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Active Information Selection: Visual Attention
Through the Hands
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Abstract—An important goal in studying both human intelli-
gence and artificial intelligence is to understand how a natural or
an artificial learning system deals with the uncertainty and ambi-
guity of the real world. For a natural intelligence system such as a
human toddler, the relevant aspects in a learning environment are
only those that make contact with the learner’s sensory system. In
real-world interactions, what the child perceives critically depends
on his own actions as these actions bring information into and out
of the learner’s sensory field. The present analyses indicate how,
in the case of a toddler playing with toys, these perception-action
loops may simplify the learning environment by selecting relevant
information and filtering irrelevant information. This paper
reports new findings using a novel method that seeks to describe
the visual learning environment from a young child’s point of
view and measures the visual information that a child perceives
in real-time toy play with a parent. The main results are 1) what
the child perceives primarily depends on his own actions but also
his social partner’s actions; 2) manual actions, in particular, play
a critical role in creating visual experiences in which one object
dominates; 3) this selecting and filtering of visual objects through
the actions of the child provides more constrained and clean input
that seems likely to facilitate cognitive learning processes. These
findings have broad implications for how one studies and thinks
about human and artificial learning systems.

Index Terms—Artificial intelligence, cognitive science, embodied
cognition.

I. INTRODUCTION

T HE WORLD’S most powerful computers and robots
using the most sophisticated software are still far worse

than human babies in learning from real-world events. One
vexing problem for computer scientists is that the real-world
visual environment is ’cluttered’ with overlapping and moving
objects. Thus, while current computer vision systems can learn
and recognize several hundreds of two-dimensional visual
objects, they generally require pre-segmented and normalized
images; that is, they require cleaned-up input. In contrast,
young children seem to easily recognize everyday objects in a
cluttered, noisy, dynamic, and three-dimensional world [1]–[6].

One relevant difference between machine learning and human
learning that may contribute to this skill gap is the nature of the
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visual input itself. To deal with noisy data in the real world, most
state-of-the-art AI approaches first collect data (with or without
teaching labels) and then rely on inventing advanced mathemat-
ical algorithms which can be applied to the pre-collected data.
The learning system itself is passive in this approach, receiving
information in a one-way flow. In contrast, young children learn
through their own actions, actions that directly determine what
they see, how they see it, and when they see it. Through body
movements, young learners actively create the visual input on
which object learning depends. If we are to build artificial de-
vices that can—on their own—learn as well as toddlers, we may
benefit from understanding just how young human learners se-
lect information through their own actions and how this infor-
mation selection is accomplished in everyday interactions with
adult social partners [7]–[12].

This is also a critical question for theories of human learning.
In developmental psychology, many accounts of the learning en-
vironment (and the need for constraints on learning mechanisms
to learn from that assumed environment, e.g., [13]) are based on
adult intuitions about the structure of experience (e.g., [14] in
[15]) and not on the actual structure of the child’s experiences.

This study examines the toddler’s visual environment from
the toddler’s perspective and asks how toddlers’ own actions
may play a role in selecting visual information. The data col-
lection and analyses were specifically designed to answer two
questions: First, given a cluttered environment, does the child,
through their own actions, effectively reduce the information
available? Second, what actions by the child are critical to the
selection of visual information? In general, four kinds of actions
would seem to be relevant to visual selection 1) shifts in eye
gaze, 2) head and body turns, 3) manual actions by the child that
bring objects into and out of view, and 4) manual actions by the
social partner that put objects into the child’s view. Here we pro-
vide evidence on all of these actions relevant to visual selection,
except those due to rapid shifts in eye gaze direction that occur
without corresponding head turns. We do this because the role of
larger body movements in selecting visual information in natu-
ralistic settings has not been studied even though they are likely
to be important given the continuous and large body movements
characteristic of toddlers. Indeed, recent psychophysics studies
on adults performing everyday tasks, such as making a peanut
butter and jelly sandwich or making tea, show a close coupling
between eye, head, and hand movements with eye gaze slightly
leading the head and then the hands [16], [17]. Moreover, recent
evidence from developmental studies also suggests that when
toddlers are manually acting on objects (not just looking), head
and eye shifts are tightly coupled, with most looks to an ob-
ject also involving simultaneous head turns and posture changes
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Fig. 1. Multicamera sensing system. The child and the parent play with a set
of toys at a table. A mini-camera is placed onto the child’s head to collect visual
information from a first-person view. Another camera mounted on the top of the
table records the bird’s-eye view of the whole interaction.

[18]. Therefore, the present study focuses on large body move-
ments, such as head turns and manual actions, and we consider
the possible additional contributions of more subtle eye gaze
shifts in discussions of the findings.

II. MULTICAMERA SENSING ENVIRONMENT

To capture the global changes in the information available
to the child’s visual system as a result of the child’s own body,
head, and hand actions, we developed a new measurement
device that records the available visual information from the
child’s perspective: as shown in Fig. 1, a mini-camera mounted
on a headband. For a stable record of the information available
in the environment independent of the child’s movements, we
used an additional camera placed above the table.

A. The Environment

The study was conducted in a m m room. At the
center of the room was a cm cm cm table painted
a nonglossy white. A high chair for the child and a small chair
for the parent were placed facing each other. The walls and floor
of the room were covered with white fabrics. Both participants
were asked to wear white shirts as well. Thus from both cam-
eras, white pixels can be treated as background while nonwhite
pixels are either objects on the table, or the hands, or the faces
of participants.

B. Head-Mounted Camera

A lightweight head-mounted mini-camera was used to record
the first-person view from the young child’s perspective which
was mounted a sports headband placed on the participant’s fore-
head and close to her eyes. The angle of the camera was ad-

justable. Input power and video output went through a camera
cable connected to a wall socket, which was long enough to not
cause any movement restriction while the participant was sit-
ting down. The camera was connected to a multichannel digital
video capture card in a recording computer in the room adjacent
to the experiment room.

The head-mounted camera had a visual field of approximately
70 , horizontally and vertically. In a recent study, Yoshida and
Smith [18] demonstrated the validity of this method for cap-
turing the child’s view of events. Using a similar context of
tabletop play, they compared the direction of eye gaze as judged
from frame-by-frame coding of the contents of the head camera
to frame-by-frame coding of direction of eye gaze (recorded
from a second camera fixed on the child’s eyes). They found
that 90% of head-camera video frames corresponded with these
independently coded eye positions; the non-corresponding mo-
ments were brief, as well as rare (less than half a second). Their
results indicate that at least, in the table top and toy play context,
the contents of the head camera provide a good approximation
of the visual information available to the child as a function of
head and body movements.

C. Bird’s Eye View Camera

A high-resolution camera was mounted right above the table
and the table edges aligned with edges of the bird’s eye image.
As shown in Fig. 1 (right), this view provided visual information
that was independent of gaze and head movements of a partic-
ipant, and therefore, it recorded the whole interaction from a
third-person static view. An additional benefit of this camera
is its high-quality video, which made the image segmentation
and object tracking software work more robustly compared with
the head-mounted mini camera that was light-weight, but with
a limited resolution and video quality.

III. EXPERIMENT

A. Participants

We invited parents of toddlers in the Bloomington, IN, area to
participate in the experiment. Fifteen children contributed data
(six additional children were recruited, but either did not tolerate
the head camera or were excluded because of fussiness before
the experiment started). For the child participants included, the
mean age was 21.3, ranging from 19.1 to 23.4 months. Ten of
the included children were female and five were male. All par-
ticipants were white and middle-class.

B. Stimuli

Parents were given a maximum of six sets of toys (three
toys for each set) in a free-play task. The toys were either
rigid plastic objects or plush objects with a simple and a single
main color—factors that aided computalized automatic visual
processing.

C. Procedure

Three experimenters conducted the study: one to distract the
child; another to place the head-mounted camera on the child;
and a third one to control the quality of the video recording. Par-
ents were told that the goal of the study was simply to observe
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toy play and that they should try to interact with their child as
naturally as possible. Upon entering the experiment room, the
child was quickly seated in the high chair and several attractive
toys were placed on top of the table. One experimenter played
with the child while the second experimenter placed a sports
headband with the mini-camera onto the forehead of the child
at a moment that he appeared to be well distracted.

To calibrate the horizontal camera position in the forehead
and the angle of the camera relative to the head, the experi-
menter placed a very attractive toy in front of the young child
and signaled to a third experimenter in the adjacent room that
the participant was clearly looking at the object and that the
object was well centered. This outside experimenter, who con-
trolled the recording, confirmed if the object was at the center
of the image. If not, small adjustments were made on the head-
mounted camera gear. After this calibration phase, the experi-
menters removed all objects from the table, asked the parent to
start the experiment, and left the room. The parent was asked
to take all three objects from one set, place them on the table,
encourage the child to play with them, play with the child, and
after hearing a command from the experimenters, remove the
objects and bring out the next set of three. Each trial was 1 min
long.

Not all of the 15 toddlers stayed in the experiment for the
entire six trials (for example, some decided to leave the exper-
iment after three or four trials by removing the head camera).
Individual participants participated on average 3.7 trials (ranges
2–6). Across all 15 toddlers, a total of 56 trials were completed
and these constitute the data analyzed in this study. The entire
study, including initial setup, lasted for 10 to 15 min.

IV. IMAGE SEGMENTATION AND OBJECT DETECTION

The recording rate for each camera is 10 frames/s. Approx-
imately image frames were collected
from each dyad. The resolution of image frame is 720 480.

Visual information concerning the locations and sizes of ob-
jects, hands, and faces was automatically extracted from the raw
camera images. Using computer vision techniques, this was ac-
complished in three major steps as illustrated in Fig. 2. Given
raw images, the first step separates background pixels and ob-
ject pixels. This step is not trivial in general because a first-
person view camera continually moves causing moment-to-mo-
ment changes in visual background. In the present case, this step
is helped considerably by the all-white background enabling the
procedure to treat close-to-white pixels in an image as back-
ground. Occasionally, this approach also removes small portions
of an object that have light reflections on them as well (This
problem is fixed in step 3).

The second step groups nonwhite pixels into several blobs
using a fast and simple segmentation algorithm [19]. This al-
gorithm first creates groups of adjacent pixels that have color
values within a small threshold of each other. The algorithm
then attempts to create larger groups from the initial groups by
using a much tighter threshold. This follow-up step of the algo-
rithm attempts to determine which portions of the image belong
to the same object even if that object is broken up visually into
multiple segments, as for example, when held in a participant’s
hand.

The third step assigns each blob into an object category. In
this object detection task, we used Gaussian mixture models to
pre-train a model for each individual object [20]. By applying
each object model to a segmented image, a probabilistic map is
generated for each object indicating the likelihood of each pixel
in an image as belonging to this specific object. Next, by putting
probabilistic maps of all the possible objects together, and by
considering the spatial coherence of an object, the detection al-
gorithm assigns an object label for each blob in the segmented
image.

The data derived from these steps for each frame are 1) the
objects that are in the head-camera field; 2) the sizes of those
objects in the field; and 3) whether a hand is holding an ob-
ject (determined from the top-down view). An object is labeled
as held by a participant if the object blob overlaps with a hand
blob for more than 10 frames. We use this 1 s overlap require-
ment because we wanted to count active manual engagement
with an object and not merely momentary overlap (in the camera
image), as when a hand was passing by on the way to another
object.

The validity of the automatic coding results were assessed by
asking two human coders to annotate a small proportion of the
data frames ; the comparison of these hand codings
with the image processing results yielded 91% frame-by-frame
agreement. One common disagreement in these frame-by-frame
codings concerned holding that occurred when the hand was
just above an object from the bird’s eye view (but not holding
that object), a fact easily seen by the hand coders; using the 1-s
overlap rule in the automatic coding effectively eliminated this
problem. Finally, we note the following results derive from cu-
mulative statistics from thousands of image frames; therefore
small errors in the automatic coding (image processing), er-
rors are unlikely to change the overall patterns reported in the
present study. In the next sections, we first report analyses of the
contents of the head-camera images; we then report analyses
relevant to hand movements and their role in selecting visual
objects.

V. VISUAL INFORMATION SELECTION

Objectively, for all trials, there are three objects on the table
and thus, three objects that could be in the child’s view. These
three objects are all approximately the same actual size and thus,
when measured from the overhead camera, take up the same
amount of area in the images from that camera. Moreover, if
the child were to sit back and take a broad view of the table,
not moving his or her head, all three objects would be in view
in the head camera image and all would be approximately the
same size. However, if the child moves his body and/or moves
the objects so that one is closer to the head and eyes, than that
selected object will be larger than the other objects, and being
closer to the sensors could even obstruct the view of the other
objects. If the child’s head movements or manual actions on
the objects focus successively on one more then another object,
then the head camera images should show dynamic variation
in the objects in view and in the relative sizes of those objects
in the head camera view. In this way, the images in the head
camera change as function of the child’s own bodily movements
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Fig. 2. The overview of data processing using computer vision techniques. Top: We first remove background pixels from an image and then spot objects and
hands in the image based on pre-trained object models. Bottom: The processing results from the bird’s eye view camera. The information about whether a child or
a parent holds an object is inferred based on spatial proximity of a hand blob and an object blob from a third-person view.

Fig. 3. The proportions of visual objects in the first person view. X-axis repre-
sents image frame numbers. Each trajectory represents the proportion of one of
three objects or hands in the child’s visual field. The results show that the child’s
visual field is very dynamic and very narrowly focused on attended object at the
moment.

and thus, provide data on how available information changes in
real-time engagement with objects.

Fig. 3 shows frame-by-frame changes in the proportion of the
head camera image taken up by each of the three objects (and
also by the sum total of all body parts, faces, and hands from

both participants, in yellow) from one trial of one child. This pat-
tern is characteristic of all children. As is apparent, the number
and size of the objects in the head camera image change fre-
quently over the course of this trial. Sometimes only one object
is in view, sometimes two or three. Moreover, the relative close-
ness of the objects to the head camera (and eyes), and thus the
size of the objects in the head camera image, changes such that
one object often dominates the image. The first set of analyses
document this finding across the full data set which consists of
56 trials (from the 15 participating toddlers, 3.7 trials on av-
erage per toddler). All of the following measures and analyses
are trial-based by averaging sensory data within a 60-s trial.

A. Number of Objects in View

Fig. 4 shows the average number of objects in the head camera
image across all children and trials. All three objects are in the
child’s view less than 20% of time. Most often, there are only
one or two (instead of three) objects in the head camera image
(see also [18]). This is our first evidence that the child’s visual
field is selective.
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Fig. 4. The proportion of time that objects are in the child’s visual field. Note
that although there are always three objects on the table, for only less than 20%
of time, all of the three objects are in the child’s visual field while most often
there are only 1 or 2 objects (more than 55% in total) in their visual field. Fur-
ther, in more than 55% of time, there is always a dominating object in the child’s
visual field at a moment. A dominating object is defined based on both the ab-
solute size of an object and its relative size with other objects in view.

B. Size of Objects in View

The size of the objects in the head camera view is a direct
reflection of the closeness of the objects to the head (and head
camera). The closest object—the one taking up most of the head
camera field—seems likely to be the object being attended to
by the child at the moment. To examine the degree and dynamic
variation in which a single object dominates the head camera
image, we used several criteria (varying in their conservative-
ness) to define a dominating object in each image. Dominance
was measured in two ways: 1) absolute size of an object, more
specifically, the percentage of the head camera field that was
taken up by the largest object in that field; 2) relative size of
an object, the ratio of the dominating object to other objects in
view. For the absolute size measure, as shown in the examples
in Fig. 5, three increasing thresholds were used to define a frame
as containing, or not containing, a dominating object: 3%; 5%;
and 10% of the image (Given a 70 image size, the 3% criteria
is roughly comparable to the size of the fovea). For the second
relative measure, we used a ratio (largest object to the other two
objects) of 0.50 for characterizing an object as “dominating” or
not; a 0.50 ratio means that the larger object is at least larger
than the combination of the other two objects.

As shown in Fig. 5, in more than 60% of frames, by the rel-
ative measure, there is one dominating object that is larger than
the combination of the two objects ratio and its abso-
lute image size is also relatively distinct (3%).

By stricter absolute thresholds, almost 40% of time, there is
a large object taking up at least 5% of the frame, and 10% of the
time, there is a visually very large object taking up a substantial
10% proportion of the field. In brief, one of the three objects is
often dominant in the field, which comprises another form of
visual selection.

Because the head camera view is tightly tied—moment-to-
moment—to the child’s own actions, the dominating object may
also change—in terms of its size, location, and relation to the
other objects. Accordingly, we calculated the number of times

Fig. 5. The proportion of time that there is always a dominating object in the
child’s visual field at a moment. A dominating object is defined based on both
the absolute size of an object and its relative size with other objects in view.
Three absolute object sizes (3%, 5%, and 10%, etc.) are used to be combined
with a fixed relative ratio 0.5.

that the dominating object changed, using the middle, 5% abso-
lute threshold for defining a dominating object. By this measure,
there are on average 12.8 switches in the dominating object per
minute. This suggests frequent head and object movements, and
thus rapid shifts in the information available. These rapid shifts,
because they potentially relate to the child’s own actions, may
also be indicative of the child’s momentary goals and the rapid
switching of embodied attention in the cluttered environments
of real world activity.

C. Discussion

Ordinary contexts in the real world are highly cluttered, with
many objects and many potential targets for attention and for
learning. Theorists of natural and artificial intelligence have
often noted the daunting demands of attention in the “wild”
[21], [22]. The results on the number and sizes of objects in
child’s visual field—as measured by the head camera—show
that the child’s view at any moment is often selective, limited to
one or two of the three objects on the play table. Moreover, one
of these objects is often closer than the others, and thus bigger
in the field, dominating the view. Although the present analyses
just demonstrate this fact, it could be crucial to building
real-time models of how toddlers learn about objects and how
they organize their attention. As shown in Fig. 3, the visual
information from the child’s head camera is highly dynamic:
the three objects come in and out of view. The structure in this
dynamic egocentric visual experience would seem essential
to understanding embodied learning and, we note, it differs
markedly in its very nature from the information captured from
third-person cameras, the view on which most developmental
research is based on.

The dynamic change in the objects in the head camera view
and in their relative dominance in that view may be caused by
several different actions: 1) the child’s head rotation may change
where the head camera is pointed; 2) the child may use their
hands to bring objects closer to their head, and by so doing,
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may make the object in their hands much bigger and also make
other objects smaller due to occlusion; and 3) the parent may
also move objects close to the child’s sensors (perhaps to at-
tract the child’s attention to that object). The results observed
thus far, implicate the second two kinds of actions—hand ac-
tions—as the most likely major source of visual selection in the
present study. This is because head rotation in general, though
not always, may dramatically change the locations of visual ob-
jects in view, but the distances between the head camera and
all the object would not change. Therefore, head rotation will at
most slightly increase or decrease the size of all the objects on
the table. But hand movements literally can select one object to
bring close to the head and eyes. Accordingly, the next set of
analyses focus on hand movements.

VI. HAND ACTIONS

A. Objects in Hands

In 68% of the frames, the child’s hands are holding at least
one of the three objects; in 55% of the frames, the parent is
holding at least one object. Overall, in 86% of the frames, at
least one participant is holding at least one object. These facts
document the active manual engagement of the participants with
the objects.

The main finding is that objects in hands determine the dom-
inating object in the head camera image. Specifically, objects
held by children are significantly larger (and thus more likely to
be dominating by any of the criteria defined above). On average,
the objects held by children take 4.5% of the child’s visual field
compared with the average size of objects in the image (3.2% of
image). Objects in parents’ hands are just slightly larger, 3.6%,
than the average object size.

To affirm the statistically reliability of these differences, we
compared object image sizes when the object was held by the
child or by the parent to a control estimate of object image
size—the average size all individual objects across all head-
camera frames. This control measure provides the best estimate
of average object size in this task context independent of hand
action and actually decreases the likelihood of finding reliable
differences between image sizes of hand-held objects as the con-
trol estimate includes the sizes of both the held and not held
objects. An omnibus comparison shows that the image sizes of
child-held, parent-held, and the control estimate of average ob-
ject image size differ significantly,

. Post-hoc comparisons (Tukeys hsd, all )
show that the image sizes of the objects in the child’s hand were
reliably larger than those in the parent’s hands or by the con-
trol estimate. Objects in the parents’ hands were also larger in
the child’s view than the control. In sum, both the child’s and
parent’s actions effectively select objects for perception by in-
fluencing the objects that dominate in the child’s visual field,
however, the child’s own manual actions play the more signifi-
cant role in visual selection, at least in this toy-play task.

B. Moments With Dominant Objects

The next analyses provide converging evidence for these
conclusions. Whereas the prior analysis started with objects
in hands and then asked about their size in the head-camera

Fig. 6. The proportion of time that the child’s or the parent’s hands hold a dom-
inant object in those dominant moments. Top: Dominant moments with 10%
dominance. Bottom: Dominant moments with 5% dominance.

image, the present analyses begin with head camera images and
definitions of the dominating object in terms of the head camera
image, and then ask whether those so-defined dominating ob-
jects are in the child’s or parent’s hands. As described earlier,
the frame-by-frame definition of a dominating object may be
based on both the absolute size of that object in the head camera
view or its relative size with respect to other objects in view
(the ratio of the largest to the sum of the other two). For these
analyses, we report the two (middle and the highest) absolute
size thresholds, 5% of the visual field and 10% of the visual
field. The conclusions are qualitatively the same when based on
the other measures as well. However, in these analyses, unlike
the previous ones, we added a temporal stability criterion to the
definition of the object as dominating, and the pattern of results
we report below depend on this added criterion, which as we
discuss later, may be important in its own right. The added
requirement is that an object must maintain its dominance for
at least 500 ms. That is, it must be at least somewhat stably
dominant.

Based on these criteria, there are 10.2 dominant-object events
per minute for objects with 5% dominance and 5.8 dominant-ob-
ject events for objects with 10% dominance. In total, there are
2230 events with 5% dominance and 766 events with 10% dom-
inance across all the subjects. The following results are derived
from overall statistical patterns in these events calculated at the
trial level.

At the 10% threshold (top of Fig. 6), dominating ob-
jects are in the child’s hands more than 70% of time and
much less often in the parent’s hands (less than 20%),

. Indeed, as shown in the
figure, parents were more likely to be holding other objects, not
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Fig. 7. (a) and (c): The proportion of time that either the child or the parent is holding a to-be-dominant object. Plot (a) shows the results from 10% dominance
events and Plot (c) are derived from 5% dominance events. (b) and (d): The proportion of time that either the child or the parent is holding an used-to-be-dominated
object. Plot (b) is derived from 10% dominance events and Plot (c) is from 5% dominance events.

the one dominating at that moment in the head-camera image.
At the 5% threshold (bottom plot in Fig. 6), the pattern is the
same: the defined dominating object is more often in the child’s
than the parent’s hands, .

These results suggest that the child’s hand actions—and not
the parent—play the key role in visual selection and indeed,
from these analyses there is little evidence that parent hand ac-
tions play much of even a supporting role in this selection. As
we discuss later, although parents clearly play an important role
in such toy-play everyday interaction by introducing objects to
the child, the results here suggest that visual selection is ulti-
mately implemented by the child’s manual actions. Given the
rapidly changing views that characterize the head camera im-
ages (as evident in Fig. 3), stability may be the most critical at-
tentional problem for toddlers. One conjecture is that the young
perceiver’s manual actions on an object actually stabilize atten-
tion, creating a perceptual-motor feedback loop centered on one
object. We will revisit this topic in general discussion.

C. Moments Before/After an Object Dominates the Child’s
View?

Active toy play by toddlers, as Fig. 3 makes clear, generates
rapidly changing head-camera views in which one and then an-
other object dominates in the sense of being closer to the eyes,

and thus bigger. What events in this dynamic lead up to some
particular object becoming dominant in the image? There are at
least four different kinds of behavioral patterns that could lead to
a one-dominating object in the head-camera view: 1) the child’s
hands could select and move an object closer to their eyes; 2) the
parent’s hands could put the objects closer to the child; 3) the
parent could move an object to the child, the child could then
take it and move it close to the eyes, and 4) the child could move
his or her body toward the table and probably also rotate the head
toward one object to make that object dominate the visual field.

In an effort to better understand the dynamic processes that
lead up to the dominance of some object in the head camera
image, we zoomed into the moments just before and just after
a dominating object became dominating and measured both the
child’s and the parent’s behaviors. The approach is based on
one used in psycholinguistic studies to capture temporal pro-
files across a related class of events [30] (in our case, the relevant
class of events is a visually dominating object in the head camera
image). Such profiles enable one to discern potentially impor-
tant temporal moments within a trajectory. Fig. 7(a) and 7(c)
shows the average proportions of time (which can be viewed
as a probability profile) that a 10% or 5% “dominating object”
was held by the child or parent. Thus, Fig. 7(a) shows the prob-
ability that objects were in the child’s or the parent’s hands for
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the 10 s (10 000 ms) prior to a 10% threshold dominating ob-
ject. The trajectory of the probability that the child was holding
the to-be-visually-dominant object shows a clear and dramatic
increase as a function of temporal proximity to the visual dom-
inance of the object. There is no such pattern for the trajectory
of the parent holding the object. Indeed, if one assumes that the
four possible hand states (holding one of three objects on the
table or not holding) have an equal chance (that is 25%,) the
probability that the parent is holding the to-be-dominant objects
is close to chance and remains there as a function of proximity
to the moment at which the object becomes visually dominant
in the child’s view.

One approach used in child development and psycholin-
guistic research asks when such trajectories first begin to
diverge, which is commonly defined as the first significant
difference in a series of ordered pairwise comparisons (see
[23]–[26]). Ordered pair-wise -tests of the child’s and the
parent’s data reveal that these curves first diverge at around
7000 ms prior to dominance, .
This thus defines the likely temporal window—and a long
one—within which to explore in future work how percep-
tion-action loops may select and stabilize objects for vision.

Fig. 7(c) showed the same measure for the definition of the
dominating object in terms of a 5% size in the head camera
image. The pattern is similar, again showing an increasing prob-
ability that the to-be-dominant object is in the child’s hand as a
function of temporal proximity to the moment in which the ob-
ject reaches the 5% threshold for visual dominance. However,
by this more liberal criterion for visual dominance, the child and
parent curves do not reliably diverge until 4000 ms prior to dom-
inance . This indicates that even
with noisier data (resulting from the more liberal criterion for
visual dominance), by 4 seconds prior to an object becoming
visually dominant, the child’s manual actions are already in-
dicating its selection. Again, this analysis suggests the critical
temporal window for future work directed to understanding how
objects are selected by the hand, the role of visual events (in the
periphery or generated by head movements perhaps) in causing
objects to be manually selected, and then the unfolding events
that lead to those objects being moved close to the head and
eyes. At the very least, the present analyses make clear that the
child’s own actions play a strong role in visual selection in the
sense of an object that dominates the child’s view.

Fig. 7 also provides information on the role of the child’s
hands in terminating a dominant moment by making used-to-be-
dominant objects less large in the head camera image. Figs. 7(b)
and 7(d) shows the results of this measure for the 10% and
5% thresholds. The parent’s holding trajectories are between
20–25% which is again close to chance.

These conclusions were supported by separate child and
parent analyses of the proportion of preceding and following
trials that the dominant object was held. We conducted a
2 (threshold) by 2 (before or after) by 10 (1 s intervals)
ANOVA of the data from individual children (there were 15
young participants in total). This analysis reveals reliable
main effects of threshold, ,
of before and after , of time

and a reliable interaction be-

tween time and before and after, .
The interaction is due to the symmetrical nature of the proba-
bility that the child is holding the to-be (before) and formerly
(after) dominant object. This probability of holding increases
prior to visual dominance, but then decreases post visual domi-
nance. This analysis thus provides strong converging evidence
for a strong link between the visual selection and children’s
manual actions on objects. The analysis of the parent data
yielded no main effects or interactions that even approached
conventional standards of statistical significance.

D. Discussion

The central contribution of this second set of analyses is that
they tie visual selection (in the sense of objects close to the head
and eyes) to the child’s own manual actions. These results, of
course, do not mean that only hand actions are important, (as
compared to head and whole-body movements or to shifts in
eye-gaze) but they do show that hand actions play a critical role
in toddler visual attention, a role that has not been well studied.
For the goal of building artificial intelligence and robotic sys-
tems, they also suggest the importance of building active sensors
(cameras) that pan, tilt, and zoom, as well as, effectors that act
on and move objects in the world, in both ways, changing the
relation between the sensors and the effectors (see also [22]).
Indeed, scholars of human intelligence often point to hands that
can pick up and move objects as central to human intelligence,
linking manual dexterity to language [27], to tool use [28], and
to means-end causal reasoning [29]. The present results hint
hands and their actions on objects may also play a role in or-
ganizing visual attention, at least early in development. We do
not know from the present study how developmentally specific
the present pattern is, whether it generally characterizes all of
human active vision or whether it is most critical and most evi-
dent within a certain developmental period. This is an important
question for future research.

From the present data, we also do not know what instigates
the child’s manual grasp of an object. These could start with a
rapid shift in eye-gaze direction (or head movement) that then
gives rise to reaching for the object and bringing it close [30].
That is, manual action may not be the first step in selection, but
rather may be critical to stabilizing attention on an object. In
this context, it is worth noting that although the present findings
indicate that it is the child’s hand actions that play the more crit-
ical role in making some objects dominant in the head-camera
image compared to the parent’s hand actions, this does not mean
the parent’s actions play no role. Indeed, a parent’s touch to or
movement of a non-dominating object in the child’s view could
start the cascade—of look, grasp, and sustained attention. Future
comparisons of the dynamics of attention of children engaged
with toys and with a mature social partner versus when playing
by themselves may provide critical data on this point.

A final open question in these analyses is the possibility of
individual differences. Casual observation (as well as a robust
developmental literature, [31]–[34]) suggests that some parents
play a more active role in directing attention to individual ob-
jects than others. The analyses in this section were all based on
group data and so provide no information on this issue; how-
ever, examination of the probability of holding prior to a visual
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dominating event by parent-child dyad did not reveal clear in-
dividual differences. This could be due to the lack of sufficient
data from any individual dyad to discern these patterns or from
the possibility that the key individual differences reside in what
starts the process, but not in the attention sustaining processes
of reaching to and holding an object. That is, once the child’s
attention is directed (one way or the other, either through the
parent’s successful bid for the child’s attention or through the
child’s self-generated selection), the role of body and hands may
remain the same.

VII. GENERAL DISCUSSIONS, LIMITATIONS, AND CONCLUSIONS

The fact that young children’s own bodily actions create their
visual experiences is well recognized [9], [35], [36]. In addition,
there is now a growing literature on infant and children’s eye
movements and their role in learning about objects [37]–[39].
However, there has been little study of how larger bodily move-
ments—of head, posture, hands—structure and select visual ex-
perience. The present results strongly suggest that there are in-
sights to be gained by taking a larger whole-body approach to
visual attention, at least if the goal is understanding attention in
actively engaged toddlers. To this end, the use of a head camera
that moves with the child’s movements and that captures the
objects directly in front of the child’s face provides a way of
capturing the dynamic coupling of vision and body movements
beyond shifts in eye gaze.

Overall, the results strongly implicate manual activity (at
least for toddlers in the context of toy play) in selecting,
and perhaps also stabilizing visual information. As children
use their hands to bring objects of interest close to the face,
those objects increase in their visual size and also block the
view of other objects. These actions and their consequences
for vision, mundane as they might seem, naturally segment
and select objects in a cluttered visual field. Thus, they may
prove to be important ingredients in toddler intelligence and
learning. Indeed, the natural consequences of bodily action on
the available visual information may be crucial to achieving
human-like prowess given noisy and ambiguous data, providing
a peripheral (and perhaps cognitively “cheaper”) solution to
visual selection. Developmental theorists in the past have often
sought to solve the noisy input problem through innate con-
straints (e.g., [13]) or, more recently, through the actions of the
social partner as an orchestrator of the child’s attention (e.g.,
[15]). The present results do not necessarily diminish the role
of conceptual constraints in some learning tasks nor the role
of the mature social partner, but they do show that in everyday
tasks of acting and playing with objects, children’s own hand
actions may be a key part of the process.

The role of hands in bringing objects close to the eyes and
thus in increasing their dominance in the visual field raises a
number of interesting developmental questions. Infants do not
intensively manually play with and explore objects for sus-
tained periods until they sit steadily [37], which occurs around
8 months. This suggests possibly important developmental
changes in visual attention, object segmentation, and selection
after this period, a conjecture for which Soska et al. [35] have
already presented some preliminary evidence. Their findings,
in conjunction with the present results, point to the importance

of future work that takes a more developmental approach by
examining how attention, sustained attention to visual objects,
and manual action on objects, changes in the first two years of
life–a period of dramatic change in what infants manually do
with objects (see also [40]).

Before concluding, the limitations of the present method also
warrant discussion. One contribution of the present approach
is the use of the head camera which provides profoundly dif-
ferent information about the toddler’s activities in the task than
does a third person camera, which is the standard approach used
in child development research. The difference between a head
camera and a third person camera is that the first person camera
captures the momentary dynamics of available visual informa-
tion as it depends on the child’s own actions. The limitation,
however, is that not all actions influence the head camera view;
in particular, the head camera moves with head movements, not
eye movements. Thus, the head camera is not a substitute for
direct measures of eye gaze direction [18], [41], but instead pro-
vides information about the dynamics of available visual infor-
mation with larger body movements. In the ideal, one would
jointly measure both the dynamics of the larger visual field (as
given by a head camera), and also focal attention as indicated
by eye-gaze direction within that field. Recent advances in de-
velopmental research (e.g., [42]) may make this possible in the
near future.

A second limitation of the work concerns the definition of
the dominant object in the head camera image. An object that is
very large in the visual field—that the child has brought close
to their own face—has considerable face-validity for being the
object being attended to. However, given that there has been no
prior work in this area, it is unclear just how big an object needs
to be in a head camera field to count as dominating attention. It
was for this reason that we used multiple and converging mea-
sures. A next step needed to validate this approach is to link the
dominating object, as measured here, to some other behavioral
outcome related to attention, for example, to learning about the
object or to ease the distraction by some other salient objects in
the periphery.

To conclude, the results reported here have the potential to
contribute to understanding human intelligence and to building
autonomous intelligence in several important ways. First, they
emphasize the role of the child’s own actions. Considerable re-
cent research on both human and artificial systems has focused
on the social context and how the parent selects information by
guiding the child’s attention (e.g., [19], [29]). Indeed, recent
robotic studies clearly demonstrate how artificial devices with
impoverished motor and effector systems may be bootstrapped
to intelligent behaviors through the actions of a human partner
[43]–[45]. But these demonstrations may be missing the other
key part of autonomous intelligence—self-generated actions on
the world and the self-organizing properties of perception-ac-
tion loops. The present results make clear that, at least for the
age group in this study, the child’s own activity is a key compo-
nent in organizing visual input.

Second, the results strongly point to manual activities as a
major factor in selecting and reducing the visual information.
Hands that grab objects and bring them closer to the eyes make
those objects large in the visual field and also block the view of



150 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 1, NO. 2, AUGUST 2009

other objects, consequences that may seriously benefit aspects
of object recognition (including segregating objects, integrating
views, and binding properties, see [9]). The central importance
of hand activities as they relate to language [46], social com-
munication [47], [48], tool use [28], and problem solving [29]
are well noted and central to many theories of the evolution of
human intelligence [8]. They may also be foundationally rele-
vant to human-like visual attention to objects.

Third, our approach introduces a new method, with many ad-
vantages (despite some already noted limitations). Most studies
of child activity use a third-person view camera to record the
whole scene as viewed by an outside observer. Thereafter, re-
searchers observe and analyze recorded video clips to identify
interesting behavioral patterns. A human coder’s observations
are necessarily influenced by the larger structure of the scene
and their adult interpretation of its structure. The approach used
here differs in two important ways from the usual techniques in
child development research 1) by using a head-mounted camera,
we capture the dynamic first-person view; 2) by using automatic
image processing and coding methods, the data are both more
objective and more fine-grained than usual behavioral coding
schemes.

Fourth, all of these contributions are relevant to building
smarter artificial intelligent systems that learn from, teach, and
work with humans. Decades of research in artificial intelli-
gence suggest that flexible adaptive systems cannot be fully
pre-programmed. Instead, we need to build systems with some
preliminary constraints that can create and exploit a rich and
variable learning environment. Indeed, considerable advances
have been made in biologically inspired forms of artificial
intelligence (e.g., [4] and [49]–[52]) and there is a growing
realization that a deeper understanding of how human children
develop may provide the best clues for building human-like
intelligence [7], [8], [53], [54].

If we were to offer engineering suggestions from what we
have learned from this study of toddler’s visual attention during
toy play, they would be this embodied solution: build a device
with hands that can reach out, hold, and move objects in the
world, and that brings those objects, one at a time, close to the
sensors.

ACKNOWLEDGMENT

The authors wish to thank Amanda Favata, Amara Stuehling,
Mellissa Elston, Andrew Filipowicz, Farzana Bade, Jillian
Stansell, Saheun Kim, and Mimi Dubner for collection of the
data. They would also like to thank the Associate Editor Gedeon
Deak and three anonymous reviewers for insightful comments.

REFERENCES

[1] J. Weng et al., Artificial Intelligence: Autonomous Mental Development
by Robots and Animals. Washington, DC: American Association for
the Advancement of Science, 2001, vol. 5504, pp. 599–600.

[2] C. Yu, D. Ballard, and R. Aslin, “The role of embodied intention in
early lexical acquisition,” Cogn. Sci.: Multidisciplinary J., vol. 29, no.
6, pp. 961–1005, 2005.

[3] G. Deák, M. Bartlett, and T. Jebara, “New trends in cognitive science:
Integrative approaches to learning and development,” Neurocomputing,
vol. 70, no. 13–15, pp. 2139–2147, 2007.

[4] K. Gold and B. Scassellati, in Proc. Twenty-Second Conf. Artificial In-
telligence (AAAI-07), Vancouver, BC, Canada, pp. 883–888, (AAAI
Press).

[5] T. Oates, Z. Eyler-Walker, and P. Cohen, in Proc. Fourth Int. Conf.
Autonomous Agents, Barcelona, Spain, 2000.

[6] D. Roy and A. Pentland, “Learning words from sights and sounds: A
computational model,” Cogn. Sci.: Multidisciplinary J., vol. 26, no. 1,
pp. 113–146, 2002.

[7] M. Asada et al., “Cognitive developmental robotics as a new paradigm
for the design of humanoid robots,” Robot. Auton. Syst., vol. 37, no.
2–3, pp. 185–193, 2001.

[8] R. Pfeifer and C. Scheier, Understanding Intelligence. Cambridge,
MA: MIT Press Cambridge, 1999.

[9] G. Metta and P. Fitzpatrick, “Better vision through manipulation,”
Adaptive Behavior, vol. 11, no. 2, p. 109, 2003.

[10] B. Bertenthal, “Origins and early development of perception, action, and
representation,” Annu. Rev. Psychol., vol. 47, no. 1, pp. 431–459, 1996.

[11] M. Asada et al., “Cognitive developmental robotics: A survey,” IEEE
Trans. Auton. Mental Develop., vol. 1, no. 1, pp. 12–34, 2009.

[12] M. Rolf, M. Hanheide, and K. Rohlfing, “Attention via synchrony:
Making use of multimodal cues in social learning,” IEEE Trans. Auton.
Mental Develop., vol. 1, no. 1, pp. 55–67, 2009.

[13] E. Spelke and K. Kinzler, “Core knowledge,” Develop. Sci., vol. 10,
no. 1, pp. 89–96, 2007.

[14] W. Quine, Word and Object. Cambridge, MA: MIT press, 1964.
[15] D. Baldwin, “Understanding the link between joint attention and lan-

guage,” Joint Attention: Its Origins and Role in Develop., pp. 131–158,
1995.

[16] M. Land and M. Hayhoe, “In what ways do eye movements contribute
to everyday activities?,” Vision Res., vol. 41, no. 25–26, pp. 3559–3565,
2001.

[17] M. Hayhoe and D. Ballard, “Eye movements in natural behavior,”
Trends Cogn. Sci., vol. 9, no. 4, pp. 188–194, 2005.

[18] H. Yoshida and L. Smith, “What’s in view for toddlers? Using a
head camera to study visual experience,” Infancy, vol. 13, no. 3, pp.
229–248, 2008, .

[19] D. Comaniciu and P. Meer, in Proc. IEEE Computer Society Conf.
Computer Vision Pattern Recogn., San Juan, Puerto Rico, 1997.

[20] A. Pentland, B. Moghaddam, and T. Starner, in Proc. 1994 IEEE Com-
puter Society Conf. Computer Vision Pattern Recogn., Seattle, WA,
1994.

[21] C. Breazeal and B. Scassellati, “Infant-like social interactions between a
robot and a human caregiver,” Adapt. Behav., vol. 8, no. 1, p. 49, 2000.

[22] D. Ballard et al., “Deictic codes for the embodiment of cognition,”
Behav. Brain Sci., vol. 20, no. 4, pp. 723–742, 1997.

[23] L. Gershkoff-Stowe and L. Smith, “A curvilinear trend in naming errors
as a function of early vocabulary growth,” Cogn. Psychol., vol. 34, no.
1, pp. 37–71, 1997.

[24] M. Thomas and A. Karmiloff-Smith, “Are developmental disorders
like cases of adult brain damage? Implications from connectionist mod-
elling,” Behav. Brain Sci., vol. 25, no. 6, pp. 727–750, 2003.

[25] M. Tanenhaus et al., “Integration of visual and linguistic information
in spoken language comprehension,” Science, vol. 268, no. 5217, pp.
1632–1634, 1995.

[26] P. Allopenna, J. Magnuson, and M. Tanenhaus, “Tracking the time
course of spoken word recognition using eye movements: Evidence for
continuous mapping models,” J. Memory Language, vol. 38, no. 4, pp.
419–439, 1998.

[27] A. Pollick and F. de Waal, “Ape gestures and language evolution,”
Proc. Nat. Acad. Sci., vol. 104, no. 19, p. 8184, 2007.

[28] J. Lockman, “A perception-action perspective on tool use develop-
ment,” Child Develop., pp. 137–144, 2000.

[29] S. Goldin-Meadow, “Beyond words: The importance of gesture to re-
searchers and learners,” Child Develop., pp. 231–239, 2000.

[30] M. Jeannerod et al., “Grasping objects: The cortical mechanisms
of visuomotor transformation,” Trends Neurosci., vol. 18, no. 7, pp.
314–320, 1995.

[31] M. Tomasello and M. Farrar, “Joint attention and early language,” Child
Develop., pp. 1454–1463, 1986.

[32] M. Tomasello and J. Todd, “Joint attention and lexical acquisition
style,” First Language, vol. 4, no. 12, p. 197, 1983.

[33] A. Pereira, L. Smith, and C. Yu, “Social coordination in toddler’s word
learning: Interacting systems of perception and action,” Connection
Sci., vol. 20, no. 2–3, pp. 73–89, 2008.

[34] Y. Nagai and K. Rohlfing, “Computational analysis of motionese to-
ward scaffolding robot action learning,” IEEE Trans. Auton. Mental
Develop., vol. 1, no. 1, pp. 44–54, 2009.

[35] K. Soska, K. Adolph, and S. Johnson, Syst. in Develop.: Motor Skill Ac-
quisition Facilitates Three-Dimensional Object Completion. Wash-
ington, DC: American Psychological Association, unpublished.



YU et al.: ACTIVE SELECTION: VISUAL ATTENTION THROUGH HANDS 151

[36] H. Ruff, “Components of attention during infants’ manipulative explo-
ration,” Child Develop., pp. 105–114, 1986.

[37] S. Johnson, D. Amso, and J. Slemmer, “Development of object con-
cepts in infancy: Evidence for early learning in an eye-tracking para-
digm,” Proc. Nat. Acad. Sci., vol. 100, no. 18, pp. 10568–10573, 2003.

[38] S. Johnson, J. Slemmer, and D. Amso, “Where infants look determines
how they see: Eye movements and object perception performance in
3-month-olds,” Infancy, vol. 6, no. 2, pp. 185–201, 2004.

[39] C. von Hofsten et al., “Predictive action in infancy: Tracking and
reaching for moving objects,” Cognition, vol. 67, no. 3, pp. 255–285,
1998.

[40] L. Smith, “From fragments to shape: Changes in human visual object
recognition between 18 and 24 months,” Current Direct. Psychol., un-
published.

[41] R. Aslin, “Headed in the right direction: A commentary on Yoshida and
Smith,” Infancy, vol. 13, no. 3, pp. 275–278, 2008.

[42] K. E. Adolph et al., “Head-mounted eye-tracking with children: Visual
guidance of motor action,” J. Vision, vol. 8, no. 6, p. 102, May 2008.

[43] C. Breazeal, Designing Sociable Robots. Cambridge, MA: The MIT
Press, 2004.

[44] R. Brooks et al., “The cog project: Building a humanoid robot,” Lecture
Notes Comput. Sci., pp. 52–87, 1999.

[45] M. Scheutz, P. Schermerhorn, and J. Kramer, in Proc. 1st ACM
SIGCHI/SIGART Conf. Human-Robot Interaction, Salt Lake City, UT,
2006.

[46] E. Bates and F. Dick, “Language, gesture, and the developing brain,”
Develop. Psychobiol., vol. 40, no. 3, pp. 293–310, 2002.

[47] R. Bakeman and L. Adamson, “Infants’ conventionalized acts: Ges-
tures and words with mothers and peers,” Infant Behavior & Develop.,
vol. 9, no. 2, pp. 215–230, 1986.

[48] M. Carpenter et al., “Social cognition, joint attention, and communica-
tive competence from 9 to 15 months of age,” Monogr. Soc. Res. in
Child Develop., 1998.

[49] L. Steels and P. Vogt, in Proc. Fourth European Conf. Artificial Life,
Brighton, U.K..

[50] L. Steels and F. Kaplan, “AIBO’s first words: The social learning of
language and meaning,” Evol. Comm., vol. 4, no. 1, pp. 3–32, 2001.

[51] C. Yu and D. Ballard, “A multimodal learning interface for grounding
spoken language in sensory perceptions,” ACM Trans. Appl. Percep.,
vol. 1, no. 1, pp. 57–80, 2004.

[52] A. Billard et al., “Discovering optimal imitation strategies,” Robot.
Auton. Syst., vol. 47, no. 2–3, pp. 69–77, 2004.

[53] L. Smith and M. Gasser, “The development of embodied cognition: Six
lessons from babies,” Artif. Life, vol. 11, no. 1–2, pp. 13–29, 2005.

[54] L. Smith and C. Breazeal, “The dynamic lift of developmental process,”
Develop. Sci., vol. 10, no. 1, pp. 61–68, 2007.

Chen Yu received the Ph.D. degree in computer
science from the University of Rochester, Rochester,
NY, in 2004.

He is currently an Assistant Professor of Psy-
chological and Brain Sciences, Cognitive Science
and Computer Science at the Indiana Univer-
sity–Bloomington, wherein he founded and directed
the Computational Cognition and Learning Labo-
ratory. He has published more than 50 journal and
conference papers. His research interests focus on
embodied cognition, language learning, multimodal

social interaction, perception and action, data mining of behavioral data and
artificial intelligence.

Dr. Yu received the David Marr Prize from the Cognitive Science Society
in 2003, distinguished early career contribution award from the International
Society of Infant Studies, and outstanding junior faculty award from Indiana
University. You may find out more about his research and laboratory at www.
iub.edu/~dll.

Linda B. Smith received the B.S. degree from the
University of Wisconsin–Madison in 1973 and the
Ph.D. degree in psychology from the University of
Pennsylvania, Philadelphia, in 1977.

She is a Distinquished Professor and the Chan-
cellor’s Professor of Psychological and Brain
Sciences and Cognitive Science at Indiana Univer-
sity–Bloomington. She joined the faculty at Indiana
University in 1977. Her research is directed to
understanding developmental processes especially at
it applies to early cognitive development and to the

interaction of perception, action and language in that developmental process.
She has published over 120 research articles and is coauthor with Esther Thelen
of “A Dynamical Systems Approach to the Development of Cognition and
Action”. Her research is supported by grants from the National Institutes of
Child Health and Development and the National Institute of Mental Health.

Dr. Smith is a fellow of the American Academy of Arts and Sciences, the
Cognitive Science Society, and the Association for Psychological Science. You
may find out more about her research and laboratory at www.iub.edu/~cogdev.

Hongwei Shen is currently working towards the
Ph.D. degree in psychological and brain sciences at
Indiana University–Bloomington. He received the
B.S. degree in electrical engineering from Yunnan
University and the M.S. degree in information and
signals processing from Peking University.

His primary research interests are cognitive devel-
opment in toddlers, and action and perception inter-
actions during learning.

Alfredo F. Pereira received the Ph.D. degree in
psychology and cognitive science at Indiana Uni-
versity–Bloomington in 2009 and a Licenciatura in
informatics engineering from Universidade Nova de
Lisboa, Portugal, in 1998.

He is a Postdoctoral Fellow at the Department
of Psychological and Brain Sciences at Indiana
University–Bloomington. His research interests are
in the field of cognitive development, specifically
how children’s everyday sensory–motor experiences
can act as a source of constraints on cognitive

development. His approach is to examine the natural dynamic structure of
real-time sensory–motor experience as it evolves in developing children’s
active engagement with physical objects and social partners.

Thomas Smith received the B.A. degree in computer
science from Carleton College, Northfield, MN, in
2007.

He is now a research programmer in the Computa-
tional Cognition and Learning Laboratory at Indiana
University–Bloomington. His interests include data
analysis and visualization and he is the coauthor of
several papers.


