. Consider
this a “race” from start (same initialization) to finish (0% error). Note how quickly it achieves short distance to the goal compared with other methods. For example,
in (a) after 5000 samples, LCA has covered 66% of the distance, while the next closest method has only covered 17% distance. Similarly, in (b), CCI LCA beats
the compared methods. For example, after 28 500 samples, when LCA has covered 56% distance, the next closest method has only covered 24% distance.

component, which is spatially optimal, as we discussed in earlier
sections. Its NIO is response-weighted input

(26)

where is the neuronal response. This version
should be used with small (e.g., for stability. If
stable, the lengths of the vectors will tend to unit.

A stable two-step version of (26) that aligns directly with (25)
and uses time-varying is

(27)

We called it “Hebbian with time-varying learning rate (TVLR)”.
The “dot-product” version of the self-organizing map (SOM)

updating rule [42, p. 115] is also considered as incremental neu-
ronal learning

(28)

where is the winning component vector at time . Note a
major difference between the dot-product SOM and the others:
the NIO used by SOM’s rule (not weighted by response).
Without response-weighting, this updating rule did not perform
successfully in our tests.

All of the above use a single learning rate parameter to adapt
the neuron weights to each new updating input and a method to
bound the strengths of synaptic efficacies (e.g., vector normal-
ization). CCI LCA weights using the time-varying retention rate

and learning rate , where , in order to
maintain the energy estimate. With the energy gone in the three
schemes above, there is no way to adjust the learning rate
to be equivalent to the CCI scheduling. Therefore, the result of
(26)–(28) cannot be optimal.

2) Stationary Distributions: The statistics of natural images
are known to be highly non-Gaussian [43], and the responses
of V1 neurons to natural input have a response profile char-
acterized by high kurtosis. The Laplacian distribution is non-
Gaussian and has high kurtosis, so we test estimation of the prin-
ciple component of Laplacian distributions.

The data generated are from a -dimensional Lapla-
cian random variable. Each dimension has a pdf of

. All dimen-
sions had zero mean and unit variance
for fairness (LCA can handle higher variances, but the other
methods will not do well since they are designed to extract
components with unit energy). The true components to be
extracted from this distribution are the axes. We do not use a
rotation matrix for this experiment. So, the true components
orthogonally span a -dimensional space. We use a number of
neurons equal to dimensionality, initialized to random samples
drawn from the same distribution. For a fair comparison, all
methods started from the same initialization. The training
length (maximum number of data points) was ,
so that each neuron would on average have 10 000 updates.
Dimension was 25 or 100. Results were averaged over 50
trials. The results measure average correlation between each
component, which is a unit vector, and the closest neuron (in
inner product space).

For tuning the time-varying learning rate , we used
three example suggested [44] learning rates for , which
were “linear” , “power”

, and “inv” .
The initial learning rate was 0.1 or 0.5. Plasticity parame-
ters for LCA’s were .

Results are shown in Fig. 5. The “SOM” curve shows the
best performing variant among the six different learning rate
functions and initial learning rates, as suggested [44]. None of
them led to extraction of the true components (the best one uses



WENG AND LUCIW: DUALLY OPTIMAL NEURONAL LAYERS: LOBE COMPONENT ANALYSIS 79

and the linear tuning function—in both cases).
For Oja’s rule with time-varying learning rate, we show only

since the alternate curves were uni-
formly worse. These results show the effect of LCA’s statis-
tical efficiency. In 25 dimensions, when LCA has achieved 20%
error, the best other Hebbian method has only achieved 60%
error. Similarly, in 100 dimensions, when LCA has achieved
30% error, the best compared method is still at 70% error. The
results for LCA will not be perfect due to the nonstationarity
that occurs due to self-organization, but they are much better
than the other methods.

3) Time-Varying Distributions: It is important for an agent
to have the capability to adapt to new environments without
catastrophic forgetting of what was already learned. This chal-
lenging problem has not been adequately addressed by existing
self-organization methods. Our latest understanding from our
brain-scale modeling can be summarized as follows.

a) Fast learning without representation change: Local
lobe components that are computed by early cortical layers are
low-level, which do not change substantially across ages. But
the distribution of high-level features, computed by later cor-
tical areas, can change substantially at higher ages. This is not,
however, mainly due to synapse representational changes. In-
stead, this fast change is mainly due to fast association changes
and attentionally modulated competition among actions. This
computational concept is challenging, new, and closely related
to the LCA theory here. We called it the principle of fast
learning from stable representation.

For example, when an adult agent is confronted with a novel
object, how can the agent learn the novel object quickly? Sup-
pose that a person who has never seen a palm tree before has
been told the name “palm tree” and can say “palm tree.” Upon
his arrival in Florida, how is he able to nearly immediately learn
and recognize similar trees as palm trees? How can an LCA neu-
ronal layer update so quickly in order to accommodate such fast
learning? We know that the brain updates at least around 1 KHz
(e.g., a spike lasts about 1 ms). Within the half-second time it
may take for the individual to learn the palm tree concept, hun-
dreds of rounds of network iterations occur. But even this will
not be enough to learn a brand new representation.

Fast learning does not imply the distribution of neuronal
synapses drastically updates. Instead, it occurs by the gener-
ation of new firing patterns based on the established stable
cortical representations (early and later layers) and the associa-
tion of the new firing patterns to the corresponding stable motor
actions. Consider that LCA layer 1 has already learned
edges, leaves, trunks, etc., and LCA layer 1 has already
learned actions for verbal “pine tree,” “palm tree,” “new tree,”
etc. In our temporal MILN model [45], the intermediate LCA
layer takes input as a combination of bottom-up input of
layer 1 (from a stable representation) and top-down input

from layer 1 (also from a stable representation). Suppose
that while the newcomer is looking at the image of a palm
tree, his friend says “palm tree!” Now, it is important to know
the well-known phenomenon of “mirror neuron.” Because of
online learning, an auditory “palm tree” input must trigger the
firing of verbal action “palm tree.” This is because when he
produced verbal “palm tree” he heard his own auditory “palm”

at the same time and such an auditory-to-action association was
established. With as the input to layer , and noting
that the representation of layer is stable, a new response pattern
is generated from the LCA output from layer . This firing
pattern in layer strengthens the bottom-up weight vector of
the firing representation of “palm tree” in layer 1, through
LCA’s optimal Hebbian learning. A few rounds of network
iterations are sufficient to surpass the bottom-up weight vector
of the “default” non-firing representation of “new tree.” This
illustrates the power of the top-down attention (action) signal.
Slight changes in synapses can greatly change the winner of
attention selection. This theory of fast learning from stable
representation needs to be demonstrated experimentally in the
future.

b) Representation adaptation: Next, we demonstrate the
change of the distribution of synapses, which is expected to
be relatively slow according to our above discussion. We per-
formed a comparison of how well the best performing of the al-
gorithms we tested before adapt to a time-varying distribution.
We set up a changing environment as follows.

There are five phases. In the first phase, until time 200 000,
the data are drawn from 70 orthogonal Laplacian components
that span a 70-dimensional space. In the second phase, from
time 200 000 to 399 999, the data are drawn from one of ten new
components—meaning we simply use a different rotation ma-
trix and thus do not increase dimensionality, with a 50% chance
or from one of the original 70 (using the original rotation matrix)
with 50% chance. This is motivated by how a teacher will em-
phasize new material to the class, and only more briefly review
old material. In the third phase, from time 400 000 to 599 999,
the data are drawn from either ten brand new components or the
original 70 (50% chance of either). The fourth phase, until time
799 999, is similar—ten previously unseen components are in-
troduced. In the fifth phase, until , we draw from
all 100 possible components (and each has a 1% probability).

We use 100 neurons over all phases (never increases or de-
creases). So, there are finally 100 neurons for 100 components,
but in early phases we have extra resource (e.g., in phase one,
we have 100 neurons for 70 components). Results are averaged
over 50 runs with different rotation matrices for each run. They
are shown in Fig. 6 and discussed in the caption. LCA outper-
forms the other two variants—it is better at adaptation and suf-
fers a more graceful forgetting of data that is not currently ob-
served. We note that the “relearning” in the last phase does not
match the previously observed performance. This is due to two
reasons: the lessening of plasticity for larger neuron ages and
the increasing of the manifold of the data while retaining only a
fixed representation resource. The superior performance is due
to the dual optimality of LCA.

B. Comparison With ICA

ICA has been proposed as a computational model for neu-
ronal feature development. LCA is based on biologically in-
spired neuronal inhibitory and excitatory connections, biolog-
ical in-place neuronal Hebbian learning, the optimality in spa-
tial representation, and the optimality in the temporal course of
learning. In contrast, ICA is mainly based on a mathematical



80 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 1, NO. 1, MAY 2009

Fig. 6. Comparison of LCA with two other Hebbian learning variants for a time-varying distribution. (a) shows average error for all available components. There
are 70 available until time 200 000, 80 until 400 000, 90 until 600 000 and 100 until 1 000 000. We expect a slight degradation in overall performance when new data
are introduced due to the limited resource always available (100 neurons). The first jump of LCA at � � ������ is a loss of 3.7% of the distance it had traveled
to that point. (b) shows how well the neurons adapt to the ten components added at time 200 000 (called newdata1) and then how well they remember them (they
are observed in only the second and fifth phases). Initially, these new data are learned well. At time 400 000, newdata2 begins to be observed, and newdata1 will
not be observed until time 800 000. Note the “forgetting” of the non-LCA methods in comparison to the more graceful degradation of LCA. The plots focusing on
newdata2 and newdata3 are similar.

assumption that responses from different neurons are statisti-
cally independent. The representation of each lobe component
is local in the input space, realized through lateral inhibition
among neurons in the same layer. The global representation of
LCA arises from the firing pattern of many lobe components. In
contrast, the representation of ICA is global because of the use
of higher order statistics of the entire input space.

1) Introduction to ICA: ICA was shown to extract localized
orientation features from natural images [24]. In many exper-
iments, the (global) ICA gives superior features compared to
global PCA. As is well known, statistical independence used by
ICA is a much stronger condition than uncorrelatedness used by
PCA. But due to this condition, ICA algorithms are complex.
They are not in-place algorithms.

The original linear data model used in ICA is as follows.
There is an unknown -dimensional random signal source ,
whose components are mutually statistically independent. For
every time instance , an unknown random sample

is generated from the signal source. There is an unknown
constant, full-rank mixing matrix , which transforms

each column vector into an observable vector

(29)

where is the th column of and is the th component
of . The goal of ICA is to estimate the matrix . However,

cannot be determined completely. is generally assumed
to have zero mean and unit covariance matrix, which implies
that the matrix can be determined up to a permutation of its
columns and their signs.

For many other applications, however, it is not necessarily
true that the signal source is driven by a linear combination of in-
dependent components. For example, there is no guarantee that

video images of natural environments contain any truly inde-
pendent components. The natural scene observed by a camera
is the projection of multiple dynamic (moving) objects, which
is much more complex than the pure linear model in (29). For
example, if there are independent objects in the scene where

independently controls its appearance, then typically is
not static (caused by, e.g., motions, lighting changes, viewing
geometry changes, deformation, etc.). Therefore, the matrix
is not a constant matrix.

In ICA, a “demixing” matrix is applied to so that
the new components of are mutually independent.
However, because of the above model problem in (29), such a
demixing matrix might not exist. In practice, ICA computes
so that the components are mutually independent as much as
possible, regardless of whether the model in (29) is valid or not.

2) Experimental Comparison With ICA: LCA is ICA
for super-Gaussian components. Components that have a
super-Gaussian distribution roughly correspond to lobe com-
ponents we defined here. Each linear combination of
super-Gaussian independent components corresponds to sym-
metric lobes, illustrated in Fig. 2(a). Therefore, if components
in are all super-Gaussian, finding lobe components by
CCI LCA is roughly equivalent to finding independent compo-
nents, but with different theory and much lower computational
complexity.

The optimal statistical efficiency appears to drastically
improve the capacity to deal with high-dimensional data.
We selected two state-of-the-art incremental ICA algorithms,
Type-2 Extended Bell–Sejnowski (ExtBS) [25], and Type-3
(NPCA-LS) [46], [47] for performance comparison with the
proposed Type-5 CCI LCA algorithm. The choice of these
two algorithms is due to their superior performance in the
comparison results of [48]. We used the downloaded code from
the authors for the ExtBS algorithm.



WENG AND LUCIW: DUALLY OPTIMAL NEURONAL LAYERS: LOBE COMPONENT ANALYSIS 81

Fig. 7. (a) Comparison of ICA results among (Type-3) NPCA, (Type-2.5) ExtBS1, and (Type-5) CCI LCA for super-Gaussian sources in 25 dimensions. (b) Com-
parison of ICA results among (Type-2) Extended Infomax, (Type-1) FastICA, and three variants of the proposed Type-5 CCI LCA algorithm in 100 dimensions.

The NPCA algorithm used was proposed in [46] with
and as tanh. The ExtBS algorithm was run with

the following set of parameters: blocksize learning rate
learning factor momentum constant

number of iterations step , and block size for
kurtosis estimation is 1000. This version is called ExtBS1,
the number 1 indicating the block size for updating. Thus,
ExtBS 1 is a partial sequential algorithm, sequential for in-
dependent component update, but computation for kurtosis is
block-incremental.

As in the earlier experiment section, each independent source
is a Laplacian component. The mixing (rotation) matrix was
chosen randomly and was nondegenerate. The error between the
direction of the true and the estimated independent components
is measured as the angle between them in radians. All results
were averaged over 50 runs.

As indicated by the Fig. 7(a), both the Type-3 algorithm
NPCA and Type-2.5 ExtBS1 did not converge for a moderate
dimension of , although ExtBS1 did fine when .
The proposed CCI LCA did well.

Next, we compared our CCI LCA algorithm with Type-2 Ex-
tended Bell–Sejnowski (or extended infomax) [25] with block
size 1000 and Type-1 batch algorithm FastICA [22], [23]. Con-
vergence with respect to the number of samples used in training
is a good evaluation of the efficiency of ICA algorithms. This is
not a fair comparison since a Type-5 algorithm (like CCI LCA)
should not be expected to outperform a Type-1 or Type-2 al-
gorithm. We compared them anyway to understand the limit
when CCI LCA is compared with two state-of-the-art Type-1
and Type-2 algorithms.

It is well known that ICA algorithms require a significant
amount of data for convergence. Typically, even for a low-di-
mension simulation task (e.g., ), ICA algorithms need
thousands of samples to approach the independent components.
The number increases with the number of components as well.
Some ICA algorithms may not converge at a high dimension
with many components for many thousands of samples.

For a higher dimension, we synthetically generated random
observations from an i.i.d. Laplacian random vector with dimen-
sion of 100. The results are shown in Fig. 7(b), where the -axis
marks the number of samples and the y-axis indicates the av-
erage error in radians. In order to show more detailed aspects of
CCI LCA, three variations have been tested. “LCA with fixed ”
and “LCA with dynamic ” are original LCA methods with a
fixed and varying , as defined in (15), respectively.
The “LCA eliminating cells” algorithm dynamically eliminates
cells whose hitting rate is smaller than 3/4 of the average hitting
rate, since sometimes two vectors share a single lobe (which is
rare and does not significantly affect the purpose of density esti-
mation by lobe components) but does affect our error measure.
As shown in Fig. 7(b), all the three LCA algorithms converged
very fast—faster than the Type-2 algorithm Extended infomax
and even the Type-1 FastICA. The batch Extended Infomax al-
gorithm needs more samples at this high dimension, and it did
not converge in these tests.

It was somewhat surprising that the proposed CCI LCA al-
gorithm, operating under the most restrictive condition, out-
performs the state-of-the-art Type-3, Type-2, and Type-1 algo-
rithms by a remarkably wide margin (about 20 times faster to
reach 0.4 average error in Fig. 7(b). This is due to the new lobe
component concept and the optimal property of the statistical
efficiency.

C. Blind Source Separation

The goal of blind source separation (BSS) [49] is to find up
to a scale factor from in (29). The BSS problem traditionally
uses ICA. From the definition of LCA, we can see that indepen-
dent components, which are along the major axes in (also lobe
components) are, after linear mixing in (29), still lobe compo-
nents in because the space is rotated, skewed, and scaled by
the transformation matrix in (29).

We have tested the LCA algorithm on a simulation of the
cocktail party problem. Nine sound sources are mixed by a ran-
domly chosen full rank matrix. Each sound source is 6.25 s long



82 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 1, NO. 1, MAY 2009

Fig. 8. Cocktail party problem. (a) A music sound clip in its original form.
It is one of the nine sound sources. (b) One of the nine mixed sound signals.
(c) The recovered music sound wave. Compared to (a), the sound signal can be
considered recovered after approximately 1.5 s.

and the sampling rate is 8.0 KHz in 8 bits mono format. There-
fore, each sound source contains 50 000 values.8

Fig. 8(a) shows one of the nine original source signals.
Fig. 8(b) displays one of the nine mixed sound signals. The
mixed signals are first whitened; then we applied the proposed
algorithm to the mixed sound signals. It is worth noting that
the proposed algorithm is an incremental method. Therefore,
unlike other batch ICA methods that require iterations over the
data set, we have used the data only once and then discarded it.
Results are shown in Fig. 8(c). The independent components
quickly converge to the true ones, with a good approximation
as early as 1.5 s.

D. Visual Filter Development

Inspired by results where ICA algorithms were shown to ex-
tract orientation filters from natural images, we conducted an
experiment using CCI LCA on natural image patches. Five hun-
dred thousand of 16 16-pixel image patches were randomly
taken from 13 natural images.9 The CCI LCA algorithm was ap-
plied to the prewhitened image patches to
update the lobe component matrix . The matrix was
then computed. Each column of the matrix is shown in Fig. 9(a)
by a 16 16 patch as the features of the natural scenes. A total of
256 256-dimensional vectors are displayed in the figure. They
all look smooth, and most of them are localized (only a small
patch are nonzero, or gray), as expected. The entire process took
less than 46 min (i.e., 181 frames/s) on a Pentium III 700-MHz
PC with 512 MB memory compared to over 10 h of learning
time for the FastICA algorithm using 24% of the 500 000 sam-
ples (disk thrashing is also a factor).

Fig. 9(b) shows how many times each lobe component was
the top “winner.” Most components have roughly a similar rate

8We downloaded the sound clips from http://www.cis.hut.fi/projects/ica/
cocktail/cocktail_en.cgi, where they used these sound clips to test the FastICA
algorithm [50]

9Available from http://www.cis.hut.fi/projects/ica/imageica/.

of hits, except relatively few leftmost (top) ones and rightmost
(tailing) ones. Although it is not exactly true that each lobe com-
ponent is equally likely to be hit, nearly equal hits for the ma-
jority is a desirable property for high-dimensional density esti-
mation due to the criteria of maximum mutual information we
explained in Section IV-D.

Fig. 10 displays the filters of a simple topographic variant
of the LCA algorithm, where the winning neurons’ neigh-
bors will also update at a reduced rate (3 3 neighborhood
updating kernel). Filters show iso-orientation preference in a
neighborhood.

VI. CONCLUSION

The CCI LCA theory here provides a theoretical basis of the
biological Hebbian incremental direction and further predicts a
firing-age-dependent plasticity schedule for a biological neuron.

The in-depth theoretical discussion of the CCI LCA frame-
work here explains the dual optimality of LCA in terms of its
spatial and temporal optimality. This dual optimality led to
the demonstrated drastic advantages in the speed and success
of component extraction, as shown in comparisons with other
incremental neuronal updating methods, which use a single
learning rate instead of LCA’s optimally tuned learning rate and
retention rate. The CCI LCA was shown to outperform other
Hebbian learning methods, which are not based on statistical
efficiency, as well as several ICA algorithms, including Type-1
FastICA.

For the future of AMD, there is a critical need for Type-5
algorithms. Due to its simple structure, lowest possible order of
time and space complexities, optimal statistical efficiency, and
the Type-5 nature, we expect that this class of algorithms will
be widely used.10

APPENDIX

SIGMOIDAL FOR ROBUST NEURONAL PROCESSING

A sigmoidal function is effective to suppress outliers in the
sense of robust statistics [51]. The inner product can
dominate when the projection to some neurons is very large.
We might change to a more robust, biologically plausible re-
sponse, which is rescaled by the monotone sigmoidal function

to give , where is the sigmoidal function
of neuron represented by . The sigmoidal function has
a unit derivative at the mean of since it replaced a scale factor
1 in the original belongingness .

In order to give a single, “gene-specified” sigmoidal function
that is applicable to all the neurons, we divide the input to
by the incremental average of , which

results in a same sigmoidal function for all the neurons

(30)

This effect of forcing (30) has the effect of compressing along
so that the standard deviation is the same, before computing

10Code for the LCA algorithm is freely available at www.cse.msu.edu/ei/soft-
ware.htm.



WENG AND LUCIW: DUALLY OPTIMAL NEURONAL LAYERS: LOBE COMPONENT ANALYSIS 83

Fig. 9. Lobe components from natural images (not factorizable). (a) LCA derived features from natural images, ordered by the number of hits in decreasing order.
(b) The numbers of hits of the corresponding lobe components in (a).

Fig. 10. Topographically ordered basis functions developed by LCA from nat-
ural image patch data.

the equal-angle boundary. This effect can be seen in Fig. 2(c),
where the boundary of regions are closer to the diagonal lines.

Biologically, the average “power” of the projections would
have to be recorded in-place by the neuron to become the neuron
specific sigmoidal function . This procedure is in-place as the
information is available in-place. Each neuron can keep an in-
ternal variable to incrementally estimate the power of its own
pre-action potential. This leads to a new definition of belong-
ingness.

Definition 2: Belongingness of to is defined as the re-
sponse , where is the candid lobe com-
ponent vector representing region .

Belongingness, as defined above, uses a standard sigmoidal
function for all the neurons in the cortex. The factor

contains two factors of : one for normalizing
the length of and the other for normalizing the project of
onto the direction of . In other words, .

Then, the new response, which is re-scaled by the monotone
sigmoidal function , is

(31)

where has a length .
The sigmoidal function in (31) has a unit derivative at

the mean of since it replaced a scale factor 1 in (10). We can
see that the mean of is the average projection of on the unit

or the currently estimated .

ACKNOWLEDGMENT

The authors would like to acknowledge N. Zhang, who gen-
erated the results shown in Figs. 7–10.

REFERENCES

[1] J. L. Elman, E. A. Bates, M. H. Johnson, A. Karmiloff-Smith, D. Parisi,
and K. Plunkett, Rethinking Innateness: A Connectionist Perspective
on Development. Cambridge, MA: MIT Press, 1997.

[2] J. Weng, J. McClelland, A. Pentland, O. Sporns, I. Stockman, M. Sur,
and E. Thelen, “Autonomous mental development by robots and ani-
mals,” Science, vol. 291, no. 5504, pp. 599–600, 2001.

[3] J. Weng and I. Stockman, “Autonomous mental development: Work-
shop on development and learning,” AI Mag., vol. 23, no. 2, pp. 95–98,
2002.

[4] R. Miikkulainen, J. A. Bednar, Y. Choe, and J. Sirosh, Computational
Maps in the Visual Cortex. Berlin, Germany: Springer, 2005.

[5] G. J. McLachlan, The EM Algorithm and Extensions. New York:
Wiley, 1997.

[6] J. Weng and N. Zhang, “In-place learning and the lobe component anal-
ysis,” in Proc. IEEE World Congr. Comput. Intell., Vancouver, BC,
Canada, Jul. 16–21, 2006.



84 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 1, NO. 1, MAY 2009

[7] J. Weng, T. Luwang, H. Lu, and X. Xue, “A multilayer in-place
learning network for development of general invariances,” Int. J.
Human. Robot., vol. 4, no. 2, pp. 281–320, 2007.

[8] M. D. Luciw and J. Weng, “Topographic class grouping and its appli-
cations to 3d object recognition,” in Proc. IEEE/INNS Int. Joint Conf.
Neural Netw., Hong Kong SAR, China, 2008.

[9] J. Weng, T. Luwang, H. Lu, and X. Xue, “Multilayer in-place learning
networks for modeling functional layers in the laminar cortex,” Neural
Netw., vol. 21, pp. 150–159, 2008.

[10] D. J. Felleman and D. C. Van Essen, “Distributed hierarchical pro-
cessing in the primate cerebral cortex,” Cerebral Cortex, vol. 1, pp.
1–47, 1991.

[11] E. M. Callaway, “Local circuits in primary visual cortex of the macaque
monkey,” Annu. Rev. Neurosci., vol. 21, pp. 47–74, 1998.

[12] A. K. Wiser and E. M. Callaway, “Contributions of individual layer 6
pyramidal neurons to local circuitry in macaque primary visual cortex,”
J. Neurosci., vol. 16, pp. 2724–2739, 1996.

[13] S. Grossberg and R. Raizada, “Contrast-sensitive perceptual grouping
and object-based attention in the laminar circuits of primary visual
cortex,” Vision Res., vol. 40, pp. 1413–1432, 2000.

[14] S. Grossberg, “Adaptive pattern classification and universal recoding:
I. Parallel development and coding of neural feature detectors,” Biol.
Cybern., vol. 23, pp. 121–131, 1976.

[15] G. A. Carpenter and S. Grossberg, “A massively parallel architecture
for a self-organizing neural pattern recognition machine,” Comput. Vi-
sion, Graph., Image Process., vol. 37, pp. 54–115, 1987.

[16] , E. R. Kandel, J. H. Schwartz, and T. M. Jessell, Eds., Principles of
Neural Science, 4th ed. New York: McGraw-Hill, 2000.

[17] M. Kirby and L. Sirovich, “Application of the Karhunen-Loéve pro-
cedure for the characterization of human faces,” IEEE Trans. Pattern
Anal. Machine Intell., vol. 12, pp. 103–108, Jan. 1990.

[18] M. Turk and A. Pentland, “Eigenfaces for recognition,” J. Cogn. Neu-
rosci., vol. 3, no. 1, pp. 71–86, 1991.

[19] K. Etemad and R. Chellappa, “Discriminant analysis for recognition
of human face images,” in Proc. Int. Conf. Acoust., Speech, Signal
Process., Atlanta, GA, May 1994, pp. 2148–2151.

[20] D. L. Swets and J. Weng, “Using discriminant eigenfeatures for image
retrieval,” IEEE Trans. Pattern Anal. Machine Intell., vol. 18, no. 8, pp.
831–836, 1996.

[21] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces vs
fisherfaces: Recognition using class specific linear projection,” IEEE
Trans. Pattern Anal. Machine Intell., vol. 19, pp. 711–720, Jul. 1997.

[22] A. Hyvarinen and E. Oja, “A fast fixed-point algorithm for independent
component analysis,” Neural Comput., vol. 9, no. 7, pp. 1483–1492,
1997.

[23] A. Hyvarinen and E. Oja, “Independent component analysis: Algo-
rithms and applications,” Neural Netw., vol. 13, no. 4–5, pp. 411–430,
2000.

[24] A. J. Bell and T. J. Sejnowski, “The ‘independent components’ of nat-
ural scenes are edge filters,” Vision Res., vol. 37, no. 23, pp. 3327–3338,
1997.

[25] T. W. Lee, M. Girolami, and T. J. Sejnowski, “Independent component
analysis using an extended infomax algorithm for mixed sub-Gaussian
and super-Gaussian sources,” Neural Comput., vol. 11, no. 2, pp.
417–441, 1999.

[26] J. Karhunen and P. Pajunen, “Blind source separation using
least-squares type adaptive algorithms,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., Munich, Germany, 1997, pp.
3048–3051.

[27] G. A. Carpenter, S. Grossberg, and D. B. Rosen, “Fuzzy art: Fast stable
learning and categorization of analog patterns by an adaptive resonance
system,” Neural Netw., vol. 4, pp. 759–771, 1991.

[28] J. Weng, Y. Zhang, and W. Hwang, “Candid covariance-free incre-
mental principal component analysis,” IEEE Trans. Pattern Anal. Ma-
chine Intell., vol. 25, no. 8, pp. 1034–1040, 2003.

[29] M. B. Feller, D. P. Wellis, D. Stellwagen, F. S. Werblin, and C. J.
Shatz, “Requirement for cholinergic synaptic transmission in the prop-
agation of spontaneous retinal waves,” Science, vol. 272, no. 5265, pp.
1182–1187, 1996.

[30] J. C. Crowley and L. C. Katz, “Development of cortical circuits:
Lessons from ocular dominance columns,” Nature Rev. Neurosci., vol.
3, pp. 34–42, 2002.

[31] C. W. Cotman and M. Nieto-Sampedro, “Cell biology of synaptic plas-
ticity,” Science, vol. 225, pp. 1287–1294, 1984.

[32] W. K. Purves, D. Sadava, G. H. Orians, and H. C. Heller, Life: The
Science of Biology, 7th ed. Sunderland, MA: Sinauer, 2004.

[33] B. W. Silverman, Density Estimation for Statistics and Data Anal-
ysis. London, U.K.: Chapman and Hall, 1986.

[34] I. T. Jolliffe, Principal Component Analysis. New York: Springer-
Verlag, 1986.

[35] Y. Tang, J. R. Nyengaard, D. M. De Groot, and H. J. Gundersen, “Total
regional and global number of synapses in the human brain neocortex,”
Synapse, vol. 41, no. 3, pp. 258–273, 2001.

[36] E. L. Lehmann, Theory of Point Estimation. New York: Wiley, 1983.
[37] J. Weng, T. S. Huang, and N. Ahuja, Motion and Structure From Image

Sequences. New York: Springer-Verlag, 1993.
[38] A. Papoulis, Probability, Random Variables, and Stochastic Processes,

2nd ed. New York: McGraw-Hill, 1976.
[39] P. Dayan and L. F. Abbott, Theoretical Neuroscience: Computational

and Mathematical Modeling of Neural Systems. Cambridge, MA:
MIT Press, 2001.

[40] J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the Theory of
Neural Computation. New York: Addison-Wesley, 1991.

[41] E. Oja, “A simplified neuron model as a principal component analyzer,”
J. Math Biol., vol. 15, pp. 267–273, 1982.

[42] T. Kohonen, Self-Organizing Maps, 3rd ed. Berlin, Germany:
Springer-Verlag, 2001.

[43] E. Simoncelli and B. Olshausen, “Natural image statistics and neural
representation,” Annu. Rev. Neurosci., vol. 24, pp. 1193–1216, 2001.

[44] E. Alhoniemi, J. Vesanto, J. Himberg, and J. Parhankangas, Som
toolbox for Matlab 5 Helsinki Univ. of Technol., Finland, Tech. Rep.
A57, 2000.

[45] M. D. Luciw, J. Weng, and S. Zeng, “Motor initiated expectation
through top-down connections as abstract context in a physical world,”
in Proc. 7th Int. Conf. Develop. Learn. (ICDL’08), Monterey, CA,
2008.

[46] P. Pajunen and J. Karhunen, “Least-squares methods for blind source
separation based on nonlinear PCA,” Int. J. Neural Syst., vol. 8, no.
5–6, pp. 601–612, 1998.

[47] J. Karhunen, P. Pajunen, and E. Oja, “The nonlinear PCA criterion in
blind source separation: Relations with other approaches,” Neurocom-
puting, vol. 22, pp. 5–20, 1998.

[48] X. Giannakopoulos, J. Karhunen, and E. Oja, “Experimental compar-
ison of neural ICA algorithms,” in Proc. Int. Conf. Artif. Neural Netw.
(ICANN’98), Skövde, Sweden, 1998, pp. 651–656.

[49] J.-F. Cardoso, “Blind signal separation: Statistical principles,” Proc.
IEEE, vol. 86, no. 10, pp. 2009–2025, 1998.

[50] A. Hyvarinen, J. Karhunen, and E. Oja, Independent Component Anal-
ysis. New York: Wiley, 2001.

[51] P. J. Huber, Robust Statistics. New York: Wiley, 1981.

Juyang Weng (S’85–M’88–SM’05–F’09) received
the B.S. degree from Fudan University, China, and
the M.S. and Ph.D. degrees from the University
of Illinois at Urbana-Champaign, all in computer
science.

He is now a Professor at the Department of
Computer Science and Engineering, Michigan
State University, East Lansing. He is also a Faculty
Member of the Cognitive Science Program and the
Neuroscience Program at Michigan State. Since
the work of Cresceptron (ICCV 1993), he has

expanded his research interests to biologically inspired systems, especially
the autonomous development of a variety of mental capabilities by robots and
animals, including perception, cognition, behaviors, motivation, and abstract
reasoning skills. He has published more than 200 research articles on related
subjects, including task muddiness, intelligence metrics, mental architectures,
vision, audition, touch, attention, recognition, autonomous navigation, and
other emergent behaviors. He is Editor-in-Chief of the International Journal
of Humanoid Robotics. He was a Member of the Executive Board of the
International Neural Network Society (2006–2008), Program Chairman of
the NSF/DARPA-funded Workshop on Development and Learning 2000 (1st
ICDL), Program Chairman of the Second ICDL (2002), Chairman of the Gov-
erning Board of the ICDL (2005–2007), and General Chairman of the Seventh
ICDL (2008) and Eighth ICDL (2009). He and his coworkers developed SAIL
and Dav robots as research platforms for autonomous development.

Dr. Weng is an Associate Editor of the IEEE TRANSACTIONS ON

AUTONOMOUS MENTAL DEVELOPMENT. He was Chairman of the Au-
tonomous Mental Development Technical Committee of the IEEE Compu-
tational Intelligence Society (2004–2005) and an Associate Editor of IEEE
TRANSACTIONS ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE and
IEEE TRANSACTIONS ON IMAGE PROCESSING.



WENG AND LUCIW: DUALLY OPTIMAL NEURONAL LAYERS: LOBE COMPONENT ANALYSIS 85

Matthew Luciw (S’06) received the B.S. and M.S.
degrees from Michigan State University (MSU), East
Lansing, in 2003 and 2006, respectively, both in com-
puter science. He is currently pursuing the doctoral
degree at MSU.

He is a member of the Embodied Intelligence Lab-
oratory, MSU. His research involves the study of bio-
logically inspired algorithms for autonomous devel-
opment of mental capabilities—especially for visual
attention and recognition.

Mr. Luciw is a student member of the Society for
Neuroscience and the IEEE Computational Intelligence Society.


